Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/full_graph.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/full_graph.h1082
1 files changed, 1082 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/full_graph.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/full_graph.h
new file mode 100644
index 00000000000..b63df2e0746
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/full_graph.h
@@ -0,0 +1,1082 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_FULL_GRAPH_H
+#define LEMON_FULL_GRAPH_H
+
+#include <lemon/core.h>
+#include <lemon/bits/graph_extender.h>
+
+///\ingroup graphs
+///\file
+///\brief FullDigraph and FullGraph classes.
+
+namespace lemon {
+
+ class FullDigraphBase {
+ public:
+
+ typedef FullDigraphBase Digraph;
+
+ class Node;
+ class Arc;
+
+ protected:
+
+ int _node_num;
+ int _arc_num;
+
+ FullDigraphBase() {}
+
+ void construct(int n) { _node_num = n; _arc_num = n * n; }
+
+ public:
+
+ typedef True NodeNumTag;
+ typedef True ArcNumTag;
+
+ Node operator()(int ix) const { return Node(ix); }
+ static int index(const Node& node) { return node._id; }
+
+ Arc arc(const Node& s, const Node& t) const {
+ return Arc(s._id * _node_num + t._id);
+ }
+
+ int nodeNum() const { return _node_num; }
+ int arcNum() const { return _arc_num; }
+
+ int maxNodeId() const { return _node_num - 1; }
+ int maxArcId() const { return _arc_num - 1; }
+
+ Node source(Arc arc) const { return arc._id / _node_num; }
+ Node target(Arc arc) const { return arc._id % _node_num; }
+
+ static int id(Node node) { return node._id; }
+ static int id(Arc arc) { return arc._id; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+
+ typedef True FindArcTag;
+
+ Arc findArc(Node s, Node t, Arc prev = INVALID) const {
+ return prev == INVALID ? arc(s, t) : INVALID;
+ }
+
+ class Node {
+ friend class FullDigraphBase;
+
+ protected:
+ int _id;
+ Node(int id) : _id(id) {}
+ public:
+ Node() {}
+ Node (Invalid) : _id(-1) {}
+ bool operator==(const Node node) const {return _id == node._id;}
+ bool operator!=(const Node node) const {return _id != node._id;}
+ bool operator<(const Node node) const {return _id < node._id;}
+ };
+
+ class Arc {
+ friend class FullDigraphBase;
+
+ protected:
+ int _id; // _node_num * source + target;
+
+ Arc(int id) : _id(id) {}
+
+ public:
+ Arc() { }
+ Arc (Invalid) { _id = -1; }
+ bool operator==(const Arc arc) const {return _id == arc._id;}
+ bool operator!=(const Arc arc) const {return _id != arc._id;}
+ bool operator<(const Arc arc) const {return _id < arc._id;}
+ };
+
+ void first(Node& node) const {
+ node._id = _node_num - 1;
+ }
+
+ static void next(Node& node) {
+ --node._id;
+ }
+
+ void first(Arc& arc) const {
+ arc._id = _arc_num - 1;
+ }
+
+ static void next(Arc& arc) {
+ --arc._id;
+ }
+
+ void firstOut(Arc& arc, const Node& node) const {
+ arc._id = (node._id + 1) * _node_num - 1;
+ }
+
+ void nextOut(Arc& arc) const {
+ if (arc._id % _node_num == 0) arc._id = 0;
+ --arc._id;
+ }
+
+ void firstIn(Arc& arc, const Node& node) const {
+ arc._id = _arc_num + node._id - _node_num;
+ }
+
+ void nextIn(Arc& arc) const {
+ arc._id -= _node_num;
+ if (arc._id < 0) arc._id = -1;
+ }
+
+ };
+
+ typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
+
+ /// \ingroup graphs
+ ///
+ /// \brief A directed full graph class.
+ ///
+ /// FullDigraph is a simple and fast implmenetation of directed full
+ /// (complete) graphs. It contains an arc from each node to each node
+ /// (including a loop for each node), therefore the number of arcs
+ /// is the square of the number of nodes.
+ /// This class is completely static and it needs constant memory space.
+ /// Thus you can neither add nor delete nodes or arcs, however
+ /// the structure can be resized using resize().
+ ///
+ /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
+ /// Most of its member functions and nested classes are documented
+ /// only in the concept class.
+ ///
+ /// This class provides constant time counting for nodes and arcs.
+ ///
+ /// \note FullDigraph and FullGraph classes are very similar,
+ /// but there are two differences. While this class conforms only
+ /// to the \ref concepts::Digraph "Digraph" concept, FullGraph
+ /// conforms to the \ref concepts::Graph "Graph" concept,
+ /// moreover FullGraph does not contain a loop for each
+ /// node as this class does.
+ ///
+ /// \sa FullGraph
+ class FullDigraph : public ExtendedFullDigraphBase {
+ typedef ExtendedFullDigraphBase Parent;
+
+ public:
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor. The number of nodes and arcs will be zero.
+ FullDigraph() { construct(0); }
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param n The number of the nodes.
+ FullDigraph(int n) { construct(n); }
+
+ /// \brief Resizes the digraph
+ ///
+ /// This function resizes the digraph. It fully destroys and
+ /// rebuilds the structure, therefore the maps of the digraph will be
+ /// reallocated automatically and the previous values will be lost.
+ void resize(int n) {
+ Parent::notifier(Arc()).clear();
+ Parent::notifier(Node()).clear();
+ construct(n);
+ Parent::notifier(Node()).build();
+ Parent::notifier(Arc()).build();
+ }
+
+ /// \brief Returns the node with the given index.
+ ///
+ /// Returns the node with the given index. Since this structure is
+ /// completely static, the nodes can be indexed with integers from
+ /// the range <tt>[0..nodeNum()-1]</tt>.
+ /// The index of a node is the same as its ID.
+ /// \sa index()
+ Node operator()(int ix) const { return Parent::operator()(ix); }
+
+ /// \brief Returns the index of the given node.
+ ///
+ /// Returns the index of the given node. Since this structure is
+ /// completely static, the nodes can be indexed with integers from
+ /// the range <tt>[0..nodeNum()-1]</tt>.
+ /// The index of a node is the same as its ID.
+ /// \sa operator()()
+ static int index(const Node& node) { return Parent::index(node); }
+
+ /// \brief Returns the arc connecting the given nodes.
+ ///
+ /// Returns the arc connecting the given nodes.
+ Arc arc(Node u, Node v) const {
+ return Parent::arc(u, v);
+ }
+
+ /// \brief Number of nodes.
+ int nodeNum() const { return Parent::nodeNum(); }
+ /// \brief Number of arcs.
+ int arcNum() const { return Parent::arcNum(); }
+ };
+
+
+ class FullGraphBase {
+ public:
+
+ typedef FullGraphBase Graph;
+
+ class Node;
+ class Arc;
+ class Edge;
+
+ protected:
+
+ int _node_num;
+ int _edge_num;
+
+ FullGraphBase() {}
+
+ void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
+
+ int _uid(int e) const {
+ int u = e / _node_num;
+ int v = e % _node_num;
+ return u < v ? u : _node_num - 2 - u;
+ }
+
+ int _vid(int e) const {
+ int u = e / _node_num;
+ int v = e % _node_num;
+ return u < v ? v : _node_num - 1 - v;
+ }
+
+ void _uvid(int e, int& u, int& v) const {
+ u = e / _node_num;
+ v = e % _node_num;
+ if (u >= v) {
+ u = _node_num - 2 - u;
+ v = _node_num - 1 - v;
+ }
+ }
+
+ void _stid(int a, int& s, int& t) const {
+ if ((a & 1) == 1) {
+ _uvid(a >> 1, s, t);
+ } else {
+ _uvid(a >> 1, t, s);
+ }
+ }
+
+ int _eid(int u, int v) const {
+ if (u < (_node_num - 1) / 2) {
+ return u * _node_num + v;
+ } else {
+ return (_node_num - 1 - u) * _node_num - v - 1;
+ }
+ }
+
+ public:
+
+ Node operator()(int ix) const { return Node(ix); }
+ static int index(const Node& node) { return node._id; }
+
+ Edge edge(const Node& u, const Node& v) const {
+ if (u._id < v._id) {
+ return Edge(_eid(u._id, v._id));
+ } else if (u._id != v._id) {
+ return Edge(_eid(v._id, u._id));
+ } else {
+ return INVALID;
+ }
+ }
+
+ Arc arc(const Node& s, const Node& t) const {
+ if (s._id < t._id) {
+ return Arc((_eid(s._id, t._id) << 1) | 1);
+ } else if (s._id != t._id) {
+ return Arc(_eid(t._id, s._id) << 1);
+ } else {
+ return INVALID;
+ }
+ }
+
+ typedef True NodeNumTag;
+ typedef True ArcNumTag;
+ typedef True EdgeNumTag;
+
+ int nodeNum() const { return _node_num; }
+ int arcNum() const { return 2 * _edge_num; }
+ int edgeNum() const { return _edge_num; }
+
+ static int id(Node node) { return node._id; }
+ static int id(Arc arc) { return arc._id; }
+ static int id(Edge edge) { return edge._id; }
+
+ int maxNodeId() const { return _node_num-1; }
+ int maxArcId() const { return 2 * _edge_num-1; }
+ int maxEdgeId() const { return _edge_num-1; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+ static Edge edgeFromId(int id) { return Edge(id);}
+
+ Node u(Edge edge) const {
+ return Node(_uid(edge._id));
+ }
+
+ Node v(Edge edge) const {
+ return Node(_vid(edge._id));
+ }
+
+ Node source(Arc arc) const {
+ return Node((arc._id & 1) == 1 ?
+ _uid(arc._id >> 1) : _vid(arc._id >> 1));
+ }
+
+ Node target(Arc arc) const {
+ return Node((arc._id & 1) == 1 ?
+ _vid(arc._id >> 1) : _uid(arc._id >> 1));
+ }
+
+ typedef True FindEdgeTag;
+ typedef True FindArcTag;
+
+ Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
+ return prev != INVALID ? INVALID : edge(u, v);
+ }
+
+ Arc findArc(Node s, Node t, Arc prev = INVALID) const {
+ return prev != INVALID ? INVALID : arc(s, t);
+ }
+
+ class Node {
+ friend class FullGraphBase;
+
+ protected:
+ int _id;
+ Node(int id) : _id(id) {}
+ public:
+ Node() {}
+ Node (Invalid) { _id = -1; }
+ bool operator==(const Node node) const {return _id == node._id;}
+ bool operator!=(const Node node) const {return _id != node._id;}
+ bool operator<(const Node node) const {return _id < node._id;}
+ };
+
+ class Edge {
+ friend class FullGraphBase;
+ friend class Arc;
+
+ protected:
+ int _id;
+
+ Edge(int id) : _id(id) {}
+
+ public:
+ Edge() { }
+ Edge (Invalid) { _id = -1; }
+
+ bool operator==(const Edge edge) const {return _id == edge._id;}
+ bool operator!=(const Edge edge) const {return _id != edge._id;}
+ bool operator<(const Edge edge) const {return _id < edge._id;}
+ };
+
+ class Arc {
+ friend class FullGraphBase;
+
+ protected:
+ int _id;
+
+ Arc(int id) : _id(id) {}
+
+ public:
+ Arc() { }
+ Arc (Invalid) { _id = -1; }
+
+ operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
+
+ bool operator==(const Arc arc) const {return _id == arc._id;}
+ bool operator!=(const Arc arc) const {return _id != arc._id;}
+ bool operator<(const Arc arc) const {return _id < arc._id;}
+ };
+
+ static bool direction(Arc arc) {
+ return (arc._id & 1) == 1;
+ }
+
+ static Arc direct(Edge edge, bool dir) {
+ return Arc((edge._id << 1) | (dir ? 1 : 0));
+ }
+
+ void first(Node& node) const {
+ node._id = _node_num - 1;
+ }
+
+ static void next(Node& node) {
+ --node._id;
+ }
+
+ void first(Arc& arc) const {
+ arc._id = (_edge_num << 1) - 1;
+ }
+
+ static void next(Arc& arc) {
+ --arc._id;
+ }
+
+ void first(Edge& edge) const {
+ edge._id = _edge_num - 1;
+ }
+
+ static void next(Edge& edge) {
+ --edge._id;
+ }
+
+ void firstOut(Arc& arc, const Node& node) const {
+ int s = node._id, t = _node_num - 1;
+ if (s < t) {
+ arc._id = (_eid(s, t) << 1) | 1;
+ } else {
+ --t;
+ arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
+ }
+ }
+
+ void nextOut(Arc& arc) const {
+ int s, t;
+ _stid(arc._id, s, t);
+ --t;
+ if (s < t) {
+ arc._id = (_eid(s, t) << 1) | 1;
+ } else {
+ if (s == t) --t;
+ arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
+ }
+ }
+
+ void firstIn(Arc& arc, const Node& node) const {
+ int s = _node_num - 1, t = node._id;
+ if (s > t) {
+ arc._id = (_eid(t, s) << 1);
+ } else {
+ --s;
+ arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
+ }
+ }
+
+ void nextIn(Arc& arc) const {
+ int s, t;
+ _stid(arc._id, s, t);
+ --s;
+ if (s > t) {
+ arc._id = (_eid(t, s) << 1);
+ } else {
+ if (s == t) --s;
+ arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
+ }
+ }
+
+ void firstInc(Edge& edge, bool& dir, const Node& node) const {
+ int u = node._id, v = _node_num - 1;
+ if (u < v) {
+ edge._id = _eid(u, v);
+ dir = true;
+ } else {
+ --v;
+ edge._id = (v != -1 ? _eid(v, u) : -1);
+ dir = false;
+ }
+ }
+
+ void nextInc(Edge& edge, bool& dir) const {
+ int u, v;
+ if (dir) {
+ _uvid(edge._id, u, v);
+ --v;
+ if (u < v) {
+ edge._id = _eid(u, v);
+ } else {
+ --v;
+ edge._id = (v != -1 ? _eid(v, u) : -1);
+ dir = false;
+ }
+ } else {
+ _uvid(edge._id, v, u);
+ --v;
+ edge._id = (v != -1 ? _eid(v, u) : -1);
+ }
+ }
+
+ };
+
+ typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
+
+ /// \ingroup graphs
+ ///
+ /// \brief An undirected full graph class.
+ ///
+ /// FullGraph is a simple and fast implmenetation of undirected full
+ /// (complete) graphs. It contains an edge between every distinct pair
+ /// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
+ /// This class is completely static and it needs constant memory space.
+ /// Thus you can neither add nor delete nodes or edges, however
+ /// the structure can be resized using resize().
+ ///
+ /// This type fully conforms to the \ref concepts::Graph "Graph concept".
+ /// Most of its member functions and nested classes are documented
+ /// only in the concept class.
+ ///
+ /// This class provides constant time counting for nodes, edges and arcs.
+ ///
+ /// \note FullDigraph and FullGraph classes are very similar,
+ /// but there are two differences. While FullDigraph
+ /// conforms only to the \ref concepts::Digraph "Digraph" concept,
+ /// this class conforms to the \ref concepts::Graph "Graph" concept,
+ /// moreover this class does not contain a loop for each
+ /// node as FullDigraph does.
+ ///
+ /// \sa FullDigraph
+ class FullGraph : public ExtendedFullGraphBase {
+ typedef ExtendedFullGraphBase Parent;
+
+ public:
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor. The number of nodes and edges will be zero.
+ FullGraph() { construct(0); }
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param n The number of the nodes.
+ FullGraph(int n) { construct(n); }
+
+ /// \brief Resizes the graph
+ ///
+ /// This function resizes the graph. It fully destroys and
+ /// rebuilds the structure, therefore the maps of the graph will be
+ /// reallocated automatically and the previous values will be lost.
+ void resize(int n) {
+ Parent::notifier(Arc()).clear();
+ Parent::notifier(Edge()).clear();
+ Parent::notifier(Node()).clear();
+ construct(n);
+ Parent::notifier(Node()).build();
+ Parent::notifier(Edge()).build();
+ Parent::notifier(Arc()).build();
+ }
+
+ /// \brief Returns the node with the given index.
+ ///
+ /// Returns the node with the given index. Since this structure is
+ /// completely static, the nodes can be indexed with integers from
+ /// the range <tt>[0..nodeNum()-1]</tt>.
+ /// The index of a node is the same as its ID.
+ /// \sa index()
+ Node operator()(int ix) const { return Parent::operator()(ix); }
+
+ /// \brief Returns the index of the given node.
+ ///
+ /// Returns the index of the given node. Since this structure is
+ /// completely static, the nodes can be indexed with integers from
+ /// the range <tt>[0..nodeNum()-1]</tt>.
+ /// The index of a node is the same as its ID.
+ /// \sa operator()()
+ static int index(const Node& node) { return Parent::index(node); }
+
+ /// \brief Returns the arc connecting the given nodes.
+ ///
+ /// Returns the arc connecting the given nodes.
+ Arc arc(Node s, Node t) const {
+ return Parent::arc(s, t);
+ }
+
+ /// \brief Returns the edge connecting the given nodes.
+ ///
+ /// Returns the edge connecting the given nodes.
+ Edge edge(Node u, Node v) const {
+ return Parent::edge(u, v);
+ }
+
+ /// \brief Number of nodes.
+ int nodeNum() const { return Parent::nodeNum(); }
+ /// \brief Number of arcs.
+ int arcNum() const { return Parent::arcNum(); }
+ /// \brief Number of edges.
+ int edgeNum() const { return Parent::edgeNum(); }
+
+ };
+
+ class FullBpGraphBase {
+
+ protected:
+
+ int _red_num, _blue_num;
+ int _node_num, _edge_num;
+
+ public:
+
+ typedef FullBpGraphBase Graph;
+
+ class Node;
+ class Arc;
+ class Edge;
+
+ class Node {
+ friend class FullBpGraphBase;
+ protected:
+
+ int _id;
+ explicit Node(int id) { _id = id;}
+
+ public:
+ Node() {}
+ Node (Invalid) { _id = -1; }
+ bool operator==(const Node& node) const {return _id == node._id;}
+ bool operator!=(const Node& node) const {return _id != node._id;}
+ bool operator<(const Node& node) const {return _id < node._id;}
+ };
+
+ class RedNode : public Node {
+ friend class FullBpGraphBase;
+ protected:
+
+ explicit RedNode(int pid) : Node(pid) {}
+
+ public:
+ RedNode() {}
+ RedNode(const RedNode& node) : Node(node) {}
+ RedNode(Invalid) : Node(INVALID){}
+ };
+
+ class BlueNode : public Node {
+ friend class FullBpGraphBase;
+ protected:
+
+ explicit BlueNode(int pid) : Node(pid) {}
+
+ public:
+ BlueNode() {}
+ BlueNode(const BlueNode& node) : Node(node) {}
+ BlueNode(Invalid) : Node(INVALID){}
+ };
+
+ class Edge {
+ friend class FullBpGraphBase;
+ protected:
+
+ int _id;
+ explicit Edge(int id) { _id = id;}
+
+ public:
+ Edge() {}
+ Edge (Invalid) { _id = -1; }
+ bool operator==(const Edge& arc) const {return _id == arc._id;}
+ bool operator!=(const Edge& arc) const {return _id != arc._id;}
+ bool operator<(const Edge& arc) const {return _id < arc._id;}
+ };
+
+ class Arc {
+ friend class FullBpGraphBase;
+ protected:
+
+ int _id;
+ explicit Arc(int id) { _id = id;}
+
+ public:
+ operator Edge() const {
+ return _id != -1 ? edgeFromId(_id / 2) : INVALID;
+ }
+
+ Arc() {}
+ Arc (Invalid) { _id = -1; }
+ bool operator==(const Arc& arc) const {return _id == arc._id;}
+ bool operator!=(const Arc& arc) const {return _id != arc._id;}
+ bool operator<(const Arc& arc) const {return _id < arc._id;}
+ };
+
+
+ protected:
+
+ FullBpGraphBase()
+ : _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {}
+
+ void construct(int redNum, int blueNum) {
+ _red_num = redNum; _blue_num = blueNum;
+ _node_num = redNum + blueNum; _edge_num = redNum * blueNum;
+ }
+
+ public:
+
+ typedef True NodeNumTag;
+ typedef True EdgeNumTag;
+ typedef True ArcNumTag;
+
+ int nodeNum() const { return _node_num; }
+ int redNum() const { return _red_num; }
+ int blueNum() const { return _blue_num; }
+ int edgeNum() const { return _edge_num; }
+ int arcNum() const { return 2 * _edge_num; }
+
+ int maxNodeId() const { return _node_num - 1; }
+ int maxRedId() const { return _red_num - 1; }
+ int maxBlueId() const { return _blue_num - 1; }
+ int maxEdgeId() const { return _edge_num - 1; }
+ int maxArcId() const { return 2 * _edge_num - 1; }
+
+ bool red(Node n) const { return n._id < _red_num; }
+ bool blue(Node n) const { return n._id >= _red_num; }
+
+ static RedNode asRedNodeUnsafe(Node n) { return RedNode(n._id); }
+ static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n._id); }
+
+ Node source(Arc a) const {
+ if (a._id & 1) {
+ return Node((a._id >> 1) % _red_num);
+ } else {
+ return Node((a._id >> 1) / _red_num + _red_num);
+ }
+ }
+ Node target(Arc a) const {
+ if (a._id & 1) {
+ return Node((a._id >> 1) / _red_num + _red_num);
+ } else {
+ return Node((a._id >> 1) % _red_num);
+ }
+ }
+
+ RedNode redNode(Edge e) const {
+ return RedNode(e._id % _red_num);
+ }
+ BlueNode blueNode(Edge e) const {
+ return BlueNode(e._id / _red_num + _red_num);
+ }
+
+ static bool direction(Arc a) {
+ return (a._id & 1) == 1;
+ }
+
+ static Arc direct(Edge e, bool d) {
+ return Arc(e._id * 2 + (d ? 1 : 0));
+ }
+
+ void first(Node& node) const {
+ node._id = _node_num - 1;
+ }
+
+ static void next(Node& node) {
+ --node._id;
+ }
+
+ void first(RedNode& node) const {
+ node._id = _red_num - 1;
+ }
+
+ static void next(RedNode& node) {
+ --node._id;
+ }
+
+ void first(BlueNode& node) const {
+ if (_red_num == _node_num) node._id = -1;
+ else node._id = _node_num - 1;
+ }
+
+ void next(BlueNode& node) const {
+ if (node._id == _red_num) node._id = -1;
+ else --node._id;
+ }
+
+ void first(Arc& arc) const {
+ arc._id = 2 * _edge_num - 1;
+ }
+
+ static void next(Arc& arc) {
+ --arc._id;
+ }
+
+ void first(Edge& arc) const {
+ arc._id = _edge_num - 1;
+ }
+
+ static void next(Edge& arc) {
+ --arc._id;
+ }
+
+ void firstOut(Arc &a, const Node& v) const {
+ if (v._id < _red_num) {
+ a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1;
+ } else {
+ a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num));
+ }
+ }
+ void nextOut(Arc &a) const {
+ if (a._id & 1) {
+ a._id -= 2 * _red_num;
+ if (a._id < 0) a._id = -1;
+ } else {
+ if (a._id % (2 * _red_num) == 0) a._id = -1;
+ else a._id -= 2;
+ }
+ }
+
+ void firstIn(Arc &a, const Node& v) const {
+ if (v._id < _red_num) {
+ a._id = 2 * (v._id + _red_num * (_blue_num - 1));
+ } else {
+ a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1;
+ }
+ }
+ void nextIn(Arc &a) const {
+ if (a._id & 1) {
+ if (a._id % (2 * _red_num) == 1) a._id = -1;
+ else a._id -= 2;
+ } else {
+ a._id -= 2 * _red_num;
+ if (a._id < 0) a._id = -1;
+ }
+ }
+
+ void firstInc(Edge &e, bool& d, const Node& v) const {
+ if (v._id < _red_num) {
+ d = true;
+ e._id = v._id + _red_num * (_blue_num - 1);
+ } else {
+ d = false;
+ e._id = _red_num - 1 + _red_num * (v._id - _red_num);
+ }
+ }
+ void nextInc(Edge &e, bool& d) const {
+ if (d) {
+ e._id -= _red_num;
+ if (e._id < 0) e._id = -1;
+ } else {
+ if (e._id % _red_num == 0) e._id = -1;
+ else --e._id;
+ }
+ }
+
+ static int id(const Node& v) { return v._id; }
+ int id(const RedNode& v) const { return v._id; }
+ int id(const BlueNode& v) const { return v._id - _red_num; }
+ static int id(Arc e) { return e._id; }
+ static int id(Edge e) { return e._id; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+ static Edge edgeFromId(int id) { return Edge(id);}
+
+ bool valid(Node n) const {
+ return n._id >= 0 && n._id < _node_num;
+ }
+ bool valid(Arc a) const {
+ return a._id >= 0 && a._id < 2 * _edge_num;
+ }
+ bool valid(Edge e) const {
+ return e._id >= 0 && e._id < _edge_num;
+ }
+
+ RedNode redNode(int index) const {
+ return RedNode(index);
+ }
+
+ int index(RedNode n) const {
+ return n._id;
+ }
+
+ BlueNode blueNode(int index) const {
+ return BlueNode(index + _red_num);
+ }
+
+ int index(BlueNode n) const {
+ return n._id - _red_num;
+ }
+
+ void clear() {
+ _red_num = 0; _blue_num = 0;
+ _node_num = 0; _edge_num = 0;
+ }
+
+ Edge edge(const Node& u, const Node& v) const {
+ if (u._id < _red_num) {
+ if (v._id < _red_num) {
+ return Edge(-1);
+ } else {
+ return Edge(u._id + _red_num * (v._id - _red_num));
+ }
+ } else {
+ if (v._id < _red_num) {
+ return Edge(v._id + _red_num * (u._id - _red_num));
+ } else {
+ return Edge(-1);
+ }
+ }
+ }
+
+ Arc arc(const Node& u, const Node& v) const {
+ if (u._id < _red_num) {
+ if (v._id < _red_num) {
+ return Arc(-1);
+ } else {
+ return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1);
+ }
+ } else {
+ if (v._id < _red_num) {
+ return Arc(2 * (v._id + _red_num * (u._id - _red_num)));
+ } else {
+ return Arc(-1);
+ }
+ }
+ }
+
+ typedef True FindEdgeTag;
+ typedef True FindArcTag;
+
+ Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
+ return prev != INVALID ? INVALID : edge(u, v);
+ }
+
+ Arc findArc(Node s, Node t, Arc prev = INVALID) const {
+ return prev != INVALID ? INVALID : arc(s, t);
+ }
+
+ };
+
+ typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase;
+
+ /// \ingroup graphs
+ ///
+ /// \brief An undirected full bipartite graph class.
+ ///
+ /// FullBpGraph is a simple and fast implmenetation of undirected
+ /// full bipartite graphs. It contains an edge between every
+ /// red-blue pairs of nodes, therefore the number of edges is
+ /// <tt>nr*nb</tt>. This class is completely static and it needs
+ /// constant memory space. Thus you can neither add nor delete
+ /// nodes or edges, however the structure can be resized using
+ /// resize().
+ ///
+ /// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept".
+ /// Most of its member functions and nested classes are documented
+ /// only in the concept class.
+ ///
+ /// This class provides constant time counting for nodes, edges and arcs.
+ ///
+ /// \sa FullGraph
+ class FullBpGraph : public ExtendedFullBpGraphBase {
+ public:
+
+ typedef ExtendedFullBpGraphBase Parent;
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor. The number of nodes and edges will be zero.
+ FullBpGraph() { construct(0, 0); }
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param redNum The number of the red nodes.
+ /// \param blueNum The number of the blue nodes.
+ FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); }
+
+ /// \brief Resizes the graph
+ ///
+ /// This function resizes the graph. It fully destroys and
+ /// rebuilds the structure, therefore the maps of the graph will be
+ /// reallocated automatically and the previous values will be lost.
+ void resize(int redNum, int blueNum) {
+ Parent::notifier(Arc()).clear();
+ Parent::notifier(Edge()).clear();
+ Parent::notifier(Node()).clear();
+ Parent::notifier(BlueNode()).clear();
+ Parent::notifier(RedNode()).clear();
+ construct(redNum, blueNum);
+ Parent::notifier(RedNode()).build();
+ Parent::notifier(BlueNode()).build();
+ Parent::notifier(Node()).build();
+ Parent::notifier(Edge()).build();
+ Parent::notifier(Arc()).build();
+ }
+
+ using Parent::redNode;
+ using Parent::blueNode;
+
+ /// \brief Returns the red node with the given index.
+ ///
+ /// Returns the red node with the given index. Since this
+ /// structure is completely static, the red nodes can be indexed
+ /// with integers from the range <tt>[0..redNum()-1]</tt>.
+ /// \sa redIndex()
+ RedNode redNode(int index) const { return Parent::redNode(index); }
+
+ /// \brief Returns the index of the given red node.
+ ///
+ /// Returns the index of the given red node. Since this structure
+ /// is completely static, the red nodes can be indexed with
+ /// integers from the range <tt>[0..redNum()-1]</tt>.
+ ///
+ /// \sa operator()()
+ int index(RedNode node) const { return Parent::index(node); }
+
+ /// \brief Returns the blue node with the given index.
+ ///
+ /// Returns the blue node with the given index. Since this
+ /// structure is completely static, the blue nodes can be indexed
+ /// with integers from the range <tt>[0..blueNum()-1]</tt>.
+ /// \sa blueIndex()
+ BlueNode blueNode(int index) const { return Parent::blueNode(index); }
+
+ /// \brief Returns the index of the given blue node.
+ ///
+ /// Returns the index of the given blue node. Since this structure
+ /// is completely static, the blue nodes can be indexed with
+ /// integers from the range <tt>[0..blueNum()-1]</tt>.
+ ///
+ /// \sa operator()()
+ int index(BlueNode node) const { return Parent::index(node); }
+
+ /// \brief Returns the edge which connects the given nodes.
+ ///
+ /// Returns the edge which connects the given nodes.
+ Edge edge(const Node& u, const Node& v) const {
+ return Parent::edge(u, v);
+ }
+
+ /// \brief Returns the arc which connects the given nodes.
+ ///
+ /// Returns the arc which connects the given nodes.
+ Arc arc(const Node& u, const Node& v) const {
+ return Parent::arc(u, v);
+ }
+
+ /// \brief Number of nodes.
+ int nodeNum() const { return Parent::nodeNum(); }
+ /// \brief Number of red nodes.
+ int redNum() const { return Parent::redNum(); }
+ /// \brief Number of blue nodes.
+ int blueNum() const { return Parent::blueNum(); }
+ /// \brief Number of arcs.
+ int arcNum() const { return Parent::arcNum(); }
+ /// \brief Number of edges.
+ int edgeNum() const { return Parent::edgeNum(); }
+ };
+
+
+} //namespace lemon
+
+
+#endif //LEMON_FULL_GRAPH_H