Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/hao_orlin.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/hao_orlin.h1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/hao_orlin.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hao_orlin.h
new file mode 100644
index 00000000000..0eeaff95d14
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hao_orlin.h
@@ -0,0 +1,1015 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_HAO_ORLIN_H
+#define LEMON_HAO_ORLIN_H
+
+#include <vector>
+#include <list>
+#include <limits>
+
+#include <lemon/maps.h>
+#include <lemon/core.h>
+#include <lemon/tolerance.h>
+
+/// \file
+/// \ingroup min_cut
+/// \brief Implementation of the Hao-Orlin algorithm.
+///
+/// Implementation of the Hao-Orlin algorithm for finding a minimum cut
+/// in a digraph.
+
+namespace lemon {
+
+ /// \ingroup min_cut
+ ///
+ /// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph.
+ ///
+ /// This class implements the Hao-Orlin algorithm for finding a minimum
+ /// value cut in a directed graph \f$D=(V,A)\f$.
+ /// It takes a fixed node \f$ source \in V \f$ and
+ /// consists of two phases: in the first phase it determines a
+ /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
+ /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing
+ /// capacity) and in the second phase it determines a minimum cut
+ /// with \f$ source \f$ on the sink-side (i.e. a set
+ /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing
+ /// capacity). Obviously, the smaller of these two cuts will be a
+ /// minimum cut of \f$ D \f$. The algorithm is a modified
+ /// preflow push-relabel algorithm. Our implementation calculates
+ /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
+ /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. A notable
+ /// use of this algorithm is testing network reliability.
+ ///
+ /// For an undirected graph you can run just the first phase of the
+ /// algorithm or you can use the algorithm of Nagamochi and Ibaraki,
+ /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$
+ /// time. It is implemented in the NagamochiIbaraki algorithm class.
+ ///
+ /// \tparam GR The type of the digraph the algorithm runs on.
+ /// \tparam CAP The type of the arc map containing the capacities,
+ /// which can be any numreric type. The default map type is
+ /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam TOL Tolerance class for handling inexact computations. The
+ /// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>".
+#ifdef DOXYGEN
+ template <typename GR, typename CAP, typename TOL>
+#else
+ template <typename GR,
+ typename CAP = typename GR::template ArcMap<int>,
+ typename TOL = Tolerance<typename CAP::Value> >
+#endif
+ class HaoOrlin {
+ public:
+
+ /// The digraph type of the algorithm
+ typedef GR Digraph;
+ /// The capacity map type of the algorithm
+ typedef CAP CapacityMap;
+ /// The tolerance type of the algorithm
+ typedef TOL Tolerance;
+
+ private:
+
+ typedef typename CapacityMap::Value Value;
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
+
+ const Digraph& _graph;
+ const CapacityMap* _capacity;
+
+ typedef typename Digraph::template ArcMap<Value> FlowMap;
+ FlowMap* _flow;
+
+ Node _source;
+
+ int _node_num;
+
+ // Bucketing structure
+ std::vector<Node> _first, _last;
+ typename Digraph::template NodeMap<Node>* _next;
+ typename Digraph::template NodeMap<Node>* _prev;
+ typename Digraph::template NodeMap<bool>* _active;
+ typename Digraph::template NodeMap<int>* _bucket;
+
+ std::vector<bool> _dormant;
+
+ std::list<std::list<int> > _sets;
+ std::list<int>::iterator _highest;
+
+ typedef typename Digraph::template NodeMap<Value> ExcessMap;
+ ExcessMap* _excess;
+
+ typedef typename Digraph::template NodeMap<bool> SourceSetMap;
+ SourceSetMap* _source_set;
+
+ Value _min_cut;
+
+ typedef typename Digraph::template NodeMap<bool> MinCutMap;
+ MinCutMap* _min_cut_map;
+
+ Tolerance _tolerance;
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor of the algorithm class.
+ HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
+ const Tolerance& tolerance = Tolerance()) :
+ _graph(graph), _capacity(&capacity), _flow(0), _source(),
+ _node_num(), _first(), _last(), _next(0), _prev(0),
+ _active(0), _bucket(0), _dormant(), _sets(), _highest(),
+ _excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
+ _tolerance(tolerance) {}
+
+ ~HaoOrlin() {
+ if (_min_cut_map) {
+ delete _min_cut_map;
+ }
+ if (_source_set) {
+ delete _source_set;
+ }
+ if (_excess) {
+ delete _excess;
+ }
+ if (_next) {
+ delete _next;
+ }
+ if (_prev) {
+ delete _prev;
+ }
+ if (_active) {
+ delete _active;
+ }
+ if (_bucket) {
+ delete _bucket;
+ }
+ if (_flow) {
+ delete _flow;
+ }
+ }
+
+ /// \brief Set the tolerance used by the algorithm.
+ ///
+ /// This function sets the tolerance object used by the algorithm.
+ /// \return <tt>(*this)</tt>
+ HaoOrlin& tolerance(const Tolerance& tolerance) {
+ _tolerance = tolerance;
+ return *this;
+ }
+
+ /// \brief Returns a const reference to the tolerance.
+ ///
+ /// This function returns a const reference to the tolerance object
+ /// used by the algorithm.
+ const Tolerance& tolerance() const {
+ return _tolerance;
+ }
+
+ private:
+
+ void activate(const Node& i) {
+ (*_active)[i] = true;
+
+ int bucket = (*_bucket)[i];
+
+ if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
+ //unlace
+ (*_next)[(*_prev)[i]] = (*_next)[i];
+ if ((*_next)[i] != INVALID) {
+ (*_prev)[(*_next)[i]] = (*_prev)[i];
+ } else {
+ _last[bucket] = (*_prev)[i];
+ }
+ //lace
+ (*_next)[i] = _first[bucket];
+ (*_prev)[_first[bucket]] = i;
+ (*_prev)[i] = INVALID;
+ _first[bucket] = i;
+ }
+
+ void deactivate(const Node& i) {
+ (*_active)[i] = false;
+ int bucket = (*_bucket)[i];
+
+ if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
+
+ //unlace
+ (*_prev)[(*_next)[i]] = (*_prev)[i];
+ if ((*_prev)[i] != INVALID) {
+ (*_next)[(*_prev)[i]] = (*_next)[i];
+ } else {
+ _first[bucket] = (*_next)[i];
+ }
+ //lace
+ (*_prev)[i] = _last[bucket];
+ (*_next)[_last[bucket]] = i;
+ (*_next)[i] = INVALID;
+ _last[bucket] = i;
+ }
+
+ void addItem(const Node& i, int bucket) {
+ (*_bucket)[i] = bucket;
+ if (_last[bucket] != INVALID) {
+ (*_prev)[i] = _last[bucket];
+ (*_next)[_last[bucket]] = i;
+ (*_next)[i] = INVALID;
+ _last[bucket] = i;
+ } else {
+ (*_prev)[i] = INVALID;
+ _first[bucket] = i;
+ (*_next)[i] = INVALID;
+ _last[bucket] = i;
+ }
+ }
+
+ void findMinCutOut() {
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_excess)[n] = 0;
+ (*_source_set)[n] = false;
+ }
+
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ (*_flow)[a] = 0;
+ }
+
+ int bucket_num = 0;
+ std::vector<Node> queue(_node_num);
+ int qfirst = 0, qlast = 0, qsep = 0;
+
+ {
+ typename Digraph::template NodeMap<bool> reached(_graph, false);
+
+ reached[_source] = true;
+ bool first_set = true;
+
+ for (NodeIt t(_graph); t != INVALID; ++t) {
+ if (reached[t]) continue;
+ _sets.push_front(std::list<int>());
+
+ queue[qlast++] = t;
+ reached[t] = true;
+
+ while (qfirst != qlast) {
+ if (qsep == qfirst) {
+ ++bucket_num;
+ _sets.front().push_front(bucket_num);
+ _dormant[bucket_num] = !first_set;
+ _first[bucket_num] = _last[bucket_num] = INVALID;
+ qsep = qlast;
+ }
+
+ Node n = queue[qfirst++];
+ addItem(n, bucket_num);
+
+ for (InArcIt a(_graph, n); a != INVALID; ++a) {
+ Node u = _graph.source(a);
+ if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
+ reached[u] = true;
+ queue[qlast++] = u;
+ }
+ }
+ }
+ first_set = false;
+ }
+
+ ++bucket_num;
+ (*_bucket)[_source] = 0;
+ _dormant[0] = true;
+ }
+ (*_source_set)[_source] = true;
+
+ Node target = _last[_sets.back().back()];
+ {
+ for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
+ if (_tolerance.positive((*_capacity)[a])) {
+ Node u = _graph.target(a);
+ (*_flow)[a] = (*_capacity)[a];
+ (*_excess)[u] += (*_capacity)[a];
+ if (!(*_active)[u] && u != _source) {
+ activate(u);
+ }
+ }
+ }
+
+ if ((*_active)[target]) {
+ deactivate(target);
+ }
+
+ _highest = _sets.back().begin();
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ }
+
+ while (true) {
+ while (_highest != _sets.back().end()) {
+ Node n = _first[*_highest];
+ Value excess = (*_excess)[n];
+ int next_bucket = _node_num;
+
+ int under_bucket;
+ if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
+ under_bucket = -1;
+ } else {
+ under_bucket = *(++std::list<int>::iterator(_highest));
+ }
+
+ for (OutArcIt a(_graph, n); a != INVALID; ++a) {
+ Node v = _graph.target(a);
+ if (_dormant[(*_bucket)[v]]) continue;
+ Value rem = (*_capacity)[a] - (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ if ((*_bucket)[v] == under_bucket) {
+ if (!(*_active)[v] && v != target) {
+ activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ (*_flow)[a] += excess;
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ (*_flow)[a] = (*_capacity)[a];
+ }
+ } else if (next_bucket > (*_bucket)[v]) {
+ next_bucket = (*_bucket)[v];
+ }
+ }
+
+ for (InArcIt a(_graph, n); a != INVALID; ++a) {
+ Node v = _graph.source(a);
+ if (_dormant[(*_bucket)[v]]) continue;
+ Value rem = (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ if ((*_bucket)[v] == under_bucket) {
+ if (!(*_active)[v] && v != target) {
+ activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ (*_flow)[a] -= excess;
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ (*_flow)[a] = 0;
+ }
+ } else if (next_bucket > (*_bucket)[v]) {
+ next_bucket = (*_bucket)[v];
+ }
+ }
+
+ no_more_push:
+
+ (*_excess)[n] = excess;
+
+ if (excess != 0) {
+ if ((*_next)[n] == INVALID) {
+ typename std::list<std::list<int> >::iterator new_set =
+ _sets.insert(--_sets.end(), std::list<int>());
+ new_set->splice(new_set->end(), _sets.back(),
+ _sets.back().begin(), ++_highest);
+ for (std::list<int>::iterator it = new_set->begin();
+ it != new_set->end(); ++it) {
+ _dormant[*it] = true;
+ }
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ } else if (next_bucket == _node_num) {
+ _first[(*_bucket)[n]] = (*_next)[n];
+ (*_prev)[(*_next)[n]] = INVALID;
+
+ std::list<std::list<int> >::iterator new_set =
+ _sets.insert(--_sets.end(), std::list<int>());
+
+ new_set->push_front(bucket_num);
+ (*_bucket)[n] = bucket_num;
+ _first[bucket_num] = _last[bucket_num] = n;
+ (*_next)[n] = INVALID;
+ (*_prev)[n] = INVALID;
+ _dormant[bucket_num] = true;
+ ++bucket_num;
+
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ } else {
+ _first[*_highest] = (*_next)[n];
+ (*_prev)[(*_next)[n]] = INVALID;
+
+ while (next_bucket != *_highest) {
+ --_highest;
+ }
+
+ if (_highest == _sets.back().begin()) {
+ _sets.back().push_front(bucket_num);
+ _dormant[bucket_num] = false;
+ _first[bucket_num] = _last[bucket_num] = INVALID;
+ ++bucket_num;
+ }
+ --_highest;
+
+ (*_bucket)[n] = *_highest;
+ (*_next)[n] = _first[*_highest];
+ if (_first[*_highest] != INVALID) {
+ (*_prev)[_first[*_highest]] = n;
+ } else {
+ _last[*_highest] = n;
+ }
+ _first[*_highest] = n;
+ }
+ } else {
+
+ deactivate(n);
+ if (!(*_active)[_first[*_highest]]) {
+ ++_highest;
+ if (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ _highest = _sets.back().end();
+ }
+ }
+ }
+ }
+
+ if ((*_excess)[target] < _min_cut) {
+ _min_cut = (*_excess)[target];
+ for (NodeIt i(_graph); i != INVALID; ++i) {
+ (*_min_cut_map)[i] = true;
+ }
+ for (std::list<int>::iterator it = _sets.back().begin();
+ it != _sets.back().end(); ++it) {
+ Node n = _first[*it];
+ while (n != INVALID) {
+ (*_min_cut_map)[n] = false;
+ n = (*_next)[n];
+ }
+ }
+ }
+
+ {
+ Node new_target;
+ if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
+ if ((*_next)[target] == INVALID) {
+ _last[(*_bucket)[target]] = (*_prev)[target];
+ new_target = (*_prev)[target];
+ } else {
+ (*_prev)[(*_next)[target]] = (*_prev)[target];
+ new_target = (*_next)[target];
+ }
+ if ((*_prev)[target] == INVALID) {
+ _first[(*_bucket)[target]] = (*_next)[target];
+ } else {
+ (*_next)[(*_prev)[target]] = (*_next)[target];
+ }
+ } else {
+ _sets.back().pop_back();
+ if (_sets.back().empty()) {
+ _sets.pop_back();
+ if (_sets.empty())
+ break;
+ for (std::list<int>::iterator it = _sets.back().begin();
+ it != _sets.back().end(); ++it) {
+ _dormant[*it] = false;
+ }
+ }
+ new_target = _last[_sets.back().back()];
+ }
+
+ (*_bucket)[target] = 0;
+
+ (*_source_set)[target] = true;
+ for (OutArcIt a(_graph, target); a != INVALID; ++a) {
+ Value rem = (*_capacity)[a] - (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.target(a);
+ if (!(*_active)[v] && !(*_source_set)[v]) {
+ activate(v);
+ }
+ (*_excess)[v] += rem;
+ (*_flow)[a] = (*_capacity)[a];
+ }
+
+ for (InArcIt a(_graph, target); a != INVALID; ++a) {
+ Value rem = (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.source(a);
+ if (!(*_active)[v] && !(*_source_set)[v]) {
+ activate(v);
+ }
+ (*_excess)[v] += rem;
+ (*_flow)[a] = 0;
+ }
+
+ target = new_target;
+ if ((*_active)[target]) {
+ deactivate(target);
+ }
+
+ _highest = _sets.back().begin();
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ }
+ }
+ }
+
+ void findMinCutIn() {
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_excess)[n] = 0;
+ (*_source_set)[n] = false;
+ }
+
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ (*_flow)[a] = 0;
+ }
+
+ int bucket_num = 0;
+ std::vector<Node> queue(_node_num);
+ int qfirst = 0, qlast = 0, qsep = 0;
+
+ {
+ typename Digraph::template NodeMap<bool> reached(_graph, false);
+
+ reached[_source] = true;
+
+ bool first_set = true;
+
+ for (NodeIt t(_graph); t != INVALID; ++t) {
+ if (reached[t]) continue;
+ _sets.push_front(std::list<int>());
+
+ queue[qlast++] = t;
+ reached[t] = true;
+
+ while (qfirst != qlast) {
+ if (qsep == qfirst) {
+ ++bucket_num;
+ _sets.front().push_front(bucket_num);
+ _dormant[bucket_num] = !first_set;
+ _first[bucket_num] = _last[bucket_num] = INVALID;
+ qsep = qlast;
+ }
+
+ Node n = queue[qfirst++];
+ addItem(n, bucket_num);
+
+ for (OutArcIt a(_graph, n); a != INVALID; ++a) {
+ Node u = _graph.target(a);
+ if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
+ reached[u] = true;
+ queue[qlast++] = u;
+ }
+ }
+ }
+ first_set = false;
+ }
+
+ ++bucket_num;
+ (*_bucket)[_source] = 0;
+ _dormant[0] = true;
+ }
+ (*_source_set)[_source] = true;
+
+ Node target = _last[_sets.back().back()];
+ {
+ for (InArcIt a(_graph, _source); a != INVALID; ++a) {
+ if (_tolerance.positive((*_capacity)[a])) {
+ Node u = _graph.source(a);
+ (*_flow)[a] = (*_capacity)[a];
+ (*_excess)[u] += (*_capacity)[a];
+ if (!(*_active)[u] && u != _source) {
+ activate(u);
+ }
+ }
+ }
+ if ((*_active)[target]) {
+ deactivate(target);
+ }
+
+ _highest = _sets.back().begin();
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ }
+
+
+ while (true) {
+ while (_highest != _sets.back().end()) {
+ Node n = _first[*_highest];
+ Value excess = (*_excess)[n];
+ int next_bucket = _node_num;
+
+ int under_bucket;
+ if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
+ under_bucket = -1;
+ } else {
+ under_bucket = *(++std::list<int>::iterator(_highest));
+ }
+
+ for (InArcIt a(_graph, n); a != INVALID; ++a) {
+ Node v = _graph.source(a);
+ if (_dormant[(*_bucket)[v]]) continue;
+ Value rem = (*_capacity)[a] - (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ if ((*_bucket)[v] == under_bucket) {
+ if (!(*_active)[v] && v != target) {
+ activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ (*_flow)[a] += excess;
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ (*_flow)[a] = (*_capacity)[a];
+ }
+ } else if (next_bucket > (*_bucket)[v]) {
+ next_bucket = (*_bucket)[v];
+ }
+ }
+
+ for (OutArcIt a(_graph, n); a != INVALID; ++a) {
+ Node v = _graph.target(a);
+ if (_dormant[(*_bucket)[v]]) continue;
+ Value rem = (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ if ((*_bucket)[v] == under_bucket) {
+ if (!(*_active)[v] && v != target) {
+ activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ (*_flow)[a] -= excess;
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ (*_flow)[a] = 0;
+ }
+ } else if (next_bucket > (*_bucket)[v]) {
+ next_bucket = (*_bucket)[v];
+ }
+ }
+
+ no_more_push:
+
+ (*_excess)[n] = excess;
+
+ if (excess != 0) {
+ if ((*_next)[n] == INVALID) {
+ typename std::list<std::list<int> >::iterator new_set =
+ _sets.insert(--_sets.end(), std::list<int>());
+ new_set->splice(new_set->end(), _sets.back(),
+ _sets.back().begin(), ++_highest);
+ for (std::list<int>::iterator it = new_set->begin();
+ it != new_set->end(); ++it) {
+ _dormant[*it] = true;
+ }
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ } else if (next_bucket == _node_num) {
+ _first[(*_bucket)[n]] = (*_next)[n];
+ (*_prev)[(*_next)[n]] = INVALID;
+
+ std::list<std::list<int> >::iterator new_set =
+ _sets.insert(--_sets.end(), std::list<int>());
+
+ new_set->push_front(bucket_num);
+ (*_bucket)[n] = bucket_num;
+ _first[bucket_num] = _last[bucket_num] = n;
+ (*_next)[n] = INVALID;
+ (*_prev)[n] = INVALID;
+ _dormant[bucket_num] = true;
+ ++bucket_num;
+
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ } else {
+ _first[*_highest] = (*_next)[n];
+ (*_prev)[(*_next)[n]] = INVALID;
+
+ while (next_bucket != *_highest) {
+ --_highest;
+ }
+ if (_highest == _sets.back().begin()) {
+ _sets.back().push_front(bucket_num);
+ _dormant[bucket_num] = false;
+ _first[bucket_num] = _last[bucket_num] = INVALID;
+ ++bucket_num;
+ }
+ --_highest;
+
+ (*_bucket)[n] = *_highest;
+ (*_next)[n] = _first[*_highest];
+ if (_first[*_highest] != INVALID) {
+ (*_prev)[_first[*_highest]] = n;
+ } else {
+ _last[*_highest] = n;
+ }
+ _first[*_highest] = n;
+ }
+ } else {
+
+ deactivate(n);
+ if (!(*_active)[_first[*_highest]]) {
+ ++_highest;
+ if (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ _highest = _sets.back().end();
+ }
+ }
+ }
+ }
+
+ if ((*_excess)[target] < _min_cut) {
+ _min_cut = (*_excess)[target];
+ for (NodeIt i(_graph); i != INVALID; ++i) {
+ (*_min_cut_map)[i] = false;
+ }
+ for (std::list<int>::iterator it = _sets.back().begin();
+ it != _sets.back().end(); ++it) {
+ Node n = _first[*it];
+ while (n != INVALID) {
+ (*_min_cut_map)[n] = true;
+ n = (*_next)[n];
+ }
+ }
+ }
+
+ {
+ Node new_target;
+ if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
+ if ((*_next)[target] == INVALID) {
+ _last[(*_bucket)[target]] = (*_prev)[target];
+ new_target = (*_prev)[target];
+ } else {
+ (*_prev)[(*_next)[target]] = (*_prev)[target];
+ new_target = (*_next)[target];
+ }
+ if ((*_prev)[target] == INVALID) {
+ _first[(*_bucket)[target]] = (*_next)[target];
+ } else {
+ (*_next)[(*_prev)[target]] = (*_next)[target];
+ }
+ } else {
+ _sets.back().pop_back();
+ if (_sets.back().empty()) {
+ _sets.pop_back();
+ if (_sets.empty())
+ break;
+ for (std::list<int>::iterator it = _sets.back().begin();
+ it != _sets.back().end(); ++it) {
+ _dormant[*it] = false;
+ }
+ }
+ new_target = _last[_sets.back().back()];
+ }
+
+ (*_bucket)[target] = 0;
+
+ (*_source_set)[target] = true;
+ for (InArcIt a(_graph, target); a != INVALID; ++a) {
+ Value rem = (*_capacity)[a] - (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.source(a);
+ if (!(*_active)[v] && !(*_source_set)[v]) {
+ activate(v);
+ }
+ (*_excess)[v] += rem;
+ (*_flow)[a] = (*_capacity)[a];
+ }
+
+ for (OutArcIt a(_graph, target); a != INVALID; ++a) {
+ Value rem = (*_flow)[a];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.target(a);
+ if (!(*_active)[v] && !(*_source_set)[v]) {
+ activate(v);
+ }
+ (*_excess)[v] += rem;
+ (*_flow)[a] = 0;
+ }
+
+ target = new_target;
+ if ((*_active)[target]) {
+ deactivate(target);
+ }
+
+ _highest = _sets.back().begin();
+ while (_highest != _sets.back().end() &&
+ !(*_active)[_first[*_highest]]) {
+ ++_highest;
+ }
+ }
+ }
+ }
+
+ public:
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to use
+ /// one of the member functions called \ref run().
+ /// \n
+ /// If you need better control on the execution,
+ /// you have to call one of the \ref init() functions first, then
+ /// \ref calculateOut() and/or \ref calculateIn().
+
+ /// @{
+
+ /// \brief Initialize the internal data structures.
+ ///
+ /// This function initializes the internal data structures. It creates
+ /// the maps and some bucket structures for the algorithm.
+ /// The first node is used as the source node for the push-relabel
+ /// algorithm.
+ void init() {
+ init(NodeIt(_graph));
+ }
+
+ /// \brief Initialize the internal data structures.
+ ///
+ /// This function initializes the internal data structures. It creates
+ /// the maps and some bucket structures for the algorithm.
+ /// The given node is used as the source node for the push-relabel
+ /// algorithm.
+ void init(const Node& source) {
+ _source = source;
+
+ _node_num = countNodes(_graph);
+
+ _first.resize(_node_num);
+ _last.resize(_node_num);
+
+ _dormant.resize(_node_num);
+
+ if (!_flow) {
+ _flow = new FlowMap(_graph);
+ }
+ if (!_next) {
+ _next = new typename Digraph::template NodeMap<Node>(_graph);
+ }
+ if (!_prev) {
+ _prev = new typename Digraph::template NodeMap<Node>(_graph);
+ }
+ if (!_active) {
+ _active = new typename Digraph::template NodeMap<bool>(_graph);
+ }
+ if (!_bucket) {
+ _bucket = new typename Digraph::template NodeMap<int>(_graph);
+ }
+ if (!_excess) {
+ _excess = new ExcessMap(_graph);
+ }
+ if (!_source_set) {
+ _source_set = new SourceSetMap(_graph);
+ }
+ if (!_min_cut_map) {
+ _min_cut_map = new MinCutMap(_graph);
+ }
+
+ _min_cut = std::numeric_limits<Value>::max();
+ }
+
+
+ /// \brief Calculate a minimum cut with \f$ source \f$ on the
+ /// source-side.
+ ///
+ /// This function calculates a minimum cut with \f$ source \f$ on the
+ /// source-side (i.e. a set \f$ X\subsetneq V \f$ with
+ /// \f$ source \in X \f$ and minimal outgoing capacity).
+ /// It updates the stored cut if (and only if) the newly found one
+ /// is better.
+ ///
+ /// \pre \ref init() must be called before using this function.
+ void calculateOut() {
+ findMinCutOut();
+ }
+
+ /// \brief Calculate a minimum cut with \f$ source \f$ on the
+ /// sink-side.
+ ///
+ /// This function calculates a minimum cut with \f$ source \f$ on the
+ /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with
+ /// \f$ source \notin X \f$ and minimal outgoing capacity).
+ /// It updates the stored cut if (and only if) the newly found one
+ /// is better.
+ ///
+ /// \pre \ref init() must be called before using this function.
+ void calculateIn() {
+ findMinCutIn();
+ }
+
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm. It chooses source node,
+ /// then calls \ref init(), \ref calculateOut()
+ /// and \ref calculateIn().
+ void run() {
+ init();
+ calculateOut();
+ calculateIn();
+ }
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm. It calls \ref init(),
+ /// \ref calculateOut() and \ref calculateIn() with the given
+ /// source node.
+ void run(const Node& s) {
+ init(s);
+ calculateOut();
+ calculateIn();
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The result of the %HaoOrlin algorithm
+ /// can be obtained using these functions.\n
+ /// \ref run(), \ref calculateOut() or \ref calculateIn()
+ /// should be called before using them.
+
+ /// @{
+
+ /// \brief Return the value of the minimum cut.
+ ///
+ /// This function returns the value of the best cut found by the
+ /// previously called \ref run(), \ref calculateOut() or \ref
+ /// calculateIn().
+ ///
+ /// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
+ /// must be called before using this function.
+ Value minCutValue() const {
+ return _min_cut;
+ }
+
+
+ /// \brief Return a minimum cut.
+ ///
+ /// This function gives the best cut found by the
+ /// previously called \ref run(), \ref calculateOut() or \ref
+ /// calculateIn().
+ ///
+ /// It sets \c cutMap to the characteristic vector of the found
+ /// minimum value cut - a non-empty set \f$ X\subsetneq V \f$
+ /// of minimum outgoing capacity (i.e. \c cutMap will be \c true exactly
+ /// for the nodes of \f$ X \f$).
+ ///
+ /// \param cutMap A \ref concepts::WriteMap "writable" node map with
+ /// \c bool (or convertible) value type.
+ ///
+ /// \return The value of the minimum cut.
+ ///
+ /// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
+ /// must be called before using this function.
+ template <typename CutMap>
+ Value minCutMap(CutMap& cutMap) const {
+ for (NodeIt it(_graph); it != INVALID; ++it) {
+ cutMap.set(it, (*_min_cut_map)[it]);
+ }
+ return _min_cut;
+ }
+
+ /// @}
+
+ }; //class HaoOrlin
+
+} //namespace lemon
+
+#endif //LEMON_HAO_ORLIN_H