Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/gomory_hu.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/gomory_hu.h568
1 files changed, 568 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/gomory_hu.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/gomory_hu.h
new file mode 100644
index 00000000000..c43305f88e1
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/gomory_hu.h
@@ -0,0 +1,568 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_GOMORY_HU_TREE_H
+#define LEMON_GOMORY_HU_TREE_H
+
+#include <limits>
+
+#include <lemon/core.h>
+#include <lemon/preflow.h>
+#include <lemon/concept_check.h>
+#include <lemon/concepts/maps.h>
+
+/// \ingroup min_cut
+/// \file
+/// \brief Gomory-Hu cut tree in graphs.
+
+namespace lemon {
+
+ /// \ingroup min_cut
+ ///
+ /// \brief Gomory-Hu cut tree algorithm
+ ///
+ /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
+ /// may contain edges which are not in the original graph. It has the
+ /// property that the minimum capacity edge of the path between two nodes
+ /// in this tree has the same weight as the minimum cut in the graph
+ /// between these nodes. Moreover the components obtained by removing
+ /// this edge from the tree determine the corresponding minimum cut.
+ /// Therefore once this tree is computed, the minimum cut between any pair
+ /// of nodes can easily be obtained.
+ ///
+ /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
+ /// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{m})\f$ overall
+ /// time complexity. It calculates a rooted Gomory-Hu tree.
+ /// The structure of the tree and the edge weights can be
+ /// obtained using \c predNode(), \c predValue() and \c rootDist().
+ /// The functions \c minCutMap() and \c minCutValue() calculate
+ /// the minimum cut and the minimum cut value between any two nodes
+ /// in the graph. You can also list (iterate on) the nodes and the
+ /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
+ ///
+ /// \tparam GR The type of the undirected graph the algorithm runs on.
+ /// \tparam CAP The type of the edge map containing the capacities.
+ /// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
+#ifdef DOXYGEN
+ template <typename GR,
+ typename CAP>
+#else
+ template <typename GR,
+ typename CAP = typename GR::template EdgeMap<int> >
+#endif
+ class GomoryHu {
+ public:
+
+ /// The graph type of the algorithm
+ typedef GR Graph;
+ /// The capacity map type of the algorithm
+ typedef CAP Capacity;
+ /// The value type of capacities
+ typedef typename Capacity::Value Value;
+
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ const Graph& _graph;
+ const Capacity& _capacity;
+
+ Node _root;
+ typename Graph::template NodeMap<Node>* _pred;
+ typename Graph::template NodeMap<Value>* _weight;
+ typename Graph::template NodeMap<int>* _order;
+
+ void createStructures() {
+ if (!_pred) {
+ _pred = new typename Graph::template NodeMap<Node>(_graph);
+ }
+ if (!_weight) {
+ _weight = new typename Graph::template NodeMap<Value>(_graph);
+ }
+ if (!_order) {
+ _order = new typename Graph::template NodeMap<int>(_graph);
+ }
+ }
+
+ void destroyStructures() {
+ if (_pred) {
+ delete _pred;
+ }
+ if (_weight) {
+ delete _weight;
+ }
+ if (_order) {
+ delete _order;
+ }
+ }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param graph The undirected graph the algorithm runs on.
+ /// \param capacity The edge capacity map.
+ GomoryHu(const Graph& graph, const Capacity& capacity)
+ : _graph(graph), _capacity(capacity),
+ _pred(0), _weight(0), _order(0)
+ {
+ checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
+ }
+
+
+ /// \brief Destructor
+ ///
+ /// Destructor.
+ ~GomoryHu() {
+ destroyStructures();
+ }
+
+ private:
+
+ // Initialize the internal data structures
+ void init() {
+ createStructures();
+
+ _root = NodeIt(_graph);
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_pred)[n] = _root;
+ (*_order)[n] = -1;
+ }
+ (*_pred)[_root] = INVALID;
+ (*_weight)[_root] = std::numeric_limits<Value>::max();
+ }
+
+
+ // Start the algorithm
+ void start() {
+ Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if (n == _root) continue;
+
+ Node pn = (*_pred)[n];
+ fa.source(n);
+ fa.target(pn);
+
+ fa.runMinCut();
+
+ (*_weight)[n] = fa.flowValue();
+
+ for (NodeIt nn(_graph); nn != INVALID; ++nn) {
+ if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
+ (*_pred)[nn] = n;
+ }
+ }
+ if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
+ (*_pred)[n] = (*_pred)[pn];
+ (*_pred)[pn] = n;
+ (*_weight)[n] = (*_weight)[pn];
+ (*_weight)[pn] = fa.flowValue();
+ }
+ }
+
+ (*_order)[_root] = 0;
+ int index = 1;
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ std::vector<Node> st;
+ Node nn = n;
+ while ((*_order)[nn] == -1) {
+ st.push_back(nn);
+ nn = (*_pred)[nn];
+ }
+ while (!st.empty()) {
+ (*_order)[st.back()] = index++;
+ st.pop_back();
+ }
+ }
+ }
+
+ public:
+
+ ///\name Execution Control
+
+ ///@{
+
+ /// \brief Run the Gomory-Hu algorithm.
+ ///
+ /// This function runs the Gomory-Hu algorithm.
+ void run() {
+ init();
+ start();
+ }
+
+ /// @}
+
+ ///\name Query Functions
+ ///The results of the algorithm can be obtained using these
+ ///functions.\n
+ ///\ref run() should be called before using them.\n
+ ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
+
+ ///@{
+
+ /// \brief Return the predecessor node in the Gomory-Hu tree.
+ ///
+ /// This function returns the predecessor node of the given node
+ /// in the Gomory-Hu tree.
+ /// If \c node is the root of the tree, then it returns \c INVALID.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Node predNode(const Node& node) const {
+ return (*_pred)[node];
+ }
+
+ /// \brief Return the weight of the predecessor edge in the
+ /// Gomory-Hu tree.
+ ///
+ /// This function returns the weight of the predecessor edge of the
+ /// given node in the Gomory-Hu tree.
+ /// If \c node is the root of the tree, the result is undefined.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value predValue(const Node& node) const {
+ return (*_weight)[node];
+ }
+
+ /// \brief Return the distance from the root node in the Gomory-Hu tree.
+ ///
+ /// This function returns the distance of the given node from the root
+ /// node in the Gomory-Hu tree.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ int rootDist(const Node& node) const {
+ return (*_order)[node];
+ }
+
+ /// \brief Return the minimum cut value between two nodes
+ ///
+ /// This function returns the minimum cut value between the nodes
+ /// \c s and \c t.
+ /// It finds the nearest common ancestor of the given nodes in the
+ /// Gomory-Hu tree and calculates the minimum weight edge on the
+ /// paths to the ancestor.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value minCutValue(const Node& s, const Node& t) const {
+ Node sn = s, tn = t;
+ Value value = std::numeric_limits<Value>::max();
+
+ while (sn != tn) {
+ if ((*_order)[sn] < (*_order)[tn]) {
+ if ((*_weight)[tn] <= value) value = (*_weight)[tn];
+ tn = (*_pred)[tn];
+ } else {
+ if ((*_weight)[sn] <= value) value = (*_weight)[sn];
+ sn = (*_pred)[sn];
+ }
+ }
+ return value;
+ }
+
+ /// \brief Return the minimum cut between two nodes
+ ///
+ /// This function returns the minimum cut between the nodes \c s and \c t
+ /// in the \c cutMap parameter by setting the nodes in the component of
+ /// \c s to \c true and the other nodes to \c false.
+ ///
+ /// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt.
+ ///
+ /// \param s The base node.
+ /// \param t The node you want to separate from node \c s.
+ /// \param cutMap The cut will be returned in this map.
+ /// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap
+ /// "ReadWriteMap" on the graph nodes.
+ ///
+ /// \return The value of the minimum cut between \c s and \c t.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename CutMap>
+ Value minCutMap(const Node& s,
+ const Node& t,
+ CutMap& cutMap
+ ) const {
+ Node sn = s, tn = t;
+ bool s_root=false;
+ Node rn = INVALID;
+ Value value = std::numeric_limits<Value>::max();
+
+ while (sn != tn) {
+ if ((*_order)[sn] < (*_order)[tn]) {
+ if ((*_weight)[tn] <= value) {
+ rn = tn;
+ s_root = false;
+ value = (*_weight)[tn];
+ }
+ tn = (*_pred)[tn];
+ } else {
+ if ((*_weight)[sn] <= value) {
+ rn = sn;
+ s_root = true;
+ value = (*_weight)[sn];
+ }
+ sn = (*_pred)[sn];
+ }
+ }
+
+ typename Graph::template NodeMap<bool> reached(_graph, false);
+ reached[_root] = true;
+ cutMap.set(_root, !s_root);
+ reached[rn] = true;
+ cutMap.set(rn, s_root);
+
+ std::vector<Node> st;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ st.clear();
+ Node nn = n;
+ while (!reached[nn]) {
+ st.push_back(nn);
+ nn = (*_pred)[nn];
+ }
+ while (!st.empty()) {
+ cutMap.set(st.back(), cutMap[nn]);
+ st.pop_back();
+ }
+ }
+
+ return value;
+ }
+
+ ///@}
+
+ friend class MinCutNodeIt;
+
+ /// Iterate on the nodes of a minimum cut
+
+ /// This iterator class lists the nodes of a minimum cut found by
+ /// GomoryHu. Before using it, you must allocate a GomoryHu class
+ /// and call its \ref GomoryHu::run() "run()" method.
+ ///
+ /// This example counts the nodes in the minimum cut separating \c s from
+ /// \c t.
+ /// \code
+ /// GomoryHu<Graph> gom(g, capacities);
+ /// gom.run();
+ /// int cnt=0;
+ /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
+ /// \endcode
+ class MinCutNodeIt
+ {
+ bool _side;
+ typename Graph::NodeIt _node_it;
+ typename Graph::template NodeMap<bool> _cut;
+ public:
+ /// Constructor
+
+ /// Constructor.
+ ///
+ MinCutNodeIt(GomoryHu const &gomory,
+ ///< The GomoryHu class. You must call its
+ /// run() method
+ /// before initializing this iterator.
+ const Node& s, ///< The base node.
+ const Node& t,
+ ///< The node you want to separate from node \c s.
+ bool side=true
+ ///< If it is \c true (default) then the iterator lists
+ /// the nodes of the component containing \c s,
+ /// otherwise it lists the other component.
+ /// \note As the minimum cut is not always unique,
+ /// \code
+ /// MinCutNodeIt(gomory, s, t, true);
+ /// \endcode
+ /// and
+ /// \code
+ /// MinCutNodeIt(gomory, t, s, false);
+ /// \endcode
+ /// does not necessarily give the same set of nodes.
+ /// However, it is ensured that
+ /// \code
+ /// MinCutNodeIt(gomory, s, t, true);
+ /// \endcode
+ /// and
+ /// \code
+ /// MinCutNodeIt(gomory, s, t, false);
+ /// \endcode
+ /// together list each node exactly once.
+ )
+ : _side(side), _cut(gomory._graph)
+ {
+ gomory.minCutMap(s,t,_cut);
+ for(_node_it=typename Graph::NodeIt(gomory._graph);
+ _node_it!=INVALID && _cut[_node_it]!=_side;
+ ++_node_it) {}
+ }
+ /// Conversion to \c Node
+
+ /// Conversion to \c Node.
+ ///
+ operator typename Graph::Node() const
+ {
+ return _node_it;
+ }
+ bool operator==(Invalid) { return _node_it==INVALID; }
+ bool operator!=(Invalid) { return _node_it!=INVALID; }
+ /// Next node
+
+ /// Next node.
+ ///
+ MinCutNodeIt &operator++()
+ {
+ for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
+ return *this;
+ }
+ /// Postfix incrementation
+
+ /// Postfix incrementation.
+ ///
+ /// \warning This incrementation
+ /// returns a \c Node, not a \c MinCutNodeIt, as one may
+ /// expect.
+ typename Graph::Node operator++(int)
+ {
+ typename Graph::Node n=*this;
+ ++(*this);
+ return n;
+ }
+ };
+
+ friend class MinCutEdgeIt;
+
+ /// Iterate on the edges of a minimum cut
+
+ /// This iterator class lists the edges of a minimum cut found by
+ /// GomoryHu. Before using it, you must allocate a GomoryHu class
+ /// and call its \ref GomoryHu::run() "run()" method.
+ ///
+ /// This example computes the value of the minimum cut separating \c s from
+ /// \c t.
+ /// \code
+ /// GomoryHu<Graph> gom(g, capacities);
+ /// gom.run();
+ /// int value=0;
+ /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
+ /// value+=capacities[e];
+ /// \endcode
+ /// The result will be the same as the value returned by
+ /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
+ class MinCutEdgeIt
+ {
+ bool _side;
+ const Graph &_graph;
+ typename Graph::NodeIt _node_it;
+ typename Graph::OutArcIt _arc_it;
+ typename Graph::template NodeMap<bool> _cut;
+ void step()
+ {
+ ++_arc_it;
+ while(_node_it!=INVALID && _arc_it==INVALID)
+ {
+ for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
+ if(_node_it!=INVALID)
+ _arc_it=typename Graph::OutArcIt(_graph,_node_it);
+ }
+ }
+
+ public:
+ /// Constructor
+
+ /// Constructor.
+ ///
+ MinCutEdgeIt(GomoryHu const &gomory,
+ ///< The GomoryHu class. You must call its
+ /// run() method
+ /// before initializing this iterator.
+ const Node& s, ///< The base node.
+ const Node& t,
+ ///< The node you want to separate from node \c s.
+ bool side=true
+ ///< If it is \c true (default) then the listed arcs
+ /// will be oriented from the
+ /// nodes of the component containing \c s,
+ /// otherwise they will be oriented in the opposite
+ /// direction.
+ )
+ : _graph(gomory._graph), _cut(_graph)
+ {
+ gomory.minCutMap(s,t,_cut);
+ if(!side)
+ for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
+ _cut[n]=!_cut[n];
+
+ for(_node_it=typename Graph::NodeIt(_graph);
+ _node_it!=INVALID && !_cut[_node_it];
+ ++_node_it) {}
+ _arc_it = _node_it!=INVALID ?
+ typename Graph::OutArcIt(_graph,_node_it) : INVALID;
+ while(_node_it!=INVALID && _arc_it == INVALID)
+ {
+ for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
+ if(_node_it!=INVALID)
+ _arc_it= typename Graph::OutArcIt(_graph,_node_it);
+ }
+ while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
+ }
+ /// Conversion to \c Arc
+
+ /// Conversion to \c Arc.
+ ///
+ operator typename Graph::Arc() const
+ {
+ return _arc_it;
+ }
+ /// Conversion to \c Edge
+
+ /// Conversion to \c Edge.
+ ///
+ operator typename Graph::Edge() const
+ {
+ return _arc_it;
+ }
+ bool operator==(Invalid) { return _node_it==INVALID; }
+ bool operator!=(Invalid) { return _node_it!=INVALID; }
+ /// Next edge
+
+ /// Next edge.
+ ///
+ MinCutEdgeIt &operator++()
+ {
+ step();
+ while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
+ return *this;
+ }
+ /// Postfix incrementation
+
+ /// Postfix incrementation.
+ ///
+ /// \warning This incrementation
+ /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
+ typename Graph::Arc operator++(int)
+ {
+ typename Graph::Arc e=*this;
+ ++(*this);
+ return e;
+ }
+ };
+
+ };
+
+}
+
+#endif