Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/cycle_canceling.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/cycle_canceling.h1230
1 files changed, 1230 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/cycle_canceling.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/cycle_canceling.h
new file mode 100644
index 00000000000..646d299e3ec
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/cycle_canceling.h
@@ -0,0 +1,1230 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_CYCLE_CANCELING_H
+#define LEMON_CYCLE_CANCELING_H
+
+/// \ingroup min_cost_flow_algs
+/// \file
+/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
+
+#include <vector>
+#include <limits>
+
+#include <lemon/core.h>
+#include <lemon/maps.h>
+#include <lemon/path.h>
+#include <lemon/math.h>
+#include <lemon/static_graph.h>
+#include <lemon/adaptors.h>
+#include <lemon/circulation.h>
+#include <lemon/bellman_ford.h>
+#include <lemon/howard_mmc.h>
+#include <lemon/hartmann_orlin_mmc.h>
+
+namespace lemon {
+
+ /// \addtogroup min_cost_flow_algs
+ /// @{
+
+ /// \brief Implementation of cycle-canceling algorithms for
+ /// finding a \ref min_cost_flow "minimum cost flow".
+ ///
+ /// \ref CycleCanceling implements three different cycle-canceling
+ /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
+ /// \cite amo93networkflows, \cite klein67primal,
+ /// \cite goldberg89cyclecanceling.
+ /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
+ /// "Cancel-and-Tighten" algorithm, thus it is the default method.
+ /// It runs in strongly polynomial time \f$O(n^2 m^2 \log n)\f$,
+ /// but in practice, it is typically orders of magnitude slower than
+ /// the scaling algorithms and \ref NetworkSimplex.
+ /// (For more information, see \ref min_cost_flow_algs "the module page".)
+ ///
+ /// Most of the parameters of the problem (except for the digraph)
+ /// can be given using separate functions, and the algorithm can be
+ /// executed using the \ref run() function. If some parameters are not
+ /// specified, then default values will be used.
+ ///
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam V The number type used for flow amounts, capacity bounds
+ /// and supply values in the algorithm. By default, it is \c int.
+ /// \tparam C The number type used for costs and potentials in the
+ /// algorithm. By default, it is the same as \c V.
+ ///
+ /// \warning Both \c V and \c C must be signed number types.
+ /// \warning All input data (capacities, supply values, and costs) must
+ /// be integer.
+ /// \warning This algorithm does not support negative costs for
+ /// arcs having infinite upper bound.
+ ///
+ /// \note For more information about the three available methods,
+ /// see \ref Method.
+#ifdef DOXYGEN
+ template <typename GR, typename V, typename C>
+#else
+ template <typename GR, typename V = int, typename C = V>
+#endif
+ class CycleCanceling
+ {
+ public:
+
+ /// The type of the digraph
+ typedef GR Digraph;
+ /// The type of the flow amounts, capacity bounds and supply values
+ typedef V Value;
+ /// The type of the arc costs
+ typedef C Cost;
+
+ public:
+
+ /// \brief Problem type constants for the \c run() function.
+ ///
+ /// Enum type containing the problem type constants that can be
+ /// returned by the \ref run() function of the algorithm.
+ enum ProblemType {
+ /// The problem has no feasible solution (flow).
+ INFEASIBLE,
+ /// The problem has optimal solution (i.e. it is feasible and
+ /// bounded), and the algorithm has found optimal flow and node
+ /// potentials (primal and dual solutions).
+ OPTIMAL,
+ /// The digraph contains an arc of negative cost and infinite
+ /// upper bound. It means that the objective function is unbounded
+ /// on that arc, however, note that it could actually be bounded
+ /// over the feasible flows, but this algroithm cannot handle
+ /// these cases.
+ UNBOUNDED
+ };
+
+ /// \brief Constants for selecting the used method.
+ ///
+ /// Enum type containing constants for selecting the used method
+ /// for the \ref run() function.
+ ///
+ /// \ref CycleCanceling provides three different cycle-canceling
+ /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
+ /// is used, which is by far the most efficient and the most robust.
+ /// However, the other methods can be selected using the \ref run()
+ /// function with the proper parameter.
+ enum Method {
+ /// A simple cycle-canceling method, which uses the
+ /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
+ /// cycles in the residual network.
+ /// The number of Bellman-Ford iterations is bounded by a successively
+ /// increased limit.
+ SIMPLE_CYCLE_CANCELING,
+ /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
+ /// well-known strongly polynomial method
+ /// \cite goldberg89cyclecanceling. It improves along a
+ /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
+ /// Its running time complexity is \f$O(n^2 m^3 \log n)\f$.
+ MINIMUM_MEAN_CYCLE_CANCELING,
+ /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
+ /// improved version of the previous method
+ /// \cite goldberg89cyclecanceling.
+ /// It is faster both in theory and in practice, its running time
+ /// complexity is \f$O(n^2 m^2 \log n)\f$.
+ CANCEL_AND_TIGHTEN
+ };
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typedef std::vector<int> IntVector;
+ typedef std::vector<double> DoubleVector;
+ typedef std::vector<Value> ValueVector;
+ typedef std::vector<Cost> CostVector;
+ typedef std::vector<char> BoolVector;
+ // Note: vector<char> is used instead of vector<bool> for efficiency reasons
+
+ private:
+
+ template <typename KT, typename VT>
+ class StaticVectorMap {
+ public:
+ typedef KT Key;
+ typedef VT Value;
+
+ StaticVectorMap(std::vector<Value>& v) : _v(v) {}
+
+ const Value& operator[](const Key& key) const {
+ return _v[StaticDigraph::id(key)];
+ }
+
+ Value& operator[](const Key& key) {
+ return _v[StaticDigraph::id(key)];
+ }
+
+ void set(const Key& key, const Value& val) {
+ _v[StaticDigraph::id(key)] = val;
+ }
+
+ private:
+ std::vector<Value>& _v;
+ };
+
+ typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
+ typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
+
+ private:
+
+
+ // Data related to the underlying digraph
+ const GR &_graph;
+ int _node_num;
+ int _arc_num;
+ int _res_node_num;
+ int _res_arc_num;
+ int _root;
+
+ // Parameters of the problem
+ bool _has_lower;
+ Value _sum_supply;
+
+ // Data structures for storing the digraph
+ IntNodeMap _node_id;
+ IntArcMap _arc_idf;
+ IntArcMap _arc_idb;
+ IntVector _first_out;
+ BoolVector _forward;
+ IntVector _source;
+ IntVector _target;
+ IntVector _reverse;
+
+ // Node and arc data
+ ValueVector _lower;
+ ValueVector _upper;
+ CostVector _cost;
+ ValueVector _supply;
+
+ ValueVector _res_cap;
+ CostVector _pi;
+
+ // Data for a StaticDigraph structure
+ typedef std::pair<int, int> IntPair;
+ StaticDigraph _sgr;
+ std::vector<IntPair> _arc_vec;
+ std::vector<Cost> _cost_vec;
+ IntVector _id_vec;
+ CostArcMap _cost_map;
+ CostNodeMap _pi_map;
+
+ public:
+
+ /// \brief Constant for infinite upper bounds (capacities).
+ ///
+ /// Constant for infinite upper bounds (capacities).
+ /// It is \c std::numeric_limits<Value>::infinity() if available,
+ /// \c std::numeric_limits<Value>::max() otherwise.
+ const Value INF;
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ CycleCanceling(const GR& graph) :
+ _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
+ _cost_map(_cost_vec), _pi_map(_pi),
+ INF(std::numeric_limits<Value>::has_infinity ?
+ std::numeric_limits<Value>::infinity() :
+ std::numeric_limits<Value>::max())
+ {
+ // Check the number types
+ LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
+ "The flow type of CycleCanceling must be signed");
+ LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
+ "The cost type of CycleCanceling must be signed");
+
+ // Reset data structures
+ reset();
+ }
+
+ /// \name Parameters
+ /// The parameters of the algorithm can be specified using these
+ /// functions.
+
+ /// @{
+
+ /// \brief Set the lower bounds on the arcs.
+ ///
+ /// This function sets the lower bounds on the arcs.
+ /// If it is not used before calling \ref run(), the lower bounds
+ /// will be set to zero on all arcs.
+ ///
+ /// \param map An arc map storing the lower bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template <typename LowerMap>
+ CycleCanceling& lowerMap(const LowerMap& map) {
+ _has_lower = true;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _lower[_arc_idf[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the upper bounds (capacities) on the arcs.
+ ///
+ /// This function sets the upper bounds (capacities) on the arcs.
+ /// If it is not used before calling \ref run(), the upper bounds
+ /// will be set to \ref INF on all arcs (i.e. the flow value will be
+ /// unbounded from above).
+ ///
+ /// \param map An arc map storing the upper bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename UpperMap>
+ CycleCanceling& upperMap(const UpperMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _upper[_arc_idf[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the costs of the arcs.
+ ///
+ /// This function sets the costs of the arcs.
+ /// If it is not used before calling \ref run(), the costs
+ /// will be set to \c 1 on all arcs.
+ ///
+ /// \param map An arc map storing the costs.
+ /// Its \c Value type must be convertible to the \c Cost type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename CostMap>
+ CycleCanceling& costMap(const CostMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _cost[_arc_idf[a]] = map[a];
+ _cost[_arc_idb[a]] = -map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the supply values of the nodes.
+ ///
+ /// This function sets the supply values of the nodes.
+ /// If neither this function nor \ref stSupply() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// \param map A node map storing the supply values.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename SupplyMap>
+ CycleCanceling& supplyMap(const SupplyMap& map) {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ _supply[_node_id[n]] = map[n];
+ }
+ return *this;
+ }
+
+ /// \brief Set single source and target nodes and a supply value.
+ ///
+ /// This function sets a single source node and a single target node
+ /// and the required flow value.
+ /// If neither this function nor \ref supplyMap() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// Using this function has the same effect as using \ref supplyMap()
+ /// with a map in which \c k is assigned to \c s, \c -k is
+ /// assigned to \c t and all other nodes have zero supply value.
+ ///
+ /// \param s The source node.
+ /// \param t The target node.
+ /// \param k The required amount of flow from node \c s to node \c t
+ /// (i.e. the supply of \c s and the demand of \c t).
+ ///
+ /// \return <tt>(*this)</tt>
+ CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
+ for (int i = 0; i != _res_node_num; ++i) {
+ _supply[i] = 0;
+ }
+ _supply[_node_id[s]] = k;
+ _supply[_node_id[t]] = -k;
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Execution control
+ /// The algorithm can be executed using \ref run().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// The paramters can be specified using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
+ /// For example,
+ /// \code
+ /// CycleCanceling<ListDigraph> cc(graph);
+ /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// This function can be called more than once. All the given parameters
+ /// are kept for the next call, unless \ref resetParams() or \ref reset()
+ /// is used, thus only the modified parameters have to be set again.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class (or the last \ref reset() call), then the \ref reset()
+ /// function must be called.
+ ///
+ /// \param method The cycle-canceling method that will be used.
+ /// For more information, see \ref Method.
+ ///
+ /// \return \c INFEASIBLE if no feasible flow exists,
+ /// \n \c OPTIMAL if the problem has optimal solution
+ /// (i.e. it is feasible and bounded), and the algorithm has found
+ /// optimal flow and node potentials (primal and dual solutions),
+ /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
+ /// and infinite upper bound. It means that the objective function
+ /// is unbounded on that arc, however, note that it could actually be
+ /// bounded over the feasible flows, but this algroithm cannot handle
+ /// these cases.
+ ///
+ /// \see ProblemType, Method
+ /// \see resetParams(), reset()
+ ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
+ ProblemType pt = init();
+ if (pt != OPTIMAL) return pt;
+ start(method);
+ return OPTIMAL;
+ }
+
+ /// \brief Reset all the parameters that have been given before.
+ ///
+ /// This function resets all the paramaters that have been given
+ /// before using functions \ref lowerMap(), \ref upperMap(),
+ /// \ref costMap(), \ref supplyMap(), \ref stSupply().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// For example,
+ /// \code
+ /// CycleCanceling<ListDigraph> cs(graph);
+ ///
+ /// // First run
+ /// cc.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ ///
+ /// // Run again with modified cost map (resetParams() is not called,
+ /// // so only the cost map have to be set again)
+ /// cost[e] += 100;
+ /// cc.costMap(cost).run();
+ ///
+ /// // Run again from scratch using resetParams()
+ /// // (the lower bounds will be set to zero on all arcs)
+ /// cc.resetParams();
+ /// cc.upperMap(capacity).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see reset(), run()
+ CycleCanceling& resetParams() {
+ for (int i = 0; i != _res_node_num; ++i) {
+ _supply[i] = 0;
+ }
+ int limit = _first_out[_root];
+ for (int j = 0; j != limit; ++j) {
+ _lower[j] = 0;
+ _upper[j] = INF;
+ _cost[j] = _forward[j] ? 1 : -1;
+ }
+ for (int j = limit; j != _res_arc_num; ++j) {
+ _lower[j] = 0;
+ _upper[j] = INF;
+ _cost[j] = 0;
+ _cost[_reverse[j]] = 0;
+ }
+ _has_lower = false;
+ return *this;
+ }
+
+ /// \brief Reset the internal data structures and all the parameters
+ /// that have been given before.
+ ///
+ /// This function resets the internal data structures and all the
+ /// paramaters that have been given before using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// See \ref resetParams() for examples.
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see resetParams(), run()
+ CycleCanceling& reset() {
+ // Resize vectors
+ _node_num = countNodes(_graph);
+ _arc_num = countArcs(_graph);
+ _res_node_num = _node_num + 1;
+ _res_arc_num = 2 * (_arc_num + _node_num);
+ _root = _node_num;
+
+ _first_out.resize(_res_node_num + 1);
+ _forward.resize(_res_arc_num);
+ _source.resize(_res_arc_num);
+ _target.resize(_res_arc_num);
+ _reverse.resize(_res_arc_num);
+
+ _lower.resize(_res_arc_num);
+ _upper.resize(_res_arc_num);
+ _cost.resize(_res_arc_num);
+ _supply.resize(_res_node_num);
+
+ _res_cap.resize(_res_arc_num);
+ _pi.resize(_res_node_num);
+
+ _arc_vec.reserve(_res_arc_num);
+ _cost_vec.reserve(_res_arc_num);
+ _id_vec.reserve(_res_arc_num);
+
+ // Copy the graph
+ int i = 0, j = 0, k = 2 * _arc_num + _node_num;
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
+ _node_id[n] = i;
+ }
+ i = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
+ _first_out[i] = j;
+ for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
+ _arc_idf[a] = j;
+ _forward[j] = true;
+ _source[j] = i;
+ _target[j] = _node_id[_graph.runningNode(a)];
+ }
+ for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
+ _arc_idb[a] = j;
+ _forward[j] = false;
+ _source[j] = i;
+ _target[j] = _node_id[_graph.runningNode(a)];
+ }
+ _forward[j] = false;
+ _source[j] = i;
+ _target[j] = _root;
+ _reverse[j] = k;
+ _forward[k] = true;
+ _source[k] = _root;
+ _target[k] = i;
+ _reverse[k] = j;
+ ++j; ++k;
+ }
+ _first_out[i] = j;
+ _first_out[_res_node_num] = k;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int fi = _arc_idf[a];
+ int bi = _arc_idb[a];
+ _reverse[fi] = bi;
+ _reverse[bi] = fi;
+ }
+
+ // Reset parameters
+ resetParams();
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The \ref run() function must be called before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found flow.
+ ///
+ /// This function returns the total cost of the found flow.
+ /// Its complexity is O(m).
+ ///
+ /// \note The return type of the function can be specified as a
+ /// template parameter. For example,
+ /// \code
+ /// cc.totalCost<double>();
+ /// \endcode
+ /// It is useful if the total cost cannot be stored in the \c Cost
+ /// type of the algorithm, which is the default return type of the
+ /// function.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename Number>
+ Number totalCost() const {
+ Number c = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int i = _arc_idb[a];
+ c += static_cast<Number>(_res_cap[i]) *
+ (-static_cast<Number>(_cost[i]));
+ }
+ return c;
+ }
+
+#ifndef DOXYGEN
+ Cost totalCost() const {
+ return totalCost<Cost>();
+ }
+#endif
+
+ /// \brief Return the flow on the given arc.
+ ///
+ /// This function returns the flow on the given arc.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value flow(const Arc& a) const {
+ return _res_cap[_arc_idb[a]];
+ }
+
+ /// \brief Copy the flow values (the primal solution) into the
+ /// given map.
+ ///
+ /// This function copies the flow value on each arc into the given
+ /// map. The \c Value type of the algorithm must be convertible to
+ /// the \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename FlowMap>
+ void flowMap(FlowMap &map) const {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ map.set(a, _res_cap[_arc_idb[a]]);
+ }
+ }
+
+ /// \brief Return the potential (dual value) of the given node.
+ ///
+ /// This function returns the potential (dual value) of the
+ /// given node.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Cost potential(const Node& n) const {
+ return static_cast<Cost>(_pi[_node_id[n]]);
+ }
+
+ /// \brief Copy the potential values (the dual solution) into the
+ /// given map.
+ ///
+ /// This function copies the potential (dual value) of each node
+ /// into the given map.
+ /// The \c Cost type of the algorithm must be convertible to the
+ /// \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename PotentialMap>
+ void potentialMap(PotentialMap &map) const {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
+ }
+ }
+
+ /// @}
+
+ private:
+
+ // Initialize the algorithm
+ ProblemType init() {
+ if (_res_node_num <= 1) return INFEASIBLE;
+
+ // Check the sum of supply values
+ _sum_supply = 0;
+ for (int i = 0; i != _root; ++i) {
+ _sum_supply += _supply[i];
+ }
+ if (_sum_supply > 0) return INFEASIBLE;
+
+ // Check lower and upper bounds
+ LEMON_DEBUG(checkBoundMaps(),
+ "Upper bounds must be greater or equal to the lower bounds");
+
+
+ // Initialize vectors
+ for (int i = 0; i != _res_node_num; ++i) {
+ _pi[i] = 0;
+ }
+ ValueVector excess(_supply);
+
+ // Remove infinite upper bounds and check negative arcs
+ const Value MAX = std::numeric_limits<Value>::max();
+ int last_out;
+ if (_has_lower) {
+ for (int i = 0; i != _root; ++i) {
+ last_out = _first_out[i+1];
+ for (int j = _first_out[i]; j != last_out; ++j) {
+ if (_forward[j]) {
+ Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
+ if (c >= MAX) return UNBOUNDED;
+ excess[i] -= c;
+ excess[_target[j]] += c;
+ }
+ }
+ }
+ } else {
+ for (int i = 0; i != _root; ++i) {
+ last_out = _first_out[i+1];
+ for (int j = _first_out[i]; j != last_out; ++j) {
+ if (_forward[j] && _cost[j] < 0) {
+ Value c = _upper[j];
+ if (c >= MAX) return UNBOUNDED;
+ excess[i] -= c;
+ excess[_target[j]] += c;
+ }
+ }
+ }
+ }
+ Value ex, max_cap = 0;
+ for (int i = 0; i != _res_node_num; ++i) {
+ ex = excess[i];
+ if (ex < 0) max_cap -= ex;
+ }
+ for (int j = 0; j != _res_arc_num; ++j) {
+ if (_upper[j] >= MAX) _upper[j] = max_cap;
+ }
+
+ // Initialize maps for Circulation and remove non-zero lower bounds
+ ConstMap<Arc, Value> low(0);
+ typedef typename Digraph::template ArcMap<Value> ValueArcMap;
+ typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
+ ValueArcMap cap(_graph), flow(_graph);
+ ValueNodeMap sup(_graph);
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ sup[n] = _supply[_node_id[n]];
+ }
+ if (_has_lower) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int j = _arc_idf[a];
+ Value c = _lower[j];
+ cap[a] = _upper[j] - c;
+ sup[_graph.source(a)] -= c;
+ sup[_graph.target(a)] += c;
+ }
+ } else {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ cap[a] = _upper[_arc_idf[a]];
+ }
+ }
+
+ // Find a feasible flow using Circulation
+ Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
+ circ(_graph, low, cap, sup);
+ if (!circ.flowMap(flow).run()) return INFEASIBLE;
+
+ // Set residual capacities and handle GEQ supply type
+ if (_sum_supply < 0) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ Value fa = flow[a];
+ _res_cap[_arc_idf[a]] = cap[a] - fa;
+ _res_cap[_arc_idb[a]] = fa;
+ sup[_graph.source(a)] -= fa;
+ sup[_graph.target(a)] += fa;
+ }
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ excess[_node_id[n]] = sup[n];
+ }
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
+ int u = _target[a];
+ int ra = _reverse[a];
+ _res_cap[a] = -_sum_supply + 1;
+ _res_cap[ra] = -excess[u];
+ _cost[a] = 0;
+ _cost[ra] = 0;
+ }
+ } else {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ Value fa = flow[a];
+ _res_cap[_arc_idf[a]] = cap[a] - fa;
+ _res_cap[_arc_idb[a]] = fa;
+ }
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
+ int ra = _reverse[a];
+ _res_cap[a] = 1;
+ _res_cap[ra] = 0;
+ _cost[a] = 0;
+ _cost[ra] = 0;
+ }
+ }
+
+ return OPTIMAL;
+ }
+
+ // Check if the upper bound is greater than or equal to the lower bound
+ // on each forward arc.
+ bool checkBoundMaps() {
+ for (int j = 0; j != _res_arc_num; ++j) {
+ if (_forward[j] && _upper[j] < _lower[j]) return false;
+ }
+ return true;
+ }
+
+ // Build a StaticDigraph structure containing the current
+ // residual network
+ void buildResidualNetwork() {
+ _arc_vec.clear();
+ _cost_vec.clear();
+ _id_vec.clear();
+ for (int j = 0; j != _res_arc_num; ++j) {
+ if (_res_cap[j] > 0) {
+ _arc_vec.push_back(IntPair(_source[j], _target[j]));
+ _cost_vec.push_back(_cost[j]);
+ _id_vec.push_back(j);
+ }
+ }
+ _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
+ }
+
+ // Execute the algorithm and transform the results
+ void start(Method method) {
+ // Execute the algorithm
+ switch (method) {
+ case SIMPLE_CYCLE_CANCELING:
+ startSimpleCycleCanceling();
+ break;
+ case MINIMUM_MEAN_CYCLE_CANCELING:
+ startMinMeanCycleCanceling();
+ break;
+ case CANCEL_AND_TIGHTEN:
+ startCancelAndTighten();
+ break;
+ }
+
+ // Compute node potentials
+ if (method != SIMPLE_CYCLE_CANCELING) {
+ buildResidualNetwork();
+ typename BellmanFord<StaticDigraph, CostArcMap>
+ ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
+ bf.distMap(_pi_map);
+ bf.init(0);
+ bf.start();
+ }
+
+ // Handle non-zero lower bounds
+ if (_has_lower) {
+ int limit = _first_out[_root];
+ for (int j = 0; j != limit; ++j) {
+ if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
+ }
+ }
+ }
+
+ // Execute the "Simple Cycle Canceling" method
+ void startSimpleCycleCanceling() {
+ // Constants for computing the iteration limits
+ const int BF_FIRST_LIMIT = 2;
+ const double BF_LIMIT_FACTOR = 1.5;
+
+ typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
+ typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
+ typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
+ typedef typename BellmanFord<ResDigraph, CostArcMap>
+ ::template SetDistMap<CostNodeMap>
+ ::template SetPredMap<PredMap>::Create BF;
+
+ // Build the residual network
+ _arc_vec.clear();
+ _cost_vec.clear();
+ for (int j = 0; j != _res_arc_num; ++j) {
+ _arc_vec.push_back(IntPair(_source[j], _target[j]));
+ _cost_vec.push_back(_cost[j]);
+ }
+ _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
+
+ FilterMap filter_map(_res_cap);
+ ResDigraph rgr(_sgr, filter_map);
+ std::vector<int> cycle;
+ std::vector<StaticDigraph::Arc> pred(_res_arc_num);
+ PredMap pred_map(pred);
+ BF bf(rgr, _cost_map);
+ bf.distMap(_pi_map).predMap(pred_map);
+
+ int length_bound = BF_FIRST_LIMIT;
+ bool optimal = false;
+ while (!optimal) {
+ bf.init(0);
+ int iter_num = 0;
+ bool cycle_found = false;
+ while (!cycle_found) {
+ // Perform some iterations of the Bellman-Ford algorithm
+ int curr_iter_num = iter_num + length_bound <= _node_num ?
+ length_bound : _node_num - iter_num;
+ iter_num += curr_iter_num;
+ int real_iter_num = curr_iter_num;
+ for (int i = 0; i < curr_iter_num; ++i) {
+ if (bf.processNextWeakRound()) {
+ real_iter_num = i;
+ break;
+ }
+ }
+ if (real_iter_num < curr_iter_num) {
+ // Optimal flow is found
+ optimal = true;
+ break;
+ } else {
+ // Search for node disjoint negative cycles
+ std::vector<int> state(_res_node_num, 0);
+ int id = 0;
+ for (int u = 0; u != _res_node_num; ++u) {
+ if (state[u] != 0) continue;
+ ++id;
+ int v = u;
+ for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
+ -1 : rgr.id(rgr.source(pred[v]))) {
+ state[v] = id;
+ }
+ if (v != -1 && state[v] == id) {
+ // A negative cycle is found
+ cycle_found = true;
+ cycle.clear();
+ StaticDigraph::Arc a = pred[v];
+ Value d, delta = _res_cap[rgr.id(a)];
+ cycle.push_back(rgr.id(a));
+ while (rgr.id(rgr.source(a)) != v) {
+ a = pred_map[rgr.source(a)];
+ d = _res_cap[rgr.id(a)];
+ if (d < delta) delta = d;
+ cycle.push_back(rgr.id(a));
+ }
+
+ // Augment along the cycle
+ for (int i = 0; i < int(cycle.size()); ++i) {
+ int j = cycle[i];
+ _res_cap[j] -= delta;
+ _res_cap[_reverse[j]] += delta;
+ }
+ }
+ }
+ }
+
+ // Increase iteration limit if no cycle is found
+ if (!cycle_found) {
+ length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
+ }
+ }
+ }
+ }
+
+ // Execute the "Minimum Mean Cycle Canceling" method
+ void startMinMeanCycleCanceling() {
+ typedef Path<StaticDigraph> SPath;
+ typedef typename SPath::ArcIt SPathArcIt;
+ typedef typename HowardMmc<StaticDigraph, CostArcMap>
+ ::template SetPath<SPath>::Create HwMmc;
+ typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
+ ::template SetPath<SPath>::Create HoMmc;
+
+ const double HW_ITER_LIMIT_FACTOR = 1.0;
+ const int HW_ITER_LIMIT_MIN_VALUE = 5;
+
+ const int hw_iter_limit =
+ std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
+ HW_ITER_LIMIT_MIN_VALUE);
+
+ SPath cycle;
+ HwMmc hw_mmc(_sgr, _cost_map);
+ hw_mmc.cycle(cycle);
+ buildResidualNetwork();
+ while (true) {
+
+ typename HwMmc::TerminationCause hw_tc =
+ hw_mmc.findCycleMean(hw_iter_limit);
+ if (hw_tc == HwMmc::ITERATION_LIMIT) {
+ // Howard's algorithm reached the iteration limit, start a
+ // strongly polynomial algorithm instead
+ HoMmc ho_mmc(_sgr, _cost_map);
+ ho_mmc.cycle(cycle);
+ // Find a minimum mean cycle (Hartmann-Orlin algorithm)
+ if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
+ ho_mmc.findCycle();
+ } else {
+ // Find a minimum mean cycle (Howard algorithm)
+ if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
+ hw_mmc.findCycle();
+ }
+
+ // Compute delta value
+ Value delta = INF;
+ for (SPathArcIt a(cycle); a != INVALID; ++a) {
+ Value d = _res_cap[_id_vec[_sgr.id(a)]];
+ if (d < delta) delta = d;
+ }
+
+ // Augment along the cycle
+ for (SPathArcIt a(cycle); a != INVALID; ++a) {
+ int j = _id_vec[_sgr.id(a)];
+ _res_cap[j] -= delta;
+ _res_cap[_reverse[j]] += delta;
+ }
+
+ // Rebuild the residual network
+ buildResidualNetwork();
+ }
+ }
+
+ // Execute the "Cancel-and-Tighten" method
+ void startCancelAndTighten() {
+ // Constants for the min mean cycle computations
+ const double LIMIT_FACTOR = 1.0;
+ const int MIN_LIMIT = 5;
+ const double HW_ITER_LIMIT_FACTOR = 1.0;
+ const int HW_ITER_LIMIT_MIN_VALUE = 5;
+
+ const int hw_iter_limit =
+ std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
+ HW_ITER_LIMIT_MIN_VALUE);
+
+ // Contruct auxiliary data vectors
+ DoubleVector pi(_res_node_num, 0.0);
+ IntVector level(_res_node_num);
+ BoolVector reached(_res_node_num);
+ BoolVector processed(_res_node_num);
+ IntVector pred_node(_res_node_num);
+ IntVector pred_arc(_res_node_num);
+ std::vector<int> stack(_res_node_num);
+ std::vector<int> proc_vector(_res_node_num);
+
+ // Initialize epsilon
+ double epsilon = 0;
+ for (int a = 0; a != _res_arc_num; ++a) {
+ if (_res_cap[a] > 0 && -_cost[a] > epsilon)
+ epsilon = -_cost[a];
+ }
+
+ // Start phases
+ Tolerance<double> tol;
+ tol.epsilon(1e-6);
+ int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
+ if (limit < MIN_LIMIT) limit = MIN_LIMIT;
+ int iter = limit;
+ while (epsilon * _res_node_num >= 1) {
+ // Find and cancel cycles in the admissible network using DFS
+ for (int u = 0; u != _res_node_num; ++u) {
+ reached[u] = false;
+ processed[u] = false;
+ }
+ int stack_head = -1;
+ int proc_head = -1;
+ for (int start = 0; start != _res_node_num; ++start) {
+ if (reached[start]) continue;
+
+ // New start node
+ reached[start] = true;
+ pred_arc[start] = -1;
+ pred_node[start] = -1;
+
+ // Find the first admissible outgoing arc
+ double p = pi[start];
+ int a = _first_out[start];
+ int last_out = _first_out[start+1];
+ for (; a != last_out && (_res_cap[a] == 0 ||
+ !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
+ if (a == last_out) {
+ processed[start] = true;
+ proc_vector[++proc_head] = start;
+ continue;
+ }
+ stack[++stack_head] = a;
+
+ while (stack_head >= 0) {
+ int sa = stack[stack_head];
+ int u = _source[sa];
+ int v = _target[sa];
+
+ if (!reached[v]) {
+ // A new node is reached
+ reached[v] = true;
+ pred_node[v] = u;
+ pred_arc[v] = sa;
+ p = pi[v];
+ a = _first_out[v];
+ last_out = _first_out[v+1];
+ for (; a != last_out && (_res_cap[a] == 0 ||
+ !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
+ stack[++stack_head] = a == last_out ? -1 : a;
+ } else {
+ if (!processed[v]) {
+ // A cycle is found
+ int n, w = u;
+ Value d, delta = _res_cap[sa];
+ for (n = u; n != v; n = pred_node[n]) {
+ d = _res_cap[pred_arc[n]];
+ if (d <= delta) {
+ delta = d;
+ w = pred_node[n];
+ }
+ }
+
+ // Augment along the cycle
+ _res_cap[sa] -= delta;
+ _res_cap[_reverse[sa]] += delta;
+ for (n = u; n != v; n = pred_node[n]) {
+ int pa = pred_arc[n];
+ _res_cap[pa] -= delta;
+ _res_cap[_reverse[pa]] += delta;
+ }
+ for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
+ --stack_head;
+ reached[n] = false;
+ }
+ u = w;
+ }
+ v = u;
+
+ // Find the next admissible outgoing arc
+ p = pi[v];
+ a = stack[stack_head] + 1;
+ last_out = _first_out[v+1];
+ for (; a != last_out && (_res_cap[a] == 0 ||
+ !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
+ stack[stack_head] = a == last_out ? -1 : a;
+ }
+
+ while (stack_head >= 0 && stack[stack_head] == -1) {
+ processed[v] = true;
+ proc_vector[++proc_head] = v;
+ if (--stack_head >= 0) {
+ // Find the next admissible outgoing arc
+ v = _source[stack[stack_head]];
+ p = pi[v];
+ a = stack[stack_head] + 1;
+ last_out = _first_out[v+1];
+ for (; a != last_out && (_res_cap[a] == 0 ||
+ !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
+ stack[stack_head] = a == last_out ? -1 : a;
+ }
+ }
+ }
+ }
+
+ // Tighten potentials and epsilon
+ if (--iter > 0) {
+ for (int u = 0; u != _res_node_num; ++u) {
+ level[u] = 0;
+ }
+ for (int i = proc_head; i > 0; --i) {
+ int u = proc_vector[i];
+ double p = pi[u];
+ int l = level[u] + 1;
+ int last_out = _first_out[u+1];
+ for (int a = _first_out[u]; a != last_out; ++a) {
+ int v = _target[a];
+ if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
+ l > level[v]) level[v] = l;
+ }
+ }
+
+ // Modify potentials
+ double q = std::numeric_limits<double>::max();
+ for (int u = 0; u != _res_node_num; ++u) {
+ int lu = level[u];
+ double p, pu = pi[u];
+ int last_out = _first_out[u+1];
+ for (int a = _first_out[u]; a != last_out; ++a) {
+ if (_res_cap[a] == 0) continue;
+ int v = _target[a];
+ int ld = lu - level[v];
+ if (ld > 0) {
+ p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
+ if (p < q) q = p;
+ }
+ }
+ }
+ for (int u = 0; u != _res_node_num; ++u) {
+ pi[u] -= q * level[u];
+ }
+
+ // Modify epsilon
+ epsilon = 0;
+ for (int u = 0; u != _res_node_num; ++u) {
+ double curr, pu = pi[u];
+ int last_out = _first_out[u+1];
+ for (int a = _first_out[u]; a != last_out; ++a) {
+ if (_res_cap[a] == 0) continue;
+ curr = _cost[a] + pu - pi[_target[a]];
+ if (-curr > epsilon) epsilon = -curr;
+ }
+ }
+ } else {
+ typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
+ typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
+ typedef typename BellmanFord<StaticDigraph, CostArcMap>
+ ::template SetDistMap<CostNodeMap>::Create BF;
+
+ // Set epsilon to the minimum cycle mean
+ Cost cycle_cost = 0;
+ int cycle_size = 1;
+ buildResidualNetwork();
+ HwMmc hw_mmc(_sgr, _cost_map);
+ if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
+ // Howard's algorithm reached the iteration limit, start a
+ // strongly polynomial algorithm instead
+ HoMmc ho_mmc(_sgr, _cost_map);
+ ho_mmc.findCycleMean();
+ epsilon = -ho_mmc.cycleMean();
+ cycle_cost = ho_mmc.cycleCost();
+ cycle_size = ho_mmc.cycleSize();
+ } else {
+ // Set epsilon
+ epsilon = -hw_mmc.cycleMean();
+ cycle_cost = hw_mmc.cycleCost();
+ cycle_size = hw_mmc.cycleSize();
+ }
+
+ // Compute feasible potentials for the current epsilon
+ for (int i = 0; i != int(_cost_vec.size()); ++i) {
+ _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
+ }
+ BF bf(_sgr, _cost_map);
+ bf.distMap(_pi_map);
+ bf.init(0);
+ bf.start();
+ for (int u = 0; u != _res_node_num; ++u) {
+ pi[u] = static_cast<double>(_pi[u]) / cycle_size;
+ }
+
+ iter = limit;
+ }
+ }
+ }
+
+ }; //class CycleCanceling
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_CYCLE_CANCELING_H