Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/hartmann_orlin_mmc.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/hartmann_orlin_mmc.h654
1 files changed, 654 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/hartmann_orlin_mmc.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hartmann_orlin_mmc.h
new file mode 100644
index 00000000000..6b60a85ed7a
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hartmann_orlin_mmc.h
@@ -0,0 +1,654 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_HARTMANN_ORLIN_MMC_H
+#define LEMON_HARTMANN_ORLIN_MMC_H
+
+/// \ingroup min_mean_cycle
+///
+/// \file
+/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
+
+#include <vector>
+#include <limits>
+#include <lemon/core.h>
+#include <lemon/path.h>
+#include <lemon/tolerance.h>
+#include <lemon/connectivity.h>
+
+namespace lemon {
+
+ /// \brief Default traits class of HartmannOrlinMmc class.
+ ///
+ /// Default traits class of HartmannOrlinMmc class.
+ /// \tparam GR The type of the digraph.
+ /// \tparam CM The type of the cost map.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+#ifdef DOXYGEN
+ template <typename GR, typename CM>
+#else
+ template <typename GR, typename CM,
+ bool integer = std::numeric_limits<typename CM::Value>::is_integer>
+#endif
+ struct HartmannOrlinMmcDefaultTraits
+ {
+ /// The type of the digraph
+ typedef GR Digraph;
+ /// The type of the cost map
+ typedef CM CostMap;
+ /// The type of the arc costs
+ typedef typename CostMap::Value Cost;
+
+ /// \brief The large cost type used for internal computations
+ ///
+ /// The large cost type used for internal computations.
+ /// It is \c long \c long if the \c Cost type is integer,
+ /// otherwise it is \c double.
+ /// \c Cost must be convertible to \c LargeCost.
+ typedef double LargeCost;
+
+ /// The tolerance type used for internal computations
+ typedef lemon::Tolerance<LargeCost> Tolerance;
+
+ /// \brief The path type of the found cycles
+ ///
+ /// The path type of the found cycles.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addFront() function.
+ typedef lemon::Path<Digraph> Path;
+ };
+
+ // Default traits class for integer cost types
+ template <typename GR, typename CM>
+ struct HartmannOrlinMmcDefaultTraits<GR, CM, true>
+ {
+ typedef GR Digraph;
+ typedef CM CostMap;
+ typedef typename CostMap::Value Cost;
+#ifdef LEMON_HAVE_LONG_LONG
+ typedef long long LargeCost;
+#else
+ typedef long LargeCost;
+#endif
+ typedef lemon::Tolerance<LargeCost> Tolerance;
+ typedef lemon::Path<Digraph> Path;
+ };
+
+
+ /// \addtogroup min_mean_cycle
+ /// @{
+
+ /// \brief Implementation of the Hartmann-Orlin algorithm for finding
+ /// a minimum mean cycle.
+ ///
+ /// This class implements the Hartmann-Orlin algorithm for finding
+ /// a directed cycle of minimum mean cost in a digraph
+ /// \cite hartmann93finding, \cite dasdan98minmeancycle.
+ /// This method is based on \ref KarpMmc "Karp"'s original algorithm, but
+ /// applies an early termination scheme. It makes the algorithm
+ /// significantly faster for some problem instances, but slower for others.
+ /// The algorithm runs in time O(nm) and uses space O(n<sup>2</sup>+m).
+ ///
+ /// \tparam GR The type of the digraph the algorithm runs on.
+ /// \tparam CM The type of the cost map. The default
+ /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits
+ /// "HartmannOrlinMmcDefaultTraits<GR, CM>".
+ /// In most cases, this parameter should not be set directly,
+ /// consider to use the named template parameters instead.
+#ifdef DOXYGEN
+ template <typename GR, typename CM, typename TR>
+#else
+ template < typename GR,
+ typename CM = typename GR::template ArcMap<int>,
+ typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> >
+#endif
+ class HartmannOrlinMmc
+ {
+ public:
+
+ /// The type of the digraph
+ typedef typename TR::Digraph Digraph;
+ /// The type of the cost map
+ typedef typename TR::CostMap CostMap;
+ /// The type of the arc costs
+ typedef typename TR::Cost Cost;
+
+ /// \brief The large cost type
+ ///
+ /// The large cost type used for internal computations.
+ /// By default, it is \c long \c long if the \c Cost type is integer,
+ /// otherwise it is \c double.
+ typedef typename TR::LargeCost LargeCost;
+
+ /// The tolerance type
+ typedef typename TR::Tolerance Tolerance;
+
+ /// \brief The path type of the found cycles
+ ///
+ /// The path type of the found cycles.
+ /// Using the \ref lemon::HartmannOrlinMmcDefaultTraits
+ /// "default traits class",
+ /// it is \ref lemon::Path "Path<Digraph>".
+ typedef typename TR::Path Path;
+
+ /// \brief The
+ /// \ref lemon::HartmannOrlinMmcDefaultTraits "traits class"
+ /// of the algorithm
+ typedef TR Traits;
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
+
+ // Data sturcture for path data
+ struct PathData
+ {
+ LargeCost dist;
+ Arc pred;
+ PathData(LargeCost d, Arc p = INVALID) :
+ dist(d), pred(p) {}
+ };
+
+ typedef typename Digraph::template NodeMap<std::vector<PathData> >
+ PathDataNodeMap;
+
+ private:
+
+ // The digraph the algorithm runs on
+ const Digraph &_gr;
+ // The cost of the arcs
+ const CostMap &_cost;
+
+ // Data for storing the strongly connected components
+ int _comp_num;
+ typename Digraph::template NodeMap<int> _comp;
+ std::vector<std::vector<Node> > _comp_nodes;
+ std::vector<Node>* _nodes;
+ typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
+
+ // Data for the found cycles
+ bool _curr_found, _best_found;
+ LargeCost _curr_cost, _best_cost;
+ int _curr_size, _best_size;
+ Node _curr_node, _best_node;
+ int _curr_level, _best_level;
+
+ Path *_cycle_path;
+ bool _local_path;
+
+ // Node map for storing path data
+ PathDataNodeMap _data;
+ // The processed nodes in the last round
+ std::vector<Node> _process;
+
+ Tolerance _tolerance;
+
+ // Infinite constant
+ const LargeCost INF;
+
+ public:
+
+ /// \name Named Template Parameters
+ /// @{
+
+ template <typename T>
+ struct SetLargeCostTraits : public Traits {
+ typedef T LargeCost;
+ typedef lemon::Tolerance<T> Tolerance;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c LargeCost type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting \c LargeCost
+ /// type. It is used for internal computations in the algorithm.
+ template <typename T>
+ struct SetLargeCost
+ : public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
+ typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetPathTraits : public Traits {
+ typedef T Path;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c %Path type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting the \c %Path
+ /// type of the found cycles.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addFront() function.
+ template <typename T>
+ struct SetPath
+ : public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
+ typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create;
+ };
+
+ /// @}
+
+ protected:
+
+ HartmannOrlinMmc() {}
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param digraph The digraph the algorithm runs on.
+ /// \param cost The costs of the arcs.
+ HartmannOrlinMmc( const Digraph &digraph,
+ const CostMap &cost ) :
+ _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
+ _best_found(false), _best_cost(0), _best_size(1),
+ _cycle_path(NULL), _local_path(false), _data(digraph),
+ INF(std::numeric_limits<LargeCost>::has_infinity ?
+ std::numeric_limits<LargeCost>::infinity() :
+ std::numeric_limits<LargeCost>::max())
+ {}
+
+ /// Destructor.
+ ~HartmannOrlinMmc() {
+ if (_local_path) delete _cycle_path;
+ }
+
+ /// \brief Set the path structure for storing the found cycle.
+ ///
+ /// This function sets an external path structure for storing the
+ /// found cycle.
+ ///
+ /// If you don't call this function before calling \ref run() or
+ /// \ref findCycleMean(), a local \ref Path "path" structure
+ /// will be allocated. The destuctor deallocates this automatically
+ /// allocated object, of course.
+ ///
+ /// \note The algorithm calls only the \ref lemon::Path::addFront()
+ /// "addFront()" function of the given path structure.
+ ///
+ /// \return <tt>(*this)</tt>
+ HartmannOrlinMmc& cycle(Path &path) {
+ if (_local_path) {
+ delete _cycle_path;
+ _local_path = false;
+ }
+ _cycle_path = &path;
+ return *this;
+ }
+
+ /// \brief Set the tolerance used by the algorithm.
+ ///
+ /// This function sets the tolerance object used by the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ HartmannOrlinMmc& tolerance(const Tolerance& tolerance) {
+ _tolerance = tolerance;
+ return *this;
+ }
+
+ /// \brief Return a const reference to the tolerance.
+ ///
+ /// This function returns a const reference to the tolerance object
+ /// used by the algorithm.
+ const Tolerance& tolerance() const {
+ return _tolerance;
+ }
+
+ /// \name Execution control
+ /// The simplest way to execute the algorithm is to call the \ref run()
+ /// function.\n
+ /// If you only need the minimum mean cost, you may call
+ /// \ref findCycleMean().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// It can be called more than once (e.g. if the underlying digraph
+ /// and/or the arc costs have been modified).
+ ///
+ /// \return \c true if a directed cycle exists in the digraph.
+ ///
+ /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
+ /// \code
+ /// return mmc.findCycleMean() && mmc.findCycle();
+ /// \endcode
+ bool run() {
+ return findCycleMean() && findCycle();
+ }
+
+ /// \brief Find the minimum cycle mean.
+ ///
+ /// This function finds the minimum mean cost of the directed
+ /// cycles in the digraph.
+ ///
+ /// \return \c true if a directed cycle exists in the digraph.
+ bool findCycleMean() {
+ // Initialization and find strongly connected components
+ init();
+ findComponents();
+
+ // Find the minimum cycle mean in the components
+ for (int comp = 0; comp < _comp_num; ++comp) {
+ if (!initComponent(comp)) continue;
+ processRounds();
+
+ // Update the best cycle (global minimum mean cycle)
+ if ( _curr_found && (!_best_found ||
+ _curr_cost * _best_size < _best_cost * _curr_size) ) {
+ _best_found = true;
+ _best_cost = _curr_cost;
+ _best_size = _curr_size;
+ _best_node = _curr_node;
+ _best_level = _curr_level;
+ }
+ }
+ return _best_found;
+ }
+
+ /// \brief Find a minimum mean directed cycle.
+ ///
+ /// This function finds a directed cycle of minimum mean cost
+ /// in the digraph using the data computed by findCycleMean().
+ ///
+ /// \return \c true if a directed cycle exists in the digraph.
+ ///
+ /// \pre \ref findCycleMean() must be called before using this function.
+ bool findCycle() {
+ if (!_best_found) return false;
+ IntNodeMap reached(_gr, -1);
+ int r = _best_level + 1;
+ Node u = _best_node;
+ while (reached[u] < 0) {
+ reached[u] = --r;
+ u = _gr.source(_data[u][r].pred);
+ }
+ r = reached[u];
+ Arc e = _data[u][r].pred;
+ _cycle_path->addFront(e);
+ _best_cost = _cost[e];
+ _best_size = 1;
+ Node v;
+ while ((v = _gr.source(e)) != u) {
+ e = _data[v][--r].pred;
+ _cycle_path->addFront(e);
+ _best_cost += _cost[e];
+ ++_best_size;
+ }
+ return true;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The algorithm should be executed before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found cycle.
+ ///
+ /// This function returns the total cost of the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ Cost cycleCost() const {
+ return static_cast<Cost>(_best_cost);
+ }
+
+ /// \brief Return the number of arcs on the found cycle.
+ ///
+ /// This function returns the number of arcs on the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ int cycleSize() const {
+ return _best_size;
+ }
+
+ /// \brief Return the mean cost of the found cycle.
+ ///
+ /// This function returns the mean cost of the found cycle.
+ ///
+ /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
+ /// following code.
+ /// \code
+ /// return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
+ /// \endcode
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ double cycleMean() const {
+ return static_cast<double>(_best_cost) / _best_size;
+ }
+
+ /// \brief Return the found cycle.
+ ///
+ /// This function returns a const reference to the path structure
+ /// storing the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycle() must be called before using
+ /// this function.
+ const Path& cycle() const {
+ return *_cycle_path;
+ }
+
+ ///@}
+
+ private:
+
+ // Initialization
+ void init() {
+ if (!_cycle_path) {
+ _local_path = true;
+ _cycle_path = new Path;
+ }
+ _cycle_path->clear();
+ _best_found = false;
+ _best_cost = 0;
+ _best_size = 1;
+ _cycle_path->clear();
+ for (NodeIt u(_gr); u != INVALID; ++u)
+ _data[u].clear();
+ }
+
+ // Find strongly connected components and initialize _comp_nodes
+ // and _out_arcs
+ void findComponents() {
+ _comp_num = stronglyConnectedComponents(_gr, _comp);
+ _comp_nodes.resize(_comp_num);
+ if (_comp_num == 1) {
+ _comp_nodes[0].clear();
+ for (NodeIt n(_gr); n != INVALID; ++n) {
+ _comp_nodes[0].push_back(n);
+ _out_arcs[n].clear();
+ for (OutArcIt a(_gr, n); a != INVALID; ++a) {
+ _out_arcs[n].push_back(a);
+ }
+ }
+ } else {
+ for (int i = 0; i < _comp_num; ++i)
+ _comp_nodes[i].clear();
+ for (NodeIt n(_gr); n != INVALID; ++n) {
+ int k = _comp[n];
+ _comp_nodes[k].push_back(n);
+ _out_arcs[n].clear();
+ for (OutArcIt a(_gr, n); a != INVALID; ++a) {
+ if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
+ }
+ }
+ }
+ }
+
+ // Initialize path data for the current component
+ bool initComponent(int comp) {
+ _nodes = &(_comp_nodes[comp]);
+ int n = _nodes->size();
+ if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
+ return false;
+ }
+ for (int i = 0; i < n; ++i) {
+ _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
+ }
+ return true;
+ }
+
+ // Process all rounds of computing path data for the current component.
+ // _data[v][k] is the cost of a shortest directed walk from the root
+ // node to node v containing exactly k arcs.
+ void processRounds() {
+ Node start = (*_nodes)[0];
+ _data[start][0] = PathData(0);
+ _process.clear();
+ _process.push_back(start);
+
+ int k, n = _nodes->size();
+ int next_check = 4;
+ bool terminate = false;
+ for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
+ processNextBuildRound(k);
+ if (k == next_check || k == n) {
+ terminate = checkTermination(k);
+ next_check = next_check * 3 / 2;
+ }
+ }
+ for ( ; k <= n && !terminate; ++k) {
+ processNextFullRound(k);
+ if (k == next_check || k == n) {
+ terminate = checkTermination(k);
+ next_check = next_check * 3 / 2;
+ }
+ }
+ }
+
+ // Process one round and rebuild _process
+ void processNextBuildRound(int k) {
+ std::vector<Node> next;
+ Node u, v;
+ Arc e;
+ LargeCost d;
+ for (int i = 0; i < int(_process.size()); ++i) {
+ u = _process[i];
+ for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
+ e = _out_arcs[u][j];
+ v = _gr.target(e);
+ d = _data[u][k-1].dist + _cost[e];
+ if (_tolerance.less(d, _data[v][k].dist)) {
+ if (_data[v][k].dist == INF) next.push_back(v);
+ _data[v][k] = PathData(d, e);
+ }
+ }
+ }
+ _process.swap(next);
+ }
+
+ // Process one round using _nodes instead of _process
+ void processNextFullRound(int k) {
+ Node u, v;
+ Arc e;
+ LargeCost d;
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ u = (*_nodes)[i];
+ for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
+ e = _out_arcs[u][j];
+ v = _gr.target(e);
+ d = _data[u][k-1].dist + _cost[e];
+ if (_tolerance.less(d, _data[v][k].dist)) {
+ _data[v][k] = PathData(d, e);
+ }
+ }
+ }
+ }
+
+ // Check early termination
+ bool checkTermination(int k) {
+ typedef std::pair<int, int> Pair;
+ typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
+ typename GR::template NodeMap<LargeCost> pi(_gr);
+ int n = _nodes->size();
+ LargeCost cost;
+ int size;
+ Node u;
+
+ // Search for cycles that are already found
+ _curr_found = false;
+ for (int i = 0; i < n; ++i) {
+ u = (*_nodes)[i];
+ if (_data[u][k].dist == INF) continue;
+ for (int j = k; j >= 0; --j) {
+ if (level[u].first == i && level[u].second > 0) {
+ // A cycle is found
+ cost = _data[u][level[u].second].dist - _data[u][j].dist;
+ size = level[u].second - j;
+ if (!_curr_found || cost * _curr_size < _curr_cost * size) {
+ _curr_cost = cost;
+ _curr_size = size;
+ _curr_node = u;
+ _curr_level = level[u].second;
+ _curr_found = true;
+ }
+ }
+ level[u] = Pair(i, j);
+ if (j != 0) {
+ u = _gr.source(_data[u][j].pred);
+ }
+ }
+ }
+
+ // If at least one cycle is found, check the optimality condition
+ LargeCost d;
+ if (_curr_found && k < n) {
+ // Find node potentials
+ for (int i = 0; i < n; ++i) {
+ u = (*_nodes)[i];
+ pi[u] = INF;
+ for (int j = 0; j <= k; ++j) {
+ if (_data[u][j].dist < INF) {
+ d = _data[u][j].dist * _curr_size - j * _curr_cost;
+ if (_tolerance.less(d, pi[u])) pi[u] = d;
+ }
+ }
+ }
+
+ // Check the optimality condition for all arcs
+ bool done = true;
+ for (ArcIt a(_gr); a != INVALID; ++a) {
+ if (_tolerance.less(_cost[a] * _curr_size - _curr_cost,
+ pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
+ done = false;
+ break;
+ }
+ }
+ return done;
+ }
+ return (k == n);
+ }
+
+ }; //class HartmannOrlinMmc
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_HARTMANN_ORLIN_MMC_H