Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/hypercube_graph.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/hypercube_graph.h459
1 files changed, 459 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/hypercube_graph.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hypercube_graph.h
new file mode 100644
index 00000000000..2cf37ad49d2
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/hypercube_graph.h
@@ -0,0 +1,459 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef HYPERCUBE_GRAPH_H
+#define HYPERCUBE_GRAPH_H
+
+#include <vector>
+#include <lemon/core.h>
+#include <lemon/assert.h>
+#include <lemon/bits/graph_extender.h>
+
+///\ingroup graphs
+///\file
+///\brief HypercubeGraph class.
+
+namespace lemon {
+
+ class HypercubeGraphBase {
+
+ public:
+
+ typedef HypercubeGraphBase Graph;
+
+ class Node;
+ class Edge;
+ class Arc;
+
+ public:
+
+ HypercubeGraphBase() {}
+
+ protected:
+
+ void construct(int dim) {
+ LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
+ _dim = dim;
+ _node_num = 1 << dim;
+ _edge_num = dim * (1 << (dim-1));
+ }
+
+ public:
+
+ typedef True NodeNumTag;
+ typedef True EdgeNumTag;
+ typedef True ArcNumTag;
+
+ int nodeNum() const { return _node_num; }
+ int edgeNum() const { return _edge_num; }
+ int arcNum() const { return 2 * _edge_num; }
+
+ int maxNodeId() const { return _node_num - 1; }
+ int maxEdgeId() const { return _edge_num - 1; }
+ int maxArcId() const { return 2 * _edge_num - 1; }
+
+ static Node nodeFromId(int id) { return Node(id); }
+ static Edge edgeFromId(int id) { return Edge(id); }
+ static Arc arcFromId(int id) { return Arc(id); }
+
+ static int id(Node node) { return node._id; }
+ static int id(Edge edge) { return edge._id; }
+ static int id(Arc arc) { return arc._id; }
+
+ Node u(Edge edge) const {
+ int base = edge._id & ((1 << (_dim-1)) - 1);
+ int k = edge._id >> (_dim-1);
+ return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
+ }
+
+ Node v(Edge edge) const {
+ int base = edge._id & ((1 << (_dim-1)) - 1);
+ int k = edge._id >> (_dim-1);
+ return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
+ }
+
+ Node source(Arc arc) const {
+ return (arc._id & 1) == 1 ? u(arc) : v(arc);
+ }
+
+ Node target(Arc arc) const {
+ return (arc._id & 1) == 1 ? v(arc) : u(arc);
+ }
+
+ typedef True FindEdgeTag;
+ typedef True FindArcTag;
+
+ Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
+ if (prev != INVALID) return INVALID;
+ int d = u._id ^ v._id;
+ int k = 0;
+ if (d == 0) return INVALID;
+ for ( ; (d & 1) == 0; d >>= 1) ++k;
+ if (d >> 1 != 0) return INVALID;
+ return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
+ (u._id & ((1 << k) - 1));
+ }
+
+ Arc findArc(Node u, Node v, Arc prev = INVALID) const {
+ Edge edge = findEdge(u, v, prev);
+ if (edge == INVALID) return INVALID;
+ int k = edge._id >> (_dim-1);
+ return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
+ }
+
+ class Node {
+ friend class HypercubeGraphBase;
+
+ protected:
+ int _id;
+ Node(int id) : _id(id) {}
+ public:
+ Node() {}
+ Node (Invalid) : _id(-1) {}
+ bool operator==(const Node node) const {return _id == node._id;}
+ bool operator!=(const Node node) const {return _id != node._id;}
+ bool operator<(const Node node) const {return _id < node._id;}
+ };
+
+ class Edge {
+ friend class HypercubeGraphBase;
+ friend class Arc;
+
+ protected:
+ int _id;
+
+ Edge(int id) : _id(id) {}
+
+ public:
+ Edge() {}
+ Edge (Invalid) : _id(-1) {}
+ bool operator==(const Edge edge) const {return _id == edge._id;}
+ bool operator!=(const Edge edge) const {return _id != edge._id;}
+ bool operator<(const Edge edge) const {return _id < edge._id;}
+ };
+
+ class Arc {
+ friend class HypercubeGraphBase;
+
+ protected:
+ int _id;
+
+ Arc(int id) : _id(id) {}
+
+ public:
+ Arc() {}
+ Arc (Invalid) : _id(-1) {}
+ operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
+ bool operator==(const Arc arc) const {return _id == arc._id;}
+ bool operator!=(const Arc arc) const {return _id != arc._id;}
+ bool operator<(const Arc arc) const {return _id < arc._id;}
+ };
+
+ void first(Node& node) const {
+ node._id = _node_num - 1;
+ }
+
+ static void next(Node& node) {
+ --node._id;
+ }
+
+ void first(Edge& edge) const {
+ edge._id = _edge_num - 1;
+ }
+
+ static void next(Edge& edge) {
+ --edge._id;
+ }
+
+ void first(Arc& arc) const {
+ arc._id = 2 * _edge_num - 1;
+ }
+
+ static void next(Arc& arc) {
+ --arc._id;
+ }
+
+ void firstInc(Edge& edge, bool& dir, const Node& node) const {
+ edge._id = node._id >> 1;
+ dir = (node._id & 1) == 0;
+ }
+
+ void nextInc(Edge& edge, bool& dir) const {
+ Node n = dir ? u(edge) : v(edge);
+ int k = (edge._id >> (_dim-1)) + 1;
+ if (k < _dim) {
+ edge._id = (k << (_dim-1)) |
+ ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
+ dir = ((n._id >> k) & 1) == 0;
+ } else {
+ edge._id = -1;
+ dir = true;
+ }
+ }
+
+ void firstOut(Arc& arc, const Node& node) const {
+ arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
+ }
+
+ void nextOut(Arc& arc) const {
+ Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
+ int k = (arc._id >> _dim) + 1;
+ if (k < _dim) {
+ arc._id = (k << (_dim-1)) |
+ ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
+ arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
+ } else {
+ arc._id = -1;
+ }
+ }
+
+ void firstIn(Arc& arc, const Node& node) const {
+ arc._id = ((node._id >> 1) << 1) | (node._id & 1);
+ }
+
+ void nextIn(Arc& arc) const {
+ Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
+ int k = (arc._id >> _dim) + 1;
+ if (k < _dim) {
+ arc._id = (k << (_dim-1)) |
+ ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
+ arc._id = (arc._id << 1) | ((n._id >> k) & 1);
+ } else {
+ arc._id = -1;
+ }
+ }
+
+ static bool direction(Arc arc) {
+ return (arc._id & 1) == 1;
+ }
+
+ static Arc direct(Edge edge, bool dir) {
+ return Arc((edge._id << 1) | (dir ? 1 : 0));
+ }
+
+ int dimension() const {
+ return _dim;
+ }
+
+ bool projection(Node node, int n) const {
+ return static_cast<bool>(node._id & (1 << n));
+ }
+
+ int dimension(Edge edge) const {
+ return edge._id >> (_dim-1);
+ }
+
+ int dimension(Arc arc) const {
+ return arc._id >> _dim;
+ }
+
+ static int index(Node node) {
+ return node._id;
+ }
+
+ Node operator()(int ix) const {
+ return Node(ix);
+ }
+
+ private:
+ int _dim;
+ int _node_num, _edge_num;
+ };
+
+
+ typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
+
+ /// \ingroup graphs
+ ///
+ /// \brief Hypercube graph class
+ ///
+ /// HypercubeGraph implements a special graph type. The nodes of the
+ /// graph are indexed with integers having at most \c dim binary digits.
+ /// Two nodes are connected in the graph if and only if their indices
+ /// differ only on one position in the binary form.
+ /// This class is completely static and it needs constant memory space.
+ /// Thus you can neither add nor delete nodes or edges, however,
+ /// the structure can be resized using resize().
+ ///
+ /// This type fully conforms to the \ref concepts::Graph "Graph concept".
+ /// Most of its member functions and nested classes are documented
+ /// only in the concept class.
+ ///
+ /// This class provides constant time counting for nodes, edges and arcs.
+ ///
+ /// \note The type of the indices is chosen to \c int for efficiency
+ /// reasons. Thus the maximum dimension of this implementation is 26
+ /// (assuming that the size of \c int is 32 bit).
+ class HypercubeGraph : public ExtendedHypercubeGraphBase {
+ typedef ExtendedHypercubeGraphBase Parent;
+
+ public:
+
+ /// \brief Constructs a hypercube graph with \c dim dimensions.
+ ///
+ /// Constructs a hypercube graph with \c dim dimensions.
+ HypercubeGraph(int dim) { construct(dim); }
+
+ /// \brief Resizes the graph
+ ///
+ /// This function resizes the graph. It fully destroys and
+ /// rebuilds the structure, therefore the maps of the graph will be
+ /// reallocated automatically and the previous values will be lost.
+ void resize(int dim) {
+ Parent::notifier(Arc()).clear();
+ Parent::notifier(Edge()).clear();
+ Parent::notifier(Node()).clear();
+ construct(dim);
+ Parent::notifier(Node()).build();
+ Parent::notifier(Edge()).build();
+ Parent::notifier(Arc()).build();
+ }
+
+ /// \brief The number of dimensions.
+ ///
+ /// Gives back the number of dimensions.
+ int dimension() const {
+ return Parent::dimension();
+ }
+
+ /// \brief Returns \c true if the n'th bit of the node is one.
+ ///
+ /// Returns \c true if the n'th bit of the node is one.
+ bool projection(Node node, int n) const {
+ return Parent::projection(node, n);
+ }
+
+ /// \brief The dimension id of an edge.
+ ///
+ /// Gives back the dimension id of the given edge.
+ /// It is in the range <tt>[0..dim-1]</tt>.
+ int dimension(Edge edge) const {
+ return Parent::dimension(edge);
+ }
+
+ /// \brief The dimension id of an arc.
+ ///
+ /// Gives back the dimension id of the given arc.
+ /// It is in the range <tt>[0..dim-1]</tt>.
+ int dimension(Arc arc) const {
+ return Parent::dimension(arc);
+ }
+
+ /// \brief The index of a node.
+ ///
+ /// Gives back the index of the given node.
+ /// The lower bits of the integer describes the node.
+ static int index(Node node) {
+ return Parent::index(node);
+ }
+
+ /// \brief Gives back a node by its index.
+ ///
+ /// Gives back a node by its index.
+ Node operator()(int ix) const {
+ return Parent::operator()(ix);
+ }
+
+ /// \brief Number of nodes.
+ int nodeNum() const { return Parent::nodeNum(); }
+ /// \brief Number of edges.
+ int edgeNum() const { return Parent::edgeNum(); }
+ /// \brief Number of arcs.
+ int arcNum() const { return Parent::arcNum(); }
+
+ /// \brief Linear combination map.
+ ///
+ /// This map makes possible to give back a linear combination
+ /// for each node. It works like the \c std::accumulate function,
+ /// so it accumulates the \c bf binary function with the \c fv first
+ /// value. The map accumulates only on that positions (dimensions)
+ /// where the index of the node is one. The values that have to be
+ /// accumulated should be given by the \c begin and \c end iterators
+ /// and the length of this range should be equal to the dimension
+ /// number of the graph.
+ ///
+ ///\code
+ /// const int DIM = 3;
+ /// HypercubeGraph graph(DIM);
+ /// dim2::Point<double> base[DIM];
+ /// for (int k = 0; k < DIM; ++k) {
+ /// base[k].x = rnd();
+ /// base[k].y = rnd();
+ /// }
+ /// HypercubeGraph::HyperMap<dim2::Point<double> >
+ /// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
+ ///\endcode
+ ///
+ /// \see HypercubeGraph
+ template <typename T, typename BF = std::plus<T> >
+ class HyperMap {
+ public:
+
+ /// \brief The key type of the map
+ typedef Node Key;
+ /// \brief The value type of the map
+ typedef T Value;
+
+ /// \brief Constructor for HyperMap.
+ ///
+ /// Construct a HyperMap for the given graph. The values that have
+ /// to be accumulated should be given by the \c begin and \c end
+ /// iterators and the length of this range should be equal to the
+ /// dimension number of the graph.
+ ///
+ /// This map accumulates the \c bf binary function with the \c fv
+ /// first value on that positions (dimensions) where the index of
+ /// the node is one.
+ template <typename It>
+ HyperMap(const Graph& graph, It begin, It end,
+ T fv = 0, const BF& bf = BF())
+ : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
+ {
+ LEMON_ASSERT(_values.size() == graph.dimension(),
+ "Wrong size of range");
+ }
+
+ /// \brief The partial accumulated value.
+ ///
+ /// Gives back the partial accumulated value.
+ Value operator[](const Key& k) const {
+ Value val = _first_value;
+ int id = _graph.index(k);
+ int n = 0;
+ while (id != 0) {
+ if (id & 1) {
+ val = _bin_func(val, _values[n]);
+ }
+ id >>= 1;
+ ++n;
+ }
+ return val;
+ }
+
+ private:
+ const Graph& _graph;
+ std::vector<T> _values;
+ T _first_value;
+ BF _bin_func;
+ };
+
+ };
+
+}
+
+#endif