Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/howard_mmc.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/howard_mmc.h651
1 files changed, 651 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/howard_mmc.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/howard_mmc.h
new file mode 100644
index 00000000000..690236340ff
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/howard_mmc.h
@@ -0,0 +1,651 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_HOWARD_MMC_H
+#define LEMON_HOWARD_MMC_H
+
+/// \ingroup min_mean_cycle
+///
+/// \file
+/// \brief Howard's algorithm for finding a minimum mean cycle.
+
+#include <vector>
+#include <limits>
+#include <lemon/core.h>
+#include <lemon/path.h>
+#include <lemon/tolerance.h>
+#include <lemon/connectivity.h>
+
+namespace lemon {
+
+ /// \brief Default traits class of HowardMmc class.
+ ///
+ /// Default traits class of HowardMmc class.
+ /// \tparam GR The type of the digraph.
+ /// \tparam CM The type of the cost map.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+#ifdef DOXYGEN
+ template <typename GR, typename CM>
+#else
+ template <typename GR, typename CM,
+ bool integer = std::numeric_limits<typename CM::Value>::is_integer>
+#endif
+ struct HowardMmcDefaultTraits
+ {
+ /// The type of the digraph
+ typedef GR Digraph;
+ /// The type of the cost map
+ typedef CM CostMap;
+ /// The type of the arc costs
+ typedef typename CostMap::Value Cost;
+
+ /// \brief The large cost type used for internal computations
+ ///
+ /// The large cost type used for internal computations.
+ /// It is \c long \c long if the \c Cost type is integer,
+ /// otherwise it is \c double.
+ /// \c Cost must be convertible to \c LargeCost.
+ typedef double LargeCost;
+
+ /// The tolerance type used for internal computations
+ typedef lemon::Tolerance<LargeCost> Tolerance;
+
+ /// \brief The path type of the found cycles
+ ///
+ /// The path type of the found cycles.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addBack() function.
+ typedef lemon::Path<Digraph> Path;
+ };
+
+ // Default traits class for integer cost types
+ template <typename GR, typename CM>
+ struct HowardMmcDefaultTraits<GR, CM, true>
+ {
+ typedef GR Digraph;
+ typedef CM CostMap;
+ typedef typename CostMap::Value Cost;
+#ifdef LEMON_HAVE_LONG_LONG
+ typedef long long LargeCost;
+#else
+ typedef long LargeCost;
+#endif
+ typedef lemon::Tolerance<LargeCost> Tolerance;
+ typedef lemon::Path<Digraph> Path;
+ };
+
+
+ /// \addtogroup min_mean_cycle
+ /// @{
+
+ /// \brief Implementation of Howard's algorithm for finding a minimum
+ /// mean cycle.
+ ///
+ /// This class implements Howard's policy iteration algorithm for finding
+ /// a directed cycle of minimum mean cost in a digraph
+ /// \cite dasdan98minmeancycle, \cite dasdan04experimental.
+ /// This class provides the most efficient algorithm for the
+ /// minimum mean cycle problem, though the best known theoretical
+ /// bound on its running time is exponential.
+ ///
+ /// \tparam GR The type of the digraph the algorithm runs on.
+ /// \tparam CM The type of the cost map. The default
+ /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm. By default, it is \ref HowardMmcDefaultTraits
+ /// "HowardMmcDefaultTraits<GR, CM>".
+ /// In most cases, this parameter should not be set directly,
+ /// consider to use the named template parameters instead.
+#ifdef DOXYGEN
+ template <typename GR, typename CM, typename TR>
+#else
+ template < typename GR,
+ typename CM = typename GR::template ArcMap<int>,
+ typename TR = HowardMmcDefaultTraits<GR, CM> >
+#endif
+ class HowardMmc
+ {
+ public:
+
+ /// The type of the digraph
+ typedef typename TR::Digraph Digraph;
+ /// The type of the cost map
+ typedef typename TR::CostMap CostMap;
+ /// The type of the arc costs
+ typedef typename TR::Cost Cost;
+
+ /// \brief The large cost type
+ ///
+ /// The large cost type used for internal computations.
+ /// By default, it is \c long \c long if the \c Cost type is integer,
+ /// otherwise it is \c double.
+ typedef typename TR::LargeCost LargeCost;
+
+ /// The tolerance type
+ typedef typename TR::Tolerance Tolerance;
+
+ /// \brief The path type of the found cycles
+ ///
+ /// The path type of the found cycles.
+ /// Using the \ref lemon::HowardMmcDefaultTraits "default traits class",
+ /// it is \ref lemon::Path "Path<Digraph>".
+ typedef typename TR::Path Path;
+
+ /// The \ref lemon::HowardMmcDefaultTraits "traits class" of the algorithm
+ typedef TR Traits;
+
+ /// \brief Constants for the causes of search termination.
+ ///
+ /// Enum type containing constants for the different causes of search
+ /// termination. The \ref findCycleMean() function returns one of
+ /// these values.
+ enum TerminationCause {
+
+ /// No directed cycle can be found in the digraph.
+ NO_CYCLE = 0,
+
+ /// Optimal solution (minimum cycle mean) is found.
+ OPTIMAL = 1,
+
+ /// The iteration count limit is reached.
+ ITERATION_LIMIT
+ };
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
+
+ // The digraph the algorithm runs on
+ const Digraph &_gr;
+ // The cost of the arcs
+ const CostMap &_cost;
+
+ // Data for the found cycles
+ bool _curr_found, _best_found;
+ LargeCost _curr_cost, _best_cost;
+ int _curr_size, _best_size;
+ Node _curr_node, _best_node;
+
+ Path *_cycle_path;
+ bool _local_path;
+
+ // Internal data used by the algorithm
+ typename Digraph::template NodeMap<Arc> _policy;
+ typename Digraph::template NodeMap<bool> _reached;
+ typename Digraph::template NodeMap<int> _level;
+ typename Digraph::template NodeMap<LargeCost> _dist;
+
+ // Data for storing the strongly connected components
+ int _comp_num;
+ typename Digraph::template NodeMap<int> _comp;
+ std::vector<std::vector<Node> > _comp_nodes;
+ std::vector<Node>* _nodes;
+ typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
+
+ // Queue used for BFS search
+ std::vector<Node> _queue;
+ int _qfront, _qback;
+
+ Tolerance _tolerance;
+
+ // Infinite constant
+ const LargeCost INF;
+
+ public:
+
+ /// \name Named Template Parameters
+ /// @{
+
+ template <typename T>
+ struct SetLargeCostTraits : public Traits {
+ typedef T LargeCost;
+ typedef lemon::Tolerance<T> Tolerance;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c LargeCost type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting \c LargeCost
+ /// type. It is used for internal computations in the algorithm.
+ template <typename T>
+ struct SetLargeCost
+ : public HowardMmc<GR, CM, SetLargeCostTraits<T> > {
+ typedef HowardMmc<GR, CM, SetLargeCostTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetPathTraits : public Traits {
+ typedef T Path;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c %Path type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting the \c %Path
+ /// type of the found cycles.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addBack() function.
+ template <typename T>
+ struct SetPath
+ : public HowardMmc<GR, CM, SetPathTraits<T> > {
+ typedef HowardMmc<GR, CM, SetPathTraits<T> > Create;
+ };
+
+ /// @}
+
+ protected:
+
+ HowardMmc() {}
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param digraph The digraph the algorithm runs on.
+ /// \param cost The costs of the arcs.
+ HowardMmc( const Digraph &digraph,
+ const CostMap &cost ) :
+ _gr(digraph), _cost(cost), _best_found(false),
+ _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false),
+ _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
+ _comp(digraph), _in_arcs(digraph),
+ INF(std::numeric_limits<LargeCost>::has_infinity ?
+ std::numeric_limits<LargeCost>::infinity() :
+ std::numeric_limits<LargeCost>::max())
+ {}
+
+ /// Destructor.
+ ~HowardMmc() {
+ if (_local_path) delete _cycle_path;
+ }
+
+ /// \brief Set the path structure for storing the found cycle.
+ ///
+ /// This function sets an external path structure for storing the
+ /// found cycle.
+ ///
+ /// If you don't call this function before calling \ref run() or
+ /// \ref findCycleMean(), a local \ref Path "path" structure
+ /// will be allocated. The destuctor deallocates this automatically
+ /// allocated object, of course.
+ ///
+ /// \note The algorithm calls only the \ref lemon::Path::addBack()
+ /// "addBack()" function of the given path structure.
+ ///
+ /// \return <tt>(*this)</tt>
+ HowardMmc& cycle(Path &path) {
+ if (_local_path) {
+ delete _cycle_path;
+ _local_path = false;
+ }
+ _cycle_path = &path;
+ return *this;
+ }
+
+ /// \brief Set the tolerance used by the algorithm.
+ ///
+ /// This function sets the tolerance object used by the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ HowardMmc& tolerance(const Tolerance& tolerance) {
+ _tolerance = tolerance;
+ return *this;
+ }
+
+ /// \brief Return a const reference to the tolerance.
+ ///
+ /// This function returns a const reference to the tolerance object
+ /// used by the algorithm.
+ const Tolerance& tolerance() const {
+ return _tolerance;
+ }
+
+ /// \name Execution control
+ /// The simplest way to execute the algorithm is to call the \ref run()
+ /// function.\n
+ /// If you only need the minimum mean cost, you may call
+ /// \ref findCycleMean().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// It can be called more than once (e.g. if the underlying digraph
+ /// and/or the arc costs have been modified).
+ ///
+ /// \return \c true if a directed cycle exists in the digraph.
+ ///
+ /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
+ /// \code
+ /// return mmc.findCycleMean() && mmc.findCycle();
+ /// \endcode
+ bool run() {
+ return findCycleMean() && findCycle();
+ }
+
+ /// \brief Find the minimum cycle mean (or an upper bound).
+ ///
+ /// This function finds the minimum mean cost of the directed
+ /// cycles in the digraph (or an upper bound for it).
+ ///
+ /// By default, the function finds the exact minimum cycle mean,
+ /// but an optional limit can also be specified for the number of
+ /// iterations performed during the search process.
+ /// The return value indicates if the optimal solution is found
+ /// or the iteration limit is reached. In the latter case, an
+ /// approximate solution is provided, which corresponds to a directed
+ /// cycle whose mean cost is relatively small, but not necessarily
+ /// minimal.
+ ///
+ /// \param limit The maximum allowed number of iterations during
+ /// the search process. Its default value implies that the algorithm
+ /// runs until it finds the exact optimal solution.
+ ///
+ /// \return The termination cause of the search process.
+ /// For more information, see \ref TerminationCause.
+ TerminationCause findCycleMean(int limit =
+ std::numeric_limits<int>::max()) {
+ // Initialize and find strongly connected components
+ init();
+ findComponents();
+
+ // Find the minimum cycle mean in the components
+ int iter_count = 0;
+ bool iter_limit_reached = false;
+ for (int comp = 0; comp < _comp_num; ++comp) {
+ // Find the minimum mean cycle in the current component
+ if (!buildPolicyGraph(comp)) continue;
+ while (true) {
+ if (++iter_count > limit) {
+ iter_limit_reached = true;
+ break;
+ }
+ findPolicyCycle();
+ if (!computeNodeDistances()) break;
+ }
+
+ // Update the best cycle (global minimum mean cycle)
+ if ( _curr_found && (!_best_found ||
+ _curr_cost * _best_size < _best_cost * _curr_size) ) {
+ _best_found = true;
+ _best_cost = _curr_cost;
+ _best_size = _curr_size;
+ _best_node = _curr_node;
+ }
+
+ if (iter_limit_reached) break;
+ }
+
+ if (iter_limit_reached) {
+ return ITERATION_LIMIT;
+ } else {
+ return _best_found ? OPTIMAL : NO_CYCLE;
+ }
+ }
+
+ /// \brief Find a minimum mean directed cycle.
+ ///
+ /// This function finds a directed cycle of minimum mean cost
+ /// in the digraph using the data computed by findCycleMean().
+ ///
+ /// \return \c true if a directed cycle exists in the digraph.
+ ///
+ /// \pre \ref findCycleMean() must be called before using this function.
+ bool findCycle() {
+ if (!_best_found) return false;
+ _cycle_path->addBack(_policy[_best_node]);
+ for ( Node v = _best_node;
+ (v = _gr.target(_policy[v])) != _best_node; ) {
+ _cycle_path->addBack(_policy[v]);
+ }
+ return true;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The algorithm should be executed before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found cycle.
+ ///
+ /// This function returns the total cost of the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ Cost cycleCost() const {
+ return static_cast<Cost>(_best_cost);
+ }
+
+ /// \brief Return the number of arcs on the found cycle.
+ ///
+ /// This function returns the number of arcs on the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ int cycleSize() const {
+ return _best_size;
+ }
+
+ /// \brief Return the mean cost of the found cycle.
+ ///
+ /// This function returns the mean cost of the found cycle.
+ ///
+ /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
+ /// following code.
+ /// \code
+ /// return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
+ /// \endcode
+ ///
+ /// \pre \ref run() or \ref findCycleMean() must be called before
+ /// using this function.
+ double cycleMean() const {
+ return static_cast<double>(_best_cost) / _best_size;
+ }
+
+ /// \brief Return the found cycle.
+ ///
+ /// This function returns a const reference to the path structure
+ /// storing the found cycle.
+ ///
+ /// \pre \ref run() or \ref findCycle() must be called before using
+ /// this function.
+ const Path& cycle() const {
+ return *_cycle_path;
+ }
+
+ ///@}
+
+ private:
+
+ // Initialize
+ void init() {
+ if (!_cycle_path) {
+ _local_path = true;
+ _cycle_path = new Path;
+ }
+ _queue.resize(countNodes(_gr));
+ _best_found = false;
+ _best_cost = 0;
+ _best_size = 1;
+ _cycle_path->clear();
+ }
+
+ // Find strongly connected components and initialize _comp_nodes
+ // and _in_arcs
+ void findComponents() {
+ _comp_num = stronglyConnectedComponents(_gr, _comp);
+ _comp_nodes.resize(_comp_num);
+ if (_comp_num == 1) {
+ _comp_nodes[0].clear();
+ for (NodeIt n(_gr); n != INVALID; ++n) {
+ _comp_nodes[0].push_back(n);
+ _in_arcs[n].clear();
+ for (InArcIt a(_gr, n); a != INVALID; ++a) {
+ _in_arcs[n].push_back(a);
+ }
+ }
+ } else {
+ for (int i = 0; i < _comp_num; ++i)
+ _comp_nodes[i].clear();
+ for (NodeIt n(_gr); n != INVALID; ++n) {
+ int k = _comp[n];
+ _comp_nodes[k].push_back(n);
+ _in_arcs[n].clear();
+ for (InArcIt a(_gr, n); a != INVALID; ++a) {
+ if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
+ }
+ }
+ }
+ }
+
+ // Build the policy graph in the given strongly connected component
+ // (the out-degree of every node is 1)
+ bool buildPolicyGraph(int comp) {
+ _nodes = &(_comp_nodes[comp]);
+ if (_nodes->size() < 1 ||
+ (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
+ return false;
+ }
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ _dist[(*_nodes)[i]] = INF;
+ }
+ Node u, v;
+ Arc e;
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ v = (*_nodes)[i];
+ for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
+ e = _in_arcs[v][j];
+ u = _gr.source(e);
+ if (_cost[e] < _dist[u]) {
+ _dist[u] = _cost[e];
+ _policy[u] = e;
+ }
+ }
+ }
+ return true;
+ }
+
+ // Find the minimum mean cycle in the policy graph
+ void findPolicyCycle() {
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ _level[(*_nodes)[i]] = -1;
+ }
+ LargeCost ccost;
+ int csize;
+ Node u, v;
+ _curr_found = false;
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ u = (*_nodes)[i];
+ if (_level[u] >= 0) continue;
+ for (; _level[u] < 0; u = _gr.target(_policy[u])) {
+ _level[u] = i;
+ }
+ if (_level[u] == i) {
+ // A cycle is found
+ ccost = _cost[_policy[u]];
+ csize = 1;
+ for (v = u; (v = _gr.target(_policy[v])) != u; ) {
+ ccost += _cost[_policy[v]];
+ ++csize;
+ }
+ if ( !_curr_found ||
+ (ccost * _curr_size < _curr_cost * csize) ) {
+ _curr_found = true;
+ _curr_cost = ccost;
+ _curr_size = csize;
+ _curr_node = u;
+ }
+ }
+ }
+ }
+
+ // Contract the policy graph and compute node distances
+ bool computeNodeDistances() {
+ // Find the component of the main cycle and compute node distances
+ // using reverse BFS
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ _reached[(*_nodes)[i]] = false;
+ }
+ _qfront = _qback = 0;
+ _queue[0] = _curr_node;
+ _reached[_curr_node] = true;
+ _dist[_curr_node] = 0;
+ Node u, v;
+ Arc e;
+ while (_qfront <= _qback) {
+ v = _queue[_qfront++];
+ for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
+ e = _in_arcs[v][j];
+ u = _gr.source(e);
+ if (_policy[u] == e && !_reached[u]) {
+ _reached[u] = true;
+ _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
+ _queue[++_qback] = u;
+ }
+ }
+ }
+
+ // Connect all other nodes to this component and compute node
+ // distances using reverse BFS
+ _qfront = 0;
+ while (_qback < int(_nodes->size())-1) {
+ v = _queue[_qfront++];
+ for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
+ e = _in_arcs[v][j];
+ u = _gr.source(e);
+ if (!_reached[u]) {
+ _reached[u] = true;
+ _policy[u] = e;
+ _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
+ _queue[++_qback] = u;
+ }
+ }
+ }
+
+ // Improve node distances
+ bool improved = false;
+ for (int i = 0; i < int(_nodes->size()); ++i) {
+ v = (*_nodes)[i];
+ for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
+ e = _in_arcs[v][j];
+ u = _gr.source(e);
+ LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost;
+ if (_tolerance.less(delta, _dist[u])) {
+ _dist[u] = delta;
+ _policy[u] = e;
+ improved = true;
+ }
+ }
+ }
+ return improved;
+ }
+
+ }; //class HowardMmc
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_HOWARD_MMC_H