Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/fib_heap.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/fib_heap.h475
1 files changed, 475 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/fib_heap.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/fib_heap.h
new file mode 100644
index 00000000000..3441722a034
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/fib_heap.h
@@ -0,0 +1,475 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_FIB_HEAP_H
+#define LEMON_FIB_HEAP_H
+
+///\file
+///\ingroup heaps
+///\brief Fibonacci heap implementation.
+
+#include <vector>
+#include <utility>
+#include <functional>
+#include <lemon/math.h>
+
+namespace lemon {
+
+ /// \ingroup heaps
+ ///
+ /// \brief Fibonacci heap data structure.
+ ///
+ /// This class implements the \e Fibonacci \e heap data structure.
+ /// It fully conforms to the \ref concepts::Heap "heap concept".
+ ///
+ /// The methods \ref increase() and \ref erase() are not efficient in a
+ /// Fibonacci heap. In case of many calls of these operations, it is
+ /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
+ ///
+ /// \tparam PR Type of the priorities of the items.
+ /// \tparam IM A read-writable item map with \c int values, used
+ /// internally to handle the cross references.
+ /// \tparam CMP A functor class for comparing the priorities.
+ /// The default is \c std::less<PR>.
+#ifdef DOXYGEN
+ template <typename PR, typename IM, typename CMP>
+#else
+ template <typename PR, typename IM, typename CMP = std::less<PR> >
+#endif
+ class FibHeap {
+ public:
+
+ /// Type of the item-int map.
+ typedef IM ItemIntMap;
+ /// Type of the priorities.
+ typedef PR Prio;
+ /// Type of the items stored in the heap.
+ typedef typename ItemIntMap::Key Item;
+ /// Type of the item-priority pairs.
+ typedef std::pair<Item,Prio> Pair;
+ /// Functor type for comparing the priorities.
+ typedef CMP Compare;
+
+ private:
+ class Store;
+
+ std::vector<Store> _data;
+ int _minimum;
+ ItemIntMap &_iim;
+ Compare _comp;
+ int _num;
+
+ public:
+
+ /// \brief Type to represent the states of the items.
+ ///
+ /// Each item has a state associated to it. It can be "in heap",
+ /// "pre-heap" or "post-heap". The latter two are indifferent from the
+ /// heap's point of view, but may be useful to the user.
+ ///
+ /// The item-int map must be initialized in such way that it assigns
+ /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
+ enum State {
+ IN_HEAP = 0, ///< = 0.
+ PRE_HEAP = -1, ///< = -1.
+ POST_HEAP = -2 ///< = -2.
+ };
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ explicit FibHeap(ItemIntMap &map)
+ : _minimum(0), _iim(map), _num() {}
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ /// \param comp The function object used for comparing the priorities.
+ FibHeap(ItemIntMap &map, const Compare &comp)
+ : _minimum(0), _iim(map), _comp(comp), _num() {}
+
+ /// \brief The number of items stored in the heap.
+ ///
+ /// This function returns the number of items stored in the heap.
+ int size() const { return _num; }
+
+ /// \brief Check if the heap is empty.
+ ///
+ /// This function returns \c true if the heap is empty.
+ bool empty() const { return _num==0; }
+
+ /// \brief Make the heap empty.
+ ///
+ /// This functon makes the heap empty.
+ /// It does not change the cross reference map. If you want to reuse
+ /// a heap that is not surely empty, you should first clear it and
+ /// then you should set the cross reference map to \c PRE_HEAP
+ /// for each item.
+ void clear() {
+ _data.clear(); _minimum = 0; _num = 0;
+ }
+
+ /// \brief Insert an item into the heap with the given priority.
+ ///
+ /// This function inserts the given item into the heap with the
+ /// given priority.
+ /// \param item The item to insert.
+ /// \param prio The priority of the item.
+ /// \pre \e item must not be stored in the heap.
+ void push (const Item& item, const Prio& prio) {
+ int i=_iim[item];
+ if ( i < 0 ) {
+ int s=_data.size();
+ _iim.set( item, s );
+ Store st;
+ st.name=item;
+ _data.push_back(st);
+ i=s;
+ } else {
+ _data[i].parent=_data[i].child=-1;
+ _data[i].degree=0;
+ _data[i].in=true;
+ _data[i].marked=false;
+ }
+
+ if ( _num ) {
+ _data[_data[_minimum].right_neighbor].left_neighbor=i;
+ _data[i].right_neighbor=_data[_minimum].right_neighbor;
+ _data[_minimum].right_neighbor=i;
+ _data[i].left_neighbor=_minimum;
+ if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
+ } else {
+ _data[i].right_neighbor=_data[i].left_neighbor=i;
+ _minimum=i;
+ }
+ _data[i].prio=prio;
+ ++_num;
+ }
+
+ /// \brief Return the item having minimum priority.
+ ///
+ /// This function returns the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ Item top() const { return _data[_minimum].name; }
+
+ /// \brief The minimum priority.
+ ///
+ /// This function returns the minimum priority.
+ /// \pre The heap must be non-empty.
+ Prio prio() const { return _data[_minimum].prio; }
+
+ /// \brief Remove the item having minimum priority.
+ ///
+ /// This function removes the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ void pop() {
+ /*The first case is that there are only one root.*/
+ if ( _data[_minimum].left_neighbor==_minimum ) {
+ _data[_minimum].in=false;
+ if ( _data[_minimum].degree!=0 ) {
+ makeRoot(_data[_minimum].child);
+ _minimum=_data[_minimum].child;
+ balance();
+ }
+ } else {
+ int right=_data[_minimum].right_neighbor;
+ unlace(_minimum);
+ _data[_minimum].in=false;
+ if ( _data[_minimum].degree > 0 ) {
+ int left=_data[_minimum].left_neighbor;
+ int child=_data[_minimum].child;
+ int last_child=_data[child].left_neighbor;
+
+ makeRoot(child);
+
+ _data[left].right_neighbor=child;
+ _data[child].left_neighbor=left;
+ _data[right].left_neighbor=last_child;
+ _data[last_child].right_neighbor=right;
+ }
+ _minimum=right;
+ balance();
+ } // the case where there are more roots
+ --_num;
+ }
+
+ /// \brief Remove the given item from the heap.
+ ///
+ /// This function removes the given item from the heap if it is
+ /// already stored.
+ /// \param item The item to delete.
+ /// \pre \e item must be in the heap.
+ void erase (const Item& item) {
+ int i=_iim[item];
+
+ if ( i >= 0 && _data[i].in ) {
+ if ( _data[i].parent!=-1 ) {
+ int p=_data[i].parent;
+ cut(i,p);
+ cascade(p);
+ }
+ _minimum=i; //As if its prio would be -infinity
+ pop();
+ }
+ }
+
+ /// \brief The priority of the given item.
+ ///
+ /// This function returns the priority of the given item.
+ /// \param item The item.
+ /// \pre \e item must be in the heap.
+ Prio operator[](const Item& item) const {
+ return _data[_iim[item]].prio;
+ }
+
+ /// \brief Set the priority of an item or insert it, if it is
+ /// not stored in the heap.
+ ///
+ /// This method sets the priority of the given item if it is
+ /// already stored in the heap. Otherwise it inserts the given
+ /// item into the heap with the given priority.
+ /// \param item The item.
+ /// \param prio The priority.
+ void set (const Item& item, const Prio& prio) {
+ int i=_iim[item];
+ if ( i >= 0 && _data[i].in ) {
+ if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
+ if ( _comp(_data[i].prio, prio) ) increase(item, prio);
+ } else push(item, prio);
+ }
+
+ /// \brief Decrease the priority of an item to the given value.
+ ///
+ /// This function decreases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param prio The priority.
+ /// \pre \e item must be stored in the heap with priority at least \e prio.
+ void decrease (const Item& item, const Prio& prio) {
+ int i=_iim[item];
+ _data[i].prio=prio;
+ int p=_data[i].parent;
+
+ if ( p!=-1 && _comp(prio, _data[p].prio) ) {
+ cut(i,p);
+ cascade(p);
+ }
+ if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
+ }
+
+ /// \brief Increase the priority of an item to the given value.
+ ///
+ /// This function increases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param prio The priority.
+ /// \pre \e item must be stored in the heap with priority at most \e prio.
+ void increase (const Item& item, const Prio& prio) {
+ erase(item);
+ push(item, prio);
+ }
+
+ /// \brief Return the state of an item.
+ ///
+ /// This method returns \c PRE_HEAP if the given item has never
+ /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
+ /// and \c POST_HEAP otherwise.
+ /// In the latter case it is possible that the item will get back
+ /// to the heap again.
+ /// \param item The item.
+ State state(const Item &item) const {
+ int i=_iim[item];
+ if( i>=0 ) {
+ if ( _data[i].in ) i=0;
+ else i=-2;
+ }
+ return State(i);
+ }
+
+ /// \brief Set the state of an item in the heap.
+ ///
+ /// This function sets the state of the given item in the heap.
+ /// It can be used to manually clear the heap when it is important
+ /// to achive better time complexity.
+ /// \param i The item.
+ /// \param st The state. It should not be \c IN_HEAP.
+ void state(const Item& i, State st) {
+ switch (st) {
+ case POST_HEAP:
+ case PRE_HEAP:
+ if (state(i) == IN_HEAP) {
+ erase(i);
+ }
+ _iim[i] = st;
+ break;
+ case IN_HEAP:
+ break;
+ }
+ }
+
+ private:
+
+ void balance() {
+
+ int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
+
+ std::vector<int> A(maxdeg,-1);
+
+ /*
+ *Recall that now minimum does not point to the minimum prio element.
+ *We set minimum to this during balance().
+ */
+ int anchor=_data[_minimum].left_neighbor;
+ int next=_minimum;
+ bool end=false;
+
+ do {
+ int active=next;
+ if ( anchor==active ) end=true;
+ int d=_data[active].degree;
+ next=_data[active].right_neighbor;
+
+ while (A[d]!=-1) {
+ if( _comp(_data[active].prio, _data[A[d]].prio) ) {
+ fuse(active,A[d]);
+ } else {
+ fuse(A[d],active);
+ active=A[d];
+ }
+ A[d]=-1;
+ ++d;
+ }
+ A[d]=active;
+ } while ( !end );
+
+
+ while ( _data[_minimum].parent >=0 )
+ _minimum=_data[_minimum].parent;
+ int s=_minimum;
+ int m=_minimum;
+ do {
+ if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
+ s=_data[s].right_neighbor;
+ } while ( s != m );
+ }
+
+ void makeRoot(int c) {
+ int s=c;
+ do {
+ _data[s].parent=-1;
+ s=_data[s].right_neighbor;
+ } while ( s != c );
+ }
+
+ void cut(int a, int b) {
+ /*
+ *Replacing a from the children of b.
+ */
+ --_data[b].degree;
+
+ if ( _data[b].degree !=0 ) {
+ int child=_data[b].child;
+ if ( child==a )
+ _data[b].child=_data[child].right_neighbor;
+ unlace(a);
+ }
+
+
+ /*Lacing a to the roots.*/
+ int right=_data[_minimum].right_neighbor;
+ _data[_minimum].right_neighbor=a;
+ _data[a].left_neighbor=_minimum;
+ _data[a].right_neighbor=right;
+ _data[right].left_neighbor=a;
+
+ _data[a].parent=-1;
+ _data[a].marked=false;
+ }
+
+ void cascade(int a) {
+ if ( _data[a].parent!=-1 ) {
+ int p=_data[a].parent;
+
+ if ( _data[a].marked==false ) _data[a].marked=true;
+ else {
+ cut(a,p);
+ cascade(p);
+ }
+ }
+ }
+
+ void fuse(int a, int b) {
+ unlace(b);
+
+ /*Lacing b under a.*/
+ _data[b].parent=a;
+
+ if (_data[a].degree==0) {
+ _data[b].left_neighbor=b;
+ _data[b].right_neighbor=b;
+ _data[a].child=b;
+ } else {
+ int child=_data[a].child;
+ int last_child=_data[child].left_neighbor;
+ _data[child].left_neighbor=b;
+ _data[b].right_neighbor=child;
+ _data[last_child].right_neighbor=b;
+ _data[b].left_neighbor=last_child;
+ }
+
+ ++_data[a].degree;
+
+ _data[b].marked=false;
+ }
+
+ /*
+ *It is invoked only if a has siblings.
+ */
+ void unlace(int a) {
+ int leftn=_data[a].left_neighbor;
+ int rightn=_data[a].right_neighbor;
+ _data[leftn].right_neighbor=rightn;
+ _data[rightn].left_neighbor=leftn;
+ }
+
+
+ class Store {
+ friend class FibHeap;
+
+ Item name;
+ int parent;
+ int left_neighbor;
+ int right_neighbor;
+ int child;
+ int degree;
+ bool marked;
+ bool in;
+ Prio prio;
+
+ Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
+ };
+ };
+
+} //namespace lemon
+
+#endif //LEMON_FIB_HEAP_H
+