Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/list_graph.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/list_graph.h2510
1 files changed, 2510 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/list_graph.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/list_graph.h
new file mode 100644
index 00000000000..2a236cf91de
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/list_graph.h
@@ -0,0 +1,2510 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_LIST_GRAPH_H
+#define LEMON_LIST_GRAPH_H
+
+///\ingroup graphs
+///\file
+///\brief ListDigraph and ListGraph classes.
+
+#include <lemon/core.h>
+#include <lemon/error.h>
+#include <lemon/bits/graph_extender.h>
+
+#include <vector>
+#include <list>
+
+namespace lemon {
+
+ class ListDigraph;
+
+ class ListDigraphBase {
+
+ protected:
+ struct NodeT {
+ int first_in, first_out;
+ int prev, next;
+ };
+
+ struct ArcT {
+ int target, source;
+ int prev_in, prev_out;
+ int next_in, next_out;
+ };
+
+ std::vector<NodeT> nodes;
+
+ int first_node;
+
+ int first_free_node;
+
+ std::vector<ArcT> arcs;
+
+ int first_free_arc;
+
+ public:
+
+ typedef ListDigraphBase Digraph;
+
+ class Node {
+ friend class ListDigraphBase;
+ friend class ListDigraph;
+ protected:
+
+ int id;
+ explicit Node(int pid) { id = pid;}
+
+ public:
+ Node() {}
+ Node (Invalid) { id = -1; }
+ bool operator==(const Node& node) const {return id == node.id;}
+ bool operator!=(const Node& node) const {return id != node.id;}
+ bool operator<(const Node& node) const {return id < node.id;}
+ };
+
+ class Arc {
+ friend class ListDigraphBase;
+ friend class ListDigraph;
+ protected:
+
+ int id;
+ explicit Arc(int pid) { id = pid;}
+
+ public:
+ Arc() {}
+ Arc (Invalid) { id = -1; }
+ bool operator==(const Arc& arc) const {return id == arc.id;}
+ bool operator!=(const Arc& arc) const {return id != arc.id;}
+ bool operator<(const Arc& arc) const {return id < arc.id;}
+ };
+
+
+
+ ListDigraphBase()
+ : nodes(), first_node(-1),
+ first_free_node(-1), arcs(), first_free_arc(-1) {}
+
+
+ int maxNodeId() const { return nodes.size()-1; }
+ int maxArcId() const { return arcs.size()-1; }
+
+ Node source(Arc e) const { return Node(arcs[e.id].source); }
+ Node target(Arc e) const { return Node(arcs[e.id].target); }
+
+
+ void first(Node& node) const {
+ node.id = first_node;
+ }
+
+ void next(Node& node) const {
+ node.id = nodes[node.id].next;
+ }
+
+
+ void first(Arc& arc) const {
+ int n;
+ for(n = first_node;
+ n != -1 && nodes[n].first_out == -1;
+ n = nodes[n].next) {}
+ arc.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+
+ void next(Arc& arc) const {
+ if (arcs[arc.id].next_out != -1) {
+ arc.id = arcs[arc.id].next_out;
+ } else {
+ int n;
+ for(n = nodes[arcs[arc.id].source].next;
+ n != -1 && nodes[n].first_out == -1;
+ n = nodes[n].next) {}
+ arc.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+ }
+
+ void firstOut(Arc &e, const Node& v) const {
+ e.id = nodes[v.id].first_out;
+ }
+ void nextOut(Arc &e) const {
+ e.id=arcs[e.id].next_out;
+ }
+
+ void firstIn(Arc &e, const Node& v) const {
+ e.id = nodes[v.id].first_in;
+ }
+ void nextIn(Arc &e) const {
+ e.id=arcs[e.id].next_in;
+ }
+
+
+ static int id(Node v) { return v.id; }
+ static int id(Arc e) { return e.id; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+
+ bool valid(Node n) const {
+ return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
+ nodes[n.id].prev != -2;
+ }
+
+ bool valid(Arc a) const {
+ return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
+ arcs[a.id].prev_in != -2;
+ }
+
+ Node addNode() {
+ int n;
+
+ if(first_free_node==-1) {
+ n = nodes.size();
+ nodes.push_back(NodeT());
+ } else {
+ n = first_free_node;
+ first_free_node = nodes[n].next;
+ }
+
+ nodes[n].next = first_node;
+ if(first_node != -1) nodes[first_node].prev = n;
+ first_node = n;
+ nodes[n].prev = -1;
+
+ nodes[n].first_in = nodes[n].first_out = -1;
+
+ return Node(n);
+ }
+
+ Arc addArc(Node u, Node v) {
+ int n;
+
+ if (first_free_arc == -1) {
+ n = arcs.size();
+ arcs.push_back(ArcT());
+ } else {
+ n = first_free_arc;
+ first_free_arc = arcs[n].next_in;
+ }
+
+ arcs[n].source = u.id;
+ arcs[n].target = v.id;
+
+ arcs[n].next_out = nodes[u.id].first_out;
+ if(nodes[u.id].first_out != -1) {
+ arcs[nodes[u.id].first_out].prev_out = n;
+ }
+
+ arcs[n].next_in = nodes[v.id].first_in;
+ if(nodes[v.id].first_in != -1) {
+ arcs[nodes[v.id].first_in].prev_in = n;
+ }
+
+ arcs[n].prev_in = arcs[n].prev_out = -1;
+
+ nodes[u.id].first_out = nodes[v.id].first_in = n;
+
+ return Arc(n);
+ }
+
+ void erase(const Node& node) {
+ int n = node.id;
+
+ if(nodes[n].next != -1) {
+ nodes[nodes[n].next].prev = nodes[n].prev;
+ }
+
+ if(nodes[n].prev != -1) {
+ nodes[nodes[n].prev].next = nodes[n].next;
+ } else {
+ first_node = nodes[n].next;
+ }
+
+ nodes[n].next = first_free_node;
+ first_free_node = n;
+ nodes[n].prev = -2;
+
+ }
+
+ void erase(const Arc& arc) {
+ int n = arc.id;
+
+ if(arcs[n].next_in!=-1) {
+ arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
+ }
+
+ if(arcs[n].prev_in!=-1) {
+ arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
+ } else {
+ nodes[arcs[n].target].first_in = arcs[n].next_in;
+ }
+
+
+ if(arcs[n].next_out!=-1) {
+ arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
+ }
+
+ if(arcs[n].prev_out!=-1) {
+ arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
+ } else {
+ nodes[arcs[n].source].first_out = arcs[n].next_out;
+ }
+
+ arcs[n].next_in = first_free_arc;
+ first_free_arc = n;
+ arcs[n].prev_in = -2;
+ }
+
+ void clear() {
+ arcs.clear();
+ nodes.clear();
+ first_node = first_free_node = first_free_arc = -1;
+ }
+
+ protected:
+ void changeTarget(Arc e, Node n)
+ {
+ if(arcs[e.id].next_in != -1)
+ arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
+ if(arcs[e.id].prev_in != -1)
+ arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
+ else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
+ if (nodes[n.id].first_in != -1) {
+ arcs[nodes[n.id].first_in].prev_in = e.id;
+ }
+ arcs[e.id].target = n.id;
+ arcs[e.id].prev_in = -1;
+ arcs[e.id].next_in = nodes[n.id].first_in;
+ nodes[n.id].first_in = e.id;
+ }
+ void changeSource(Arc e, Node n)
+ {
+ if(arcs[e.id].next_out != -1)
+ arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
+ if(arcs[e.id].prev_out != -1)
+ arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
+ else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
+ if (nodes[n.id].first_out != -1) {
+ arcs[nodes[n.id].first_out].prev_out = e.id;
+ }
+ arcs[e.id].source = n.id;
+ arcs[e.id].prev_out = -1;
+ arcs[e.id].next_out = nodes[n.id].first_out;
+ nodes[n.id].first_out = e.id;
+ }
+
+ };
+
+ typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
+
+ /// \addtogroup graphs
+ /// @{
+
+ ///A general directed graph structure.
+
+ ///\ref ListDigraph is a versatile and fast directed graph
+ ///implementation based on linked lists that are stored in
+ ///\c std::vector structures.
+ ///
+ ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
+ ///and it also provides several useful additional functionalities.
+ ///Most of its member functions and nested classes are documented
+ ///only in the concept class.
+ ///
+ ///This class provides only linear time counting for nodes and arcs.
+ ///
+ ///\sa concepts::Digraph
+ ///\sa ListGraph
+ class ListDigraph : public ExtendedListDigraphBase {
+ typedef ExtendedListDigraphBase Parent;
+
+ private:
+ /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
+ ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
+ /// \brief Assignment of a digraph to another one is \e not allowed.
+ /// Use DigraphCopy instead.
+ void operator=(const ListDigraph &) {}
+ public:
+
+ /// Constructor
+
+ /// Constructor.
+ ///
+ ListDigraph() {}
+
+ ///Add a new node to the digraph.
+
+ ///This function adds a new node to the digraph.
+ ///\return The new node.
+ Node addNode() { return Parent::addNode(); }
+
+ ///Add a new arc to the digraph.
+
+ ///This function adds a new arc to the digraph with source node \c s
+ ///and target node \c t.
+ ///\return The new arc.
+ Arc addArc(Node s, Node t) {
+ return Parent::addArc(s, t);
+ }
+
+ ///\brief Erase a node from the digraph.
+ ///
+ ///This function erases the given node along with its outgoing and
+ ///incoming arcs from the digraph.
+ ///
+ ///\note All iterators referencing the removed node or the connected
+ ///arcs are invalidated, of course.
+ void erase(Node n) { Parent::erase(n); }
+
+ ///\brief Erase an arc from the digraph.
+ ///
+ ///This function erases the given arc from the digraph.
+ ///
+ ///\note All iterators referencing the removed arc are invalidated,
+ ///of course.
+ void erase(Arc a) { Parent::erase(a); }
+
+ /// Node validity check
+
+ /// This function gives back \c true if the given node is valid,
+ /// i.e. it is a real node of the digraph.
+ ///
+ /// \warning A removed node could become valid again if new nodes are
+ /// added to the digraph.
+ bool valid(Node n) const { return Parent::valid(n); }
+
+ /// Arc validity check
+
+ /// This function gives back \c true if the given arc is valid,
+ /// i.e. it is a real arc of the digraph.
+ ///
+ /// \warning A removed arc could become valid again if new arcs are
+ /// added to the digraph.
+ bool valid(Arc a) const { return Parent::valid(a); }
+
+ /// Change the target node of an arc
+
+ /// This function changes the target node of the given arc \c a to \c n.
+ ///
+ ///\note \c ArcIt and \c OutArcIt iterators referencing the changed
+ ///arc remain valid, but \c InArcIt iterators are invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the Snapshot
+ ///feature.
+ void changeTarget(Arc a, Node n) {
+ Parent::changeTarget(a,n);
+ }
+ /// Change the source node of an arc
+
+ /// This function changes the source node of the given arc \c a to \c n.
+ ///
+ ///\note \c InArcIt iterators referencing the changed arc remain
+ ///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the Snapshot
+ ///feature.
+ void changeSource(Arc a, Node n) {
+ Parent::changeSource(a,n);
+ }
+
+ /// Reverse the direction of an arc.
+
+ /// This function reverses the direction of the given arc.
+ ///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
+ ///the changed arc are invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the Snapshot
+ ///feature.
+ void reverseArc(Arc a) {
+ Node t=target(a);
+ changeTarget(a,source(a));
+ changeSource(a,t);
+ }
+
+ ///Contract two nodes.
+
+ ///This function contracts the given two nodes.
+ ///Node \c v is removed, but instead of deleting its
+ ///incident arcs, they are joined to node \c u.
+ ///If the last parameter \c r is \c true (this is the default value),
+ ///then the newly created loops are removed.
+ ///
+ ///\note The moved arcs are joined to node \c u using changeSource()
+ ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
+ ///invalidated for the outgoing arcs of node \c v and \c InArcIt
+ ///iterators are invalidated for the incoming arcs of \c v.
+ ///Moreover all iterators referencing node \c v or the removed
+ ///loops are also invalidated. Other iterators remain valid.
+ ///
+ ///\warning This functionality cannot be used together with the Snapshot
+ ///feature.
+ void contract(Node u, Node v, bool r = true)
+ {
+ for(OutArcIt e(*this,v);e!=INVALID;) {
+ OutArcIt f=e;
+ ++f;
+ if(r && target(e)==u) erase(e);
+ else changeSource(e,u);
+ e=f;
+ }
+ for(InArcIt e(*this,v);e!=INVALID;) {
+ InArcIt f=e;
+ ++f;
+ if(r && source(e)==u) erase(e);
+ else changeTarget(e,u);
+ e=f;
+ }
+ erase(v);
+ }
+
+ ///Split a node.
+
+ ///This function splits the given node. First, a new node is added
+ ///to the digraph, then the source of each outgoing arc of node \c n
+ ///is moved to this new node.
+ ///If the second parameter \c connect is \c true (this is the default
+ ///value), then a new arc from node \c n to the newly created node
+ ///is also added.
+ ///\return The newly created node.
+ ///
+ ///\note All iterators remain valid.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ Node split(Node n, bool connect = true) {
+ Node b = addNode();
+ nodes[b.id].first_out=nodes[n.id].first_out;
+ nodes[n.id].first_out=-1;
+ for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
+ arcs[i].source=b.id;
+ }
+ if (connect) addArc(n,b);
+ return b;
+ }
+
+ ///Split an arc.
+
+ ///This function splits the given arc. First, a new node \c v is
+ ///added to the digraph, then the target node of the original arc
+ ///is set to \c v. Finally, an arc from \c v to the original target
+ ///is added.
+ ///\return The newly created node.
+ ///
+ ///\note \c InArcIt iterators referencing the original arc are
+ ///invalidated. Other iterators remain valid.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ Node split(Arc a) {
+ Node v = addNode();
+ addArc(v,target(a));
+ changeTarget(a,v);
+ return v;
+ }
+
+ ///Clear the digraph.
+
+ ///This function erases all nodes and arcs from the digraph.
+ ///
+ ///\note All iterators of the digraph are invalidated, of course.
+ void clear() {
+ Parent::clear();
+ }
+
+ /// Reserve memory for nodes.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the digraph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or arcs),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the digraph.
+ /// \sa reserveArc()
+ void reserveNode(int n) { nodes.reserve(n); };
+
+ /// Reserve memory for arcs.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the digraph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or arcs),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the digraph.
+ /// \sa reserveNode()
+ void reserveArc(int m) { arcs.reserve(m); };
+
+ /// \brief Class to make a snapshot of the digraph and restore
+ /// it later.
+ ///
+ /// Class to make a snapshot of the digraph and restore it later.
+ ///
+ /// The newly added nodes and arcs can be removed using the
+ /// restore() function.
+ ///
+ /// \note After a state is restored, you cannot restore a later state,
+ /// i.e. you cannot add the removed nodes and arcs again using
+ /// another Snapshot instance.
+ ///
+ /// \warning Node and arc deletions and other modifications (e.g.
+ /// reversing, contracting, splitting arcs or nodes) cannot be
+ /// restored. These events invalidate the snapshot.
+ /// However, the arcs and nodes that were added to the digraph after
+ /// making the current snapshot can be removed without invalidating it.
+ class Snapshot {
+ protected:
+
+ typedef Parent::NodeNotifier NodeNotifier;
+
+ class NodeObserverProxy : public NodeNotifier::ObserverBase {
+ public:
+
+ NodeObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using NodeNotifier::ObserverBase::attach;
+ using NodeNotifier::ObserverBase::detach;
+ using NodeNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Node& node) {
+ snapshot.addNode(node);
+ }
+ virtual void add(const std::vector<Node>& nodes) {
+ for (int i = nodes.size() - 1; i >= 0; ++i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void erase(const Node& node) {
+ snapshot.eraseNode(node);
+ }
+ virtual void erase(const std::vector<Node>& nodes) {
+ for (int i = 0; i < int(nodes.size()); ++i) {
+ snapshot.eraseNode(nodes[i]);
+ }
+ }
+ virtual void build() {
+ Node node;
+ std::vector<Node> nodes;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ nodes.push_back(node);
+ }
+ for (int i = nodes.size() - 1; i >= 0; --i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void clear() {
+ Node node;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ snapshot.eraseNode(node);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ class ArcObserverProxy : public ArcNotifier::ObserverBase {
+ public:
+
+ ArcObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using ArcNotifier::ObserverBase::attach;
+ using ArcNotifier::ObserverBase::detach;
+ using ArcNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Arc& arc) {
+ snapshot.addArc(arc);
+ }
+ virtual void add(const std::vector<Arc>& arcs) {
+ for (int i = arcs.size() - 1; i >= 0; ++i) {
+ snapshot.addArc(arcs[i]);
+ }
+ }
+ virtual void erase(const Arc& arc) {
+ snapshot.eraseArc(arc);
+ }
+ virtual void erase(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ snapshot.eraseArc(arcs[i]);
+ }
+ }
+ virtual void build() {
+ Arc arc;
+ std::vector<Arc> arcs;
+ for (notifier()->first(arc); arc != INVALID;
+ notifier()->next(arc)) {
+ arcs.push_back(arc);
+ }
+ for (int i = arcs.size() - 1; i >= 0; --i) {
+ snapshot.addArc(arcs[i]);
+ }
+ }
+ virtual void clear() {
+ Arc arc;
+ for (notifier()->first(arc); arc != INVALID;
+ notifier()->next(arc)) {
+ snapshot.eraseArc(arc);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ ListDigraph *digraph;
+
+ NodeObserverProxy node_observer_proxy;
+ ArcObserverProxy arc_observer_proxy;
+
+ std::list<Node> added_nodes;
+ std::list<Arc> added_arcs;
+
+
+ void addNode(const Node& node) {
+ added_nodes.push_front(node);
+ }
+ void eraseNode(const Node& node) {
+ std::list<Node>::iterator it =
+ std::find(added_nodes.begin(), added_nodes.end(), node);
+ if (it == added_nodes.end()) {
+ clear();
+ arc_observer_proxy.detach();
+ throw NodeNotifier::ImmediateDetach();
+ } else {
+ added_nodes.erase(it);
+ }
+ }
+
+ void addArc(const Arc& arc) {
+ added_arcs.push_front(arc);
+ }
+ void eraseArc(const Arc& arc) {
+ std::list<Arc>::iterator it =
+ std::find(added_arcs.begin(), added_arcs.end(), arc);
+ if (it == added_arcs.end()) {
+ clear();
+ node_observer_proxy.detach();
+ throw ArcNotifier::ImmediateDetach();
+ } else {
+ added_arcs.erase(it);
+ }
+ }
+
+ void attach(ListDigraph &_digraph) {
+ digraph = &_digraph;
+ node_observer_proxy.attach(digraph->notifier(Node()));
+ arc_observer_proxy.attach(digraph->notifier(Arc()));
+ }
+
+ void detach() {
+ node_observer_proxy.detach();
+ arc_observer_proxy.detach();
+ }
+
+ bool attached() const {
+ return node_observer_proxy.attached();
+ }
+
+ void clear() {
+ added_nodes.clear();
+ added_arcs.clear();
+ }
+
+ public:
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor.
+ /// You have to call save() to actually make a snapshot.
+ Snapshot()
+ : digraph(0), node_observer_proxy(*this),
+ arc_observer_proxy(*this) {}
+
+ /// \brief Constructor that immediately makes a snapshot.
+ ///
+ /// This constructor immediately makes a snapshot of the given digraph.
+ Snapshot(ListDigraph &gr)
+ : node_observer_proxy(*this),
+ arc_observer_proxy(*this) {
+ attach(gr);
+ }
+
+ /// \brief Make a snapshot.
+ ///
+ /// This function makes a snapshot of the given digraph.
+ /// It can be called more than once. In case of a repeated
+ /// call, the previous snapshot gets lost.
+ void save(ListDigraph &gr) {
+ if (attached()) {
+ detach();
+ clear();
+ }
+ attach(gr);
+ }
+
+ /// \brief Undo the changes until the last snapshot.
+ ///
+ /// This function undos the changes until the last snapshot
+ /// created by save() or Snapshot(ListDigraph&).
+ ///
+ /// \warning This method invalidates the snapshot, i.e. repeated
+ /// restoring is not supported unless you call save() again.
+ void restore() {
+ detach();
+ for(std::list<Arc>::iterator it = added_arcs.begin();
+ it != added_arcs.end(); ++it) {
+ digraph->erase(*it);
+ }
+ for(std::list<Node>::iterator it = added_nodes.begin();
+ it != added_nodes.end(); ++it) {
+ digraph->erase(*it);
+ }
+ clear();
+ }
+
+ /// \brief Returns \c true if the snapshot is valid.
+ ///
+ /// This function returns \c true if the snapshot is valid.
+ bool valid() const {
+ return attached();
+ }
+ };
+
+ };
+
+ ///@}
+
+ class ListGraphBase {
+
+ protected:
+
+ struct NodeT {
+ int first_out;
+ int prev, next;
+ };
+
+ struct ArcT {
+ int target;
+ int prev_out, next_out;
+ };
+
+ std::vector<NodeT> nodes;
+
+ int first_node;
+
+ int first_free_node;
+
+ std::vector<ArcT> arcs;
+
+ int first_free_arc;
+
+ public:
+
+ typedef ListGraphBase Graph;
+
+ class Node {
+ friend class ListGraphBase;
+ protected:
+
+ int id;
+ explicit Node(int pid) { id = pid;}
+
+ public:
+ Node() {}
+ Node (Invalid) { id = -1; }
+ bool operator==(const Node& node) const {return id == node.id;}
+ bool operator!=(const Node& node) const {return id != node.id;}
+ bool operator<(const Node& node) const {return id < node.id;}
+ };
+
+ class Edge {
+ friend class ListGraphBase;
+ protected:
+
+ int id;
+ explicit Edge(int pid) { id = pid;}
+
+ public:
+ Edge() {}
+ Edge (Invalid) { id = -1; }
+ bool operator==(const Edge& edge) const {return id == edge.id;}
+ bool operator!=(const Edge& edge) const {return id != edge.id;}
+ bool operator<(const Edge& edge) const {return id < edge.id;}
+ };
+
+ class Arc {
+ friend class ListGraphBase;
+ protected:
+
+ int id;
+ explicit Arc(int pid) { id = pid;}
+
+ public:
+ operator Edge() const {
+ return id != -1 ? edgeFromId(id / 2) : INVALID;
+ }
+
+ Arc() {}
+ Arc (Invalid) { id = -1; }
+ bool operator==(const Arc& arc) const {return id == arc.id;}
+ bool operator!=(const Arc& arc) const {return id != arc.id;}
+ bool operator<(const Arc& arc) const {return id < arc.id;}
+ };
+
+ ListGraphBase()
+ : nodes(), first_node(-1),
+ first_free_node(-1), arcs(), first_free_arc(-1) {}
+
+
+ int maxNodeId() const { return nodes.size()-1; }
+ int maxEdgeId() const { return arcs.size() / 2 - 1; }
+ int maxArcId() const { return arcs.size()-1; }
+
+ Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
+ Node target(Arc e) const { return Node(arcs[e.id].target); }
+
+ Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
+ Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
+
+ static bool direction(Arc e) {
+ return (e.id & 1) == 1;
+ }
+
+ static Arc direct(Edge e, bool d) {
+ return Arc(e.id * 2 + (d ? 1 : 0));
+ }
+
+ void first(Node& node) const {
+ node.id = first_node;
+ }
+
+ void next(Node& node) const {
+ node.id = nodes[node.id].next;
+ }
+
+ void first(Arc& e) const {
+ int n = first_node;
+ while (n != -1 && nodes[n].first_out == -1) {
+ n = nodes[n].next;
+ }
+ e.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+
+ void next(Arc& e) const {
+ if (arcs[e.id].next_out != -1) {
+ e.id = arcs[e.id].next_out;
+ } else {
+ int n = nodes[arcs[e.id ^ 1].target].next;
+ while(n != -1 && nodes[n].first_out == -1) {
+ n = nodes[n].next;
+ }
+ e.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+ }
+
+ void first(Edge& e) const {
+ int n = first_node;
+ while (n != -1) {
+ e.id = nodes[n].first_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ }
+ e.id = -1;
+ }
+
+ void next(Edge& e) const {
+ int n = arcs[e.id * 2].target;
+ e.id = arcs[(e.id * 2) | 1].next_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ while (n != -1) {
+ e.id = nodes[n].first_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ }
+ e.id = -1;
+ }
+
+ void firstOut(Arc &e, const Node& v) const {
+ e.id = nodes[v.id].first_out;
+ }
+ void nextOut(Arc &e) const {
+ e.id = arcs[e.id].next_out;
+ }
+
+ void firstIn(Arc &e, const Node& v) const {
+ e.id = ((nodes[v.id].first_out) ^ 1);
+ if (e.id == -2) e.id = -1;
+ }
+ void nextIn(Arc &e) const {
+ e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
+ if (e.id == -2) e.id = -1;
+ }
+
+ void firstInc(Edge &e, bool& d, const Node& v) const {
+ int a = nodes[v.id].first_out;
+ if (a != -1 ) {
+ e.id = a / 2;
+ d = ((a & 1) == 1);
+ } else {
+ e.id = -1;
+ d = true;
+ }
+ }
+ void nextInc(Edge &e, bool& d) const {
+ int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
+ if (a != -1 ) {
+ e.id = a / 2;
+ d = ((a & 1) == 1);
+ } else {
+ e.id = -1;
+ d = true;
+ }
+ }
+
+ static int id(Node v) { return v.id; }
+ static int id(Arc e) { return e.id; }
+ static int id(Edge e) { return e.id; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+ static Edge edgeFromId(int id) { return Edge(id);}
+
+ bool valid(Node n) const {
+ return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
+ nodes[n.id].prev != -2;
+ }
+
+ bool valid(Arc a) const {
+ return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
+ arcs[a.id].prev_out != -2;
+ }
+
+ bool valid(Edge e) const {
+ return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
+ arcs[2 * e.id].prev_out != -2;
+ }
+
+ Node addNode() {
+ int n;
+
+ if(first_free_node==-1) {
+ n = nodes.size();
+ nodes.push_back(NodeT());
+ } else {
+ n = first_free_node;
+ first_free_node = nodes[n].next;
+ }
+
+ nodes[n].next = first_node;
+ if (first_node != -1) nodes[first_node].prev = n;
+ first_node = n;
+ nodes[n].prev = -1;
+
+ nodes[n].first_out = -1;
+
+ return Node(n);
+ }
+
+ Edge addEdge(Node u, Node v) {
+ int n;
+
+ if (first_free_arc == -1) {
+ n = arcs.size();
+ arcs.push_back(ArcT());
+ arcs.push_back(ArcT());
+ } else {
+ n = first_free_arc;
+ first_free_arc = arcs[n].next_out;
+ }
+
+ arcs[n].target = u.id;
+ arcs[n | 1].target = v.id;
+
+ arcs[n].next_out = nodes[v.id].first_out;
+ if (nodes[v.id].first_out != -1) {
+ arcs[nodes[v.id].first_out].prev_out = n;
+ }
+ arcs[n].prev_out = -1;
+ nodes[v.id].first_out = n;
+
+ arcs[n | 1].next_out = nodes[u.id].first_out;
+ if (nodes[u.id].first_out != -1) {
+ arcs[nodes[u.id].first_out].prev_out = (n | 1);
+ }
+ arcs[n | 1].prev_out = -1;
+ nodes[u.id].first_out = (n | 1);
+
+ return Edge(n / 2);
+ }
+
+ void erase(const Node& node) {
+ int n = node.id;
+
+ if(nodes[n].next != -1) {
+ nodes[nodes[n].next].prev = nodes[n].prev;
+ }
+
+ if(nodes[n].prev != -1) {
+ nodes[nodes[n].prev].next = nodes[n].next;
+ } else {
+ first_node = nodes[n].next;
+ }
+
+ nodes[n].next = first_free_node;
+ first_free_node = n;
+ nodes[n].prev = -2;
+ }
+
+ void erase(const Edge& edge) {
+ int n = edge.id * 2;
+
+ if (arcs[n].next_out != -1) {
+ arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
+ }
+
+ if (arcs[n].prev_out != -1) {
+ arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
+ } else {
+ nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
+ }
+
+ if (arcs[n | 1].next_out != -1) {
+ arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
+ }
+
+ if (arcs[n | 1].prev_out != -1) {
+ arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
+ } else {
+ nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
+ }
+
+ arcs[n].next_out = first_free_arc;
+ first_free_arc = n;
+ arcs[n].prev_out = -2;
+ arcs[n | 1].prev_out = -2;
+
+ }
+
+ void clear() {
+ arcs.clear();
+ nodes.clear();
+ first_node = first_free_node = first_free_arc = -1;
+ }
+
+ protected:
+
+ void changeV(Edge e, Node n) {
+ if(arcs[2 * e.id].next_out != -1) {
+ arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
+ }
+ if(arcs[2 * e.id].prev_out != -1) {
+ arcs[arcs[2 * e.id].prev_out].next_out =
+ arcs[2 * e.id].next_out;
+ } else {
+ nodes[arcs[(2 * e.id) | 1].target].first_out =
+ arcs[2 * e.id].next_out;
+ }
+
+ if (nodes[n.id].first_out != -1) {
+ arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
+ }
+ arcs[(2 * e.id) | 1].target = n.id;
+ arcs[2 * e.id].prev_out = -1;
+ arcs[2 * e.id].next_out = nodes[n.id].first_out;
+ nodes[n.id].first_out = 2 * e.id;
+ }
+
+ void changeU(Edge e, Node n) {
+ if(arcs[(2 * e.id) | 1].next_out != -1) {
+ arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
+ arcs[(2 * e.id) | 1].prev_out;
+ }
+ if(arcs[(2 * e.id) | 1].prev_out != -1) {
+ arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
+ arcs[(2 * e.id) | 1].next_out;
+ } else {
+ nodes[arcs[2 * e.id].target].first_out =
+ arcs[(2 * e.id) | 1].next_out;
+ }
+
+ if (nodes[n.id].first_out != -1) {
+ arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
+ }
+ arcs[2 * e.id].target = n.id;
+ arcs[(2 * e.id) | 1].prev_out = -1;
+ arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
+ nodes[n.id].first_out = ((2 * e.id) | 1);
+ }
+
+ };
+
+ typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
+
+
+ /// \addtogroup graphs
+ /// @{
+
+ ///A general undirected graph structure.
+
+ ///\ref ListGraph is a versatile and fast undirected graph
+ ///implementation based on linked lists that are stored in
+ ///\c std::vector structures.
+ ///
+ ///This type fully conforms to the \ref concepts::Graph "Graph concept"
+ ///and it also provides several useful additional functionalities.
+ ///Most of its member functions and nested classes are documented
+ ///only in the concept class.
+ ///
+ ///This class provides only linear time counting for nodes, edges and arcs.
+ ///
+ ///\sa concepts::Graph
+ ///\sa ListDigraph
+ class ListGraph : public ExtendedListGraphBase {
+ typedef ExtendedListGraphBase Parent;
+
+ private:
+ /// Graphs are \e not copy constructible. Use GraphCopy instead.
+ ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
+ /// \brief Assignment of a graph to another one is \e not allowed.
+ /// Use GraphCopy instead.
+ void operator=(const ListGraph &) {}
+ public:
+ /// Constructor
+
+ /// Constructor.
+ ///
+ ListGraph() {}
+
+ typedef Parent::OutArcIt IncEdgeIt;
+
+ /// \brief Add a new node to the graph.
+ ///
+ /// This function adds a new node to the graph.
+ /// \return The new node.
+ Node addNode() { return Parent::addNode(); }
+
+ /// \brief Add a new edge to the graph.
+ ///
+ /// This function adds a new edge to the graph between nodes
+ /// \c u and \c v with inherent orientation from node \c u to
+ /// node \c v.
+ /// \return The new edge.
+ Edge addEdge(Node u, Node v) {
+ return Parent::addEdge(u, v);
+ }
+
+ ///\brief Erase a node from the graph.
+ ///
+ /// This function erases the given node along with its incident arcs
+ /// from the graph.
+ ///
+ /// \note All iterators referencing the removed node or the incident
+ /// edges are invalidated, of course.
+ void erase(Node n) { Parent::erase(n); }
+
+ ///\brief Erase an edge from the graph.
+ ///
+ /// This function erases the given edge from the graph.
+ ///
+ /// \note All iterators referencing the removed edge are invalidated,
+ /// of course.
+ void erase(Edge e) { Parent::erase(e); }
+ /// Node validity check
+
+ /// This function gives back \c true if the given node is valid,
+ /// i.e. it is a real node of the graph.
+ ///
+ /// \warning A removed node could become valid again if new nodes are
+ /// added to the graph.
+ bool valid(Node n) const { return Parent::valid(n); }
+ /// Edge validity check
+
+ /// This function gives back \c true if the given edge is valid,
+ /// i.e. it is a real edge of the graph.
+ ///
+ /// \warning A removed edge could become valid again if new edges are
+ /// added to the graph.
+ bool valid(Edge e) const { return Parent::valid(e); }
+ /// Arc validity check
+
+ /// This function gives back \c true if the given arc is valid,
+ /// i.e. it is a real arc of the graph.
+ ///
+ /// \warning A removed arc could become valid again if new edges are
+ /// added to the graph.
+ bool valid(Arc a) const { return Parent::valid(a); }
+
+ /// \brief Change the first node of an edge.
+ ///
+ /// This function changes the first node of the given edge \c e to \c n.
+ ///
+ ///\note \c EdgeIt and \c ArcIt iterators referencing the
+ ///changed edge are invalidated and all other iterators whose
+ ///base node is the changed node are also invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ void changeU(Edge e, Node n) {
+ Parent::changeU(e,n);
+ }
+ /// \brief Change the second node of an edge.
+ ///
+ /// This function changes the second node of the given edge \c e to \c n.
+ ///
+ ///\note \c EdgeIt iterators referencing the changed edge remain
+ ///valid, but \c ArcIt iterators referencing the changed edge and
+ ///all other iterators whose base node is the changed node are also
+ ///invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ void changeV(Edge e, Node n) {
+ Parent::changeV(e,n);
+ }
+
+ /// \brief Contract two nodes.
+ ///
+ /// This function contracts the given two nodes.
+ /// Node \c b is removed, but instead of deleting
+ /// its incident edges, they are joined to node \c a.
+ /// If the last parameter \c r is \c true (this is the default value),
+ /// then the newly created loops are removed.
+ ///
+ /// \note The moved edges are joined to node \c a using changeU()
+ /// or changeV(), thus all edge and arc iterators whose base node is
+ /// \c b are invalidated.
+ /// Moreover all iterators referencing node \c b or the removed
+ /// loops are also invalidated. Other iterators remain valid.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ void contract(Node a, Node b, bool r = true) {
+ for(IncEdgeIt e(*this, b); e!=INVALID;) {
+ IncEdgeIt f = e; ++f;
+ if (r && runningNode(e) == a) {
+ erase(e);
+ } else if (u(e) == b) {
+ changeU(e, a);
+ } else {
+ changeV(e, a);
+ }
+ e = f;
+ }
+ erase(b);
+ }
+
+ ///Clear the graph.
+
+ ///This function erases all nodes and arcs from the graph.
+ ///
+ ///\note All iterators of the graph are invalidated, of course.
+ void clear() {
+ Parent::clear();
+ }
+
+ /// Reserve memory for nodes.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the graph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or edges),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the graph.
+ /// \sa reserveEdge()
+ void reserveNode(int n) { nodes.reserve(n); };
+
+ /// Reserve memory for edges.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the graph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or edges),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the graph.
+ /// \sa reserveNode()
+ void reserveEdge(int m) { arcs.reserve(2 * m); };
+
+ /// \brief Class to make a snapshot of the graph and restore
+ /// it later.
+ ///
+ /// Class to make a snapshot of the graph and restore it later.
+ ///
+ /// The newly added nodes and edges can be removed
+ /// using the restore() function.
+ ///
+ /// \note After a state is restored, you cannot restore a later state,
+ /// i.e. you cannot add the removed nodes and edges again using
+ /// another Snapshot instance.
+ ///
+ /// \warning Node and edge deletions and other modifications
+ /// (e.g. changing the end-nodes of edges or contracting nodes)
+ /// cannot be restored. These events invalidate the snapshot.
+ /// However, the edges and nodes that were added to the graph after
+ /// making the current snapshot can be removed without invalidating it.
+ class Snapshot {
+ protected:
+
+ typedef Parent::NodeNotifier NodeNotifier;
+
+ class NodeObserverProxy : public NodeNotifier::ObserverBase {
+ public:
+
+ NodeObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using NodeNotifier::ObserverBase::attach;
+ using NodeNotifier::ObserverBase::detach;
+ using NodeNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Node& node) {
+ snapshot.addNode(node);
+ }
+ virtual void add(const std::vector<Node>& nodes) {
+ for (int i = nodes.size() - 1; i >= 0; ++i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void erase(const Node& node) {
+ snapshot.eraseNode(node);
+ }
+ virtual void erase(const std::vector<Node>& nodes) {
+ for (int i = 0; i < int(nodes.size()); ++i) {
+ snapshot.eraseNode(nodes[i]);
+ }
+ }
+ virtual void build() {
+ Node node;
+ std::vector<Node> nodes;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ nodes.push_back(node);
+ }
+ for (int i = nodes.size() - 1; i >= 0; --i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void clear() {
+ Node node;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ snapshot.eraseNode(node);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
+ public:
+
+ EdgeObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using EdgeNotifier::ObserverBase::attach;
+ using EdgeNotifier::ObserverBase::detach;
+ using EdgeNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Edge& edge) {
+ snapshot.addEdge(edge);
+ }
+ virtual void add(const std::vector<Edge>& edges) {
+ for (int i = edges.size() - 1; i >= 0; ++i) {
+ snapshot.addEdge(edges[i]);
+ }
+ }
+ virtual void erase(const Edge& edge) {
+ snapshot.eraseEdge(edge);
+ }
+ virtual void erase(const std::vector<Edge>& edges) {
+ for (int i = 0; i < int(edges.size()); ++i) {
+ snapshot.eraseEdge(edges[i]);
+ }
+ }
+ virtual void build() {
+ Edge edge;
+ std::vector<Edge> edges;
+ for (notifier()->first(edge); edge != INVALID;
+ notifier()->next(edge)) {
+ edges.push_back(edge);
+ }
+ for (int i = edges.size() - 1; i >= 0; --i) {
+ snapshot.addEdge(edges[i]);
+ }
+ }
+ virtual void clear() {
+ Edge edge;
+ for (notifier()->first(edge); edge != INVALID;
+ notifier()->next(edge)) {
+ snapshot.eraseEdge(edge);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ ListGraph *graph;
+
+ NodeObserverProxy node_observer_proxy;
+ EdgeObserverProxy edge_observer_proxy;
+
+ std::list<Node> added_nodes;
+ std::list<Edge> added_edges;
+
+
+ void addNode(const Node& node) {
+ added_nodes.push_front(node);
+ }
+ void eraseNode(const Node& node) {
+ std::list<Node>::iterator it =
+ std::find(added_nodes.begin(), added_nodes.end(), node);
+ if (it == added_nodes.end()) {
+ clear();
+ edge_observer_proxy.detach();
+ throw NodeNotifier::ImmediateDetach();
+ } else {
+ added_nodes.erase(it);
+ }
+ }
+
+ void addEdge(const Edge& edge) {
+ added_edges.push_front(edge);
+ }
+ void eraseEdge(const Edge& edge) {
+ std::list<Edge>::iterator it =
+ std::find(added_edges.begin(), added_edges.end(), edge);
+ if (it == added_edges.end()) {
+ clear();
+ node_observer_proxy.detach();
+ throw EdgeNotifier::ImmediateDetach();
+ } else {
+ added_edges.erase(it);
+ }
+ }
+
+ void attach(ListGraph &_graph) {
+ graph = &_graph;
+ node_observer_proxy.attach(graph->notifier(Node()));
+ edge_observer_proxy.attach(graph->notifier(Edge()));
+ }
+
+ void detach() {
+ node_observer_proxy.detach();
+ edge_observer_proxy.detach();
+ }
+
+ bool attached() const {
+ return node_observer_proxy.attached();
+ }
+
+ void clear() {
+ added_nodes.clear();
+ added_edges.clear();
+ }
+
+ public:
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor.
+ /// You have to call save() to actually make a snapshot.
+ Snapshot()
+ : graph(0), node_observer_proxy(*this),
+ edge_observer_proxy(*this) {}
+
+ /// \brief Constructor that immediately makes a snapshot.
+ ///
+ /// This constructor immediately makes a snapshot of the given graph.
+ Snapshot(ListGraph &gr)
+ : node_observer_proxy(*this),
+ edge_observer_proxy(*this) {
+ attach(gr);
+ }
+
+ /// \brief Make a snapshot.
+ ///
+ /// This function makes a snapshot of the given graph.
+ /// It can be called more than once. In case of a repeated
+ /// call, the previous snapshot gets lost.
+ void save(ListGraph &gr) {
+ if (attached()) {
+ detach();
+ clear();
+ }
+ attach(gr);
+ }
+
+ /// \brief Undo the changes until the last snapshot.
+ ///
+ /// This function undos the changes until the last snapshot
+ /// created by save() or Snapshot(ListGraph&).
+ ///
+ /// \warning This method invalidates the snapshot, i.e. repeated
+ /// restoring is not supported unless you call save() again.
+ void restore() {
+ detach();
+ for(std::list<Edge>::iterator it = added_edges.begin();
+ it != added_edges.end(); ++it) {
+ graph->erase(*it);
+ }
+ for(std::list<Node>::iterator it = added_nodes.begin();
+ it != added_nodes.end(); ++it) {
+ graph->erase(*it);
+ }
+ clear();
+ }
+
+ /// \brief Returns \c true if the snapshot is valid.
+ ///
+ /// This function returns \c true if the snapshot is valid.
+ bool valid() const {
+ return attached();
+ }
+ };
+ };
+
+ /// @}
+
+ class ListBpGraphBase {
+
+ protected:
+
+ struct NodeT {
+ int first_out;
+ int prev, next;
+ int partition_prev, partition_next;
+ int partition_index;
+ bool red;
+ };
+
+ struct ArcT {
+ int target;
+ int prev_out, next_out;
+ };
+
+ std::vector<NodeT> nodes;
+
+ int first_node, first_red, first_blue;
+ int max_red, max_blue;
+
+ int first_free_red, first_free_blue;
+
+ std::vector<ArcT> arcs;
+
+ int first_free_arc;
+
+ public:
+
+ typedef ListBpGraphBase BpGraph;
+
+ class Node {
+ friend class ListBpGraphBase;
+ protected:
+
+ int id;
+ explicit Node(int pid) { id = pid;}
+
+ public:
+ Node() {}
+ Node (Invalid) { id = -1; }
+ bool operator==(const Node& node) const {return id == node.id;}
+ bool operator!=(const Node& node) const {return id != node.id;}
+ bool operator<(const Node& node) const {return id < node.id;}
+ };
+
+ class RedNode : public Node {
+ friend class ListBpGraphBase;
+ protected:
+
+ explicit RedNode(int pid) : Node(pid) {}
+
+ public:
+ RedNode() {}
+ RedNode(const RedNode& node) : Node(node) {}
+ RedNode(Invalid) : Node(INVALID){}
+ };
+
+ class BlueNode : public Node {
+ friend class ListBpGraphBase;
+ protected:
+
+ explicit BlueNode(int pid) : Node(pid) {}
+
+ public:
+ BlueNode() {}
+ BlueNode(const BlueNode& node) : Node(node) {}
+ BlueNode(Invalid) : Node(INVALID){}
+ };
+
+ class Edge {
+ friend class ListBpGraphBase;
+ protected:
+
+ int id;
+ explicit Edge(int pid) { id = pid;}
+
+ public:
+ Edge() {}
+ Edge (Invalid) { id = -1; }
+ bool operator==(const Edge& edge) const {return id == edge.id;}
+ bool operator!=(const Edge& edge) const {return id != edge.id;}
+ bool operator<(const Edge& edge) const {return id < edge.id;}
+ };
+
+ class Arc {
+ friend class ListBpGraphBase;
+ protected:
+
+ int id;
+ explicit Arc(int pid) { id = pid;}
+
+ public:
+ operator Edge() const {
+ return id != -1 ? edgeFromId(id / 2) : INVALID;
+ }
+
+ Arc() {}
+ Arc (Invalid) { id = -1; }
+ bool operator==(const Arc& arc) const {return id == arc.id;}
+ bool operator!=(const Arc& arc) const {return id != arc.id;}
+ bool operator<(const Arc& arc) const {return id < arc.id;}
+ };
+
+ ListBpGraphBase()
+ : nodes(), first_node(-1),
+ first_red(-1), first_blue(-1),
+ max_red(-1), max_blue(-1),
+ first_free_red(-1), first_free_blue(-1),
+ arcs(), first_free_arc(-1) {}
+
+
+ bool red(Node n) const { return nodes[n.id].red; }
+ bool blue(Node n) const { return !nodes[n.id].red; }
+
+ static RedNode asRedNodeUnsafe(Node n) { return RedNode(n.id); }
+ static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n.id); }
+
+ int maxNodeId() const { return nodes.size()-1; }
+ int maxRedId() const { return max_red; }
+ int maxBlueId() const { return max_blue; }
+ int maxEdgeId() const { return arcs.size() / 2 - 1; }
+ int maxArcId() const { return arcs.size()-1; }
+
+ Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
+ Node target(Arc e) const { return Node(arcs[e.id].target); }
+
+ RedNode redNode(Edge e) const {
+ return RedNode(arcs[2 * e.id].target);
+ }
+ BlueNode blueNode(Edge e) const {
+ return BlueNode(arcs[2 * e.id + 1].target);
+ }
+
+ static bool direction(Arc e) {
+ return (e.id & 1) == 1;
+ }
+
+ static Arc direct(Edge e, bool d) {
+ return Arc(e.id * 2 + (d ? 1 : 0));
+ }
+
+ void first(Node& node) const {
+ node.id = first_node;
+ }
+
+ void next(Node& node) const {
+ node.id = nodes[node.id].next;
+ }
+
+ void first(RedNode& node) const {
+ node.id = first_red;
+ }
+
+ void next(RedNode& node) const {
+ node.id = nodes[node.id].partition_next;
+ }
+
+ void first(BlueNode& node) const {
+ node.id = first_blue;
+ }
+
+ void next(BlueNode& node) const {
+ node.id = nodes[node.id].partition_next;
+ }
+
+ void first(Arc& e) const {
+ int n = first_node;
+ while (n != -1 && nodes[n].first_out == -1) {
+ n = nodes[n].next;
+ }
+ e.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+
+ void next(Arc& e) const {
+ if (arcs[e.id].next_out != -1) {
+ e.id = arcs[e.id].next_out;
+ } else {
+ int n = nodes[arcs[e.id ^ 1].target].next;
+ while(n != -1 && nodes[n].first_out == -1) {
+ n = nodes[n].next;
+ }
+ e.id = (n == -1) ? -1 : nodes[n].first_out;
+ }
+ }
+
+ void first(Edge& e) const {
+ int n = first_node;
+ while (n != -1) {
+ e.id = nodes[n].first_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ }
+ e.id = -1;
+ }
+
+ void next(Edge& e) const {
+ int n = arcs[e.id * 2].target;
+ e.id = arcs[(e.id * 2) | 1].next_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ while (n != -1) {
+ e.id = nodes[n].first_out;
+ while ((e.id & 1) != 1) {
+ e.id = arcs[e.id].next_out;
+ }
+ if (e.id != -1) {
+ e.id /= 2;
+ return;
+ }
+ n = nodes[n].next;
+ }
+ e.id = -1;
+ }
+
+ void firstOut(Arc &e, const Node& v) const {
+ e.id = nodes[v.id].first_out;
+ }
+ void nextOut(Arc &e) const {
+ e.id = arcs[e.id].next_out;
+ }
+
+ void firstIn(Arc &e, const Node& v) const {
+ e.id = ((nodes[v.id].first_out) ^ 1);
+ if (e.id == -2) e.id = -1;
+ }
+ void nextIn(Arc &e) const {
+ e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
+ if (e.id == -2) e.id = -1;
+ }
+
+ void firstInc(Edge &e, bool& d, const Node& v) const {
+ int a = nodes[v.id].first_out;
+ if (a != -1 ) {
+ e.id = a / 2;
+ d = ((a & 1) == 1);
+ } else {
+ e.id = -1;
+ d = true;
+ }
+ }
+ void nextInc(Edge &e, bool& d) const {
+ int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
+ if (a != -1 ) {
+ e.id = a / 2;
+ d = ((a & 1) == 1);
+ } else {
+ e.id = -1;
+ d = true;
+ }
+ }
+
+ static int id(Node v) { return v.id; }
+ int id(RedNode v) const { return nodes[v.id].partition_index; }
+ int id(BlueNode v) const { return nodes[v.id].partition_index; }
+ static int id(Arc e) { return e.id; }
+ static int id(Edge e) { return e.id; }
+
+ static Node nodeFromId(int id) { return Node(id);}
+ static Arc arcFromId(int id) { return Arc(id);}
+ static Edge edgeFromId(int id) { return Edge(id);}
+
+ bool valid(Node n) const {
+ return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
+ nodes[n.id].prev != -2;
+ }
+
+ bool valid(Arc a) const {
+ return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
+ arcs[a.id].prev_out != -2;
+ }
+
+ bool valid(Edge e) const {
+ return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
+ arcs[2 * e.id].prev_out != -2;
+ }
+
+ RedNode addRedNode() {
+ int n;
+
+ if(first_free_red==-1) {
+ n = nodes.size();
+ nodes.push_back(NodeT());
+ nodes[n].partition_index = ++max_red;
+ nodes[n].red = true;
+ } else {
+ n = first_free_red;
+ first_free_red = nodes[n].next;
+ }
+
+ nodes[n].next = first_node;
+ if (first_node != -1) nodes[first_node].prev = n;
+ first_node = n;
+ nodes[n].prev = -1;
+
+ nodes[n].partition_next = first_red;
+ if (first_red != -1) nodes[first_red].partition_prev = n;
+ first_red = n;
+ nodes[n].partition_prev = -1;
+
+ nodes[n].first_out = -1;
+
+ return RedNode(n);
+ }
+
+ BlueNode addBlueNode() {
+ int n;
+
+ if(first_free_blue==-1) {
+ n = nodes.size();
+ nodes.push_back(NodeT());
+ nodes[n].partition_index = ++max_blue;
+ nodes[n].red = false;
+ } else {
+ n = first_free_blue;
+ first_free_blue = nodes[n].next;
+ }
+
+ nodes[n].next = first_node;
+ if (first_node != -1) nodes[first_node].prev = n;
+ first_node = n;
+ nodes[n].prev = -1;
+
+ nodes[n].partition_next = first_blue;
+ if (first_blue != -1) nodes[first_blue].partition_prev = n;
+ first_blue = n;
+ nodes[n].partition_prev = -1;
+
+ nodes[n].first_out = -1;
+
+ return BlueNode(n);
+ }
+
+ Edge addEdge(Node u, Node v) {
+ int n;
+
+ if (first_free_arc == -1) {
+ n = arcs.size();
+ arcs.push_back(ArcT());
+ arcs.push_back(ArcT());
+ } else {
+ n = first_free_arc;
+ first_free_arc = arcs[n].next_out;
+ }
+
+ arcs[n].target = u.id;
+ arcs[n | 1].target = v.id;
+
+ arcs[n].next_out = nodes[v.id].first_out;
+ if (nodes[v.id].first_out != -1) {
+ arcs[nodes[v.id].first_out].prev_out = n;
+ }
+ arcs[n].prev_out = -1;
+ nodes[v.id].first_out = n;
+
+ arcs[n | 1].next_out = nodes[u.id].first_out;
+ if (nodes[u.id].first_out != -1) {
+ arcs[nodes[u.id].first_out].prev_out = (n | 1);
+ }
+ arcs[n | 1].prev_out = -1;
+ nodes[u.id].first_out = (n | 1);
+
+ return Edge(n / 2);
+ }
+
+ void erase(const Node& node) {
+ int n = node.id;
+
+ if(nodes[n].next != -1) {
+ nodes[nodes[n].next].prev = nodes[n].prev;
+ }
+
+ if(nodes[n].prev != -1) {
+ nodes[nodes[n].prev].next = nodes[n].next;
+ } else {
+ first_node = nodes[n].next;
+ }
+
+ if (nodes[n].partition_next != -1) {
+ nodes[nodes[n].partition_next].partition_prev = nodes[n].partition_prev;
+ }
+
+ if (nodes[n].partition_prev != -1) {
+ nodes[nodes[n].partition_prev].partition_next = nodes[n].partition_next;
+ } else {
+ if (nodes[n].red) {
+ first_red = nodes[n].partition_next;
+ } else {
+ first_blue = nodes[n].partition_next;
+ }
+ }
+
+ if (nodes[n].red) {
+ nodes[n].next = first_free_red;
+ first_free_red = n;
+ } else {
+ nodes[n].next = first_free_blue;
+ first_free_blue = n;
+ }
+ nodes[n].prev = -2;
+ }
+
+ void erase(const Edge& edge) {
+ int n = edge.id * 2;
+
+ if (arcs[n].next_out != -1) {
+ arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
+ }
+
+ if (arcs[n].prev_out != -1) {
+ arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
+ } else {
+ nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
+ }
+
+ if (arcs[n | 1].next_out != -1) {
+ arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
+ }
+
+ if (arcs[n | 1].prev_out != -1) {
+ arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
+ } else {
+ nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
+ }
+
+ arcs[n].next_out = first_free_arc;
+ first_free_arc = n;
+ arcs[n].prev_out = -2;
+ arcs[n | 1].prev_out = -2;
+
+ }
+
+ void clear() {
+ arcs.clear();
+ nodes.clear();
+ first_node = first_free_arc = first_red = first_blue =
+ max_red = max_blue = first_free_red = first_free_blue = -1;
+ }
+
+ protected:
+
+ void changeRed(Edge e, RedNode n) {
+ if(arcs[(2 * e.id) | 1].next_out != -1) {
+ arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
+ arcs[(2 * e.id) | 1].prev_out;
+ }
+ if(arcs[(2 * e.id) | 1].prev_out != -1) {
+ arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
+ arcs[(2 * e.id) | 1].next_out;
+ } else {
+ nodes[arcs[2 * e.id].target].first_out =
+ arcs[(2 * e.id) | 1].next_out;
+ }
+
+ if (nodes[n.id].first_out != -1) {
+ arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
+ }
+ arcs[2 * e.id].target = n.id;
+ arcs[(2 * e.id) | 1].prev_out = -1;
+ arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
+ nodes[n.id].first_out = ((2 * e.id) | 1);
+ }
+
+ void changeBlue(Edge e, BlueNode n) {
+ if(arcs[2 * e.id].next_out != -1) {
+ arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
+ }
+ if(arcs[2 * e.id].prev_out != -1) {
+ arcs[arcs[2 * e.id].prev_out].next_out =
+ arcs[2 * e.id].next_out;
+ } else {
+ nodes[arcs[(2 * e.id) | 1].target].first_out =
+ arcs[2 * e.id].next_out;
+ }
+
+ if (nodes[n.id].first_out != -1) {
+ arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
+ }
+ arcs[(2 * e.id) | 1].target = n.id;
+ arcs[2 * e.id].prev_out = -1;
+ arcs[2 * e.id].next_out = nodes[n.id].first_out;
+ nodes[n.id].first_out = 2 * e.id;
+ }
+
+ };
+
+ typedef BpGraphExtender<ListBpGraphBase> ExtendedListBpGraphBase;
+
+
+ /// \addtogroup graphs
+ /// @{
+
+ ///A general undirected graph structure.
+
+ ///\ref ListBpGraph is a versatile and fast undirected graph
+ ///implementation based on linked lists that are stored in
+ ///\c std::vector structures.
+ ///
+ ///This type fully conforms to the \ref concepts::BpGraph "BpGraph concept"
+ ///and it also provides several useful additional functionalities.
+ ///Most of its member functions and nested classes are documented
+ ///only in the concept class.
+ ///
+ ///This class provides only linear time counting for nodes, edges and arcs.
+ ///
+ ///\sa concepts::BpGraph
+ ///\sa ListDigraph
+ class ListBpGraph : public ExtendedListBpGraphBase {
+ typedef ExtendedListBpGraphBase Parent;
+
+ private:
+ /// BpGraphs are \e not copy constructible. Use BpGraphCopy instead.
+ ListBpGraph(const ListBpGraph &) :ExtendedListBpGraphBase() {};
+ /// \brief Assignment of a graph to another one is \e not allowed.
+ /// Use BpGraphCopy instead.
+ void operator=(const ListBpGraph &) {}
+ public:
+ /// Constructor
+
+ /// Constructor.
+ ///
+ ListBpGraph() {}
+
+ typedef Parent::OutArcIt IncEdgeIt;
+
+ /// \brief Add a new red node to the graph.
+ ///
+ /// This function adds a red new node to the graph.
+ /// \return The new node.
+ RedNode addRedNode() { return Parent::addRedNode(); }
+
+ /// \brief Add a new blue node to the graph.
+ ///
+ /// This function adds a blue new node to the graph.
+ /// \return The new node.
+ BlueNode addBlueNode() { return Parent::addBlueNode(); }
+
+ /// \brief Add a new edge to the graph.
+ ///
+ /// This function adds a new edge to the graph between nodes
+ /// \c u and \c v with inherent orientation from node \c u to
+ /// node \c v.
+ /// \return The new edge.
+ Edge addEdge(RedNode u, BlueNode v) {
+ return Parent::addEdge(u, v);
+ }
+ Edge addEdge(BlueNode v, RedNode u) {
+ return Parent::addEdge(u, v);
+ }
+
+ ///\brief Erase a node from the graph.
+ ///
+ /// This function erases the given node along with its incident arcs
+ /// from the graph.
+ ///
+ /// \note All iterators referencing the removed node or the incident
+ /// edges are invalidated, of course.
+ void erase(Node n) { Parent::erase(n); }
+
+ ///\brief Erase an edge from the graph.
+ ///
+ /// This function erases the given edge from the graph.
+ ///
+ /// \note All iterators referencing the removed edge are invalidated,
+ /// of course.
+ void erase(Edge e) { Parent::erase(e); }
+ /// Node validity check
+
+ /// This function gives back \c true if the given node is valid,
+ /// i.e. it is a real node of the graph.
+ ///
+ /// \warning A removed node could become valid again if new nodes are
+ /// added to the graph.
+ bool valid(Node n) const { return Parent::valid(n); }
+ /// Edge validity check
+
+ /// This function gives back \c true if the given edge is valid,
+ /// i.e. it is a real edge of the graph.
+ ///
+ /// \warning A removed edge could become valid again if new edges are
+ /// added to the graph.
+ bool valid(Edge e) const { return Parent::valid(e); }
+ /// Arc validity check
+
+ /// This function gives back \c true if the given arc is valid,
+ /// i.e. it is a real arc of the graph.
+ ///
+ /// \warning A removed arc could become valid again if new edges are
+ /// added to the graph.
+ bool valid(Arc a) const { return Parent::valid(a); }
+
+ /// \brief Change the red node of an edge.
+ ///
+ /// This function changes the red node of the given edge \c e to \c n.
+ ///
+ ///\note \c EdgeIt and \c ArcIt iterators referencing the
+ ///changed edge are invalidated and all other iterators whose
+ ///base node is the changed node are also invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ void changeRed(Edge e, RedNode n) {
+ Parent::changeRed(e, n);
+ }
+ /// \brief Change the blue node of an edge.
+ ///
+ /// This function changes the blue node of the given edge \c e to \c n.
+ ///
+ ///\note \c EdgeIt iterators referencing the changed edge remain
+ ///valid, but \c ArcIt iterators referencing the changed edge and
+ ///all other iterators whose base node is the changed node are also
+ ///invalidated.
+ ///
+ ///\warning This functionality cannot be used together with the
+ ///Snapshot feature.
+ void changeBlue(Edge e, BlueNode n) {
+ Parent::changeBlue(e, n);
+ }
+
+ ///Clear the graph.
+
+ ///This function erases all nodes and arcs from the graph.
+ ///
+ ///\note All iterators of the graph are invalidated, of course.
+ void clear() {
+ Parent::clear();
+ }
+
+ /// Reserve memory for nodes.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the graph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or edges),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the graph.
+ /// \sa reserveEdge()
+ void reserveNode(int n) { nodes.reserve(n); };
+
+ /// Reserve memory for edges.
+
+ /// Using this function, it is possible to avoid superfluous memory
+ /// allocation: if you know that the graph you want to build will
+ /// be large (e.g. it will contain millions of nodes and/or edges),
+ /// then it is worth reserving space for this amount before starting
+ /// to build the graph.
+ /// \sa reserveNode()
+ void reserveEdge(int m) { arcs.reserve(2 * m); };
+
+ /// \brief Class to make a snapshot of the graph and restore
+ /// it later.
+ ///
+ /// Class to make a snapshot of the graph and restore it later.
+ ///
+ /// The newly added nodes and edges can be removed
+ /// using the restore() function.
+ ///
+ /// \note After a state is restored, you cannot restore a later state,
+ /// i.e. you cannot add the removed nodes and edges again using
+ /// another Snapshot instance.
+ ///
+ /// \warning Node and edge deletions and other modifications
+ /// (e.g. changing the end-nodes of edges or contracting nodes)
+ /// cannot be restored. These events invalidate the snapshot.
+ /// However, the edges and nodes that were added to the graph after
+ /// making the current snapshot can be removed without invalidating it.
+ class Snapshot {
+ protected:
+
+ typedef Parent::NodeNotifier NodeNotifier;
+
+ class NodeObserverProxy : public NodeNotifier::ObserverBase {
+ public:
+
+ NodeObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using NodeNotifier::ObserverBase::attach;
+ using NodeNotifier::ObserverBase::detach;
+ using NodeNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Node& node) {
+ snapshot.addNode(node);
+ }
+ virtual void add(const std::vector<Node>& nodes) {
+ for (int i = nodes.size() - 1; i >= 0; ++i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void erase(const Node& node) {
+ snapshot.eraseNode(node);
+ }
+ virtual void erase(const std::vector<Node>& nodes) {
+ for (int i = 0; i < int(nodes.size()); ++i) {
+ snapshot.eraseNode(nodes[i]);
+ }
+ }
+ virtual void build() {
+ Node node;
+ std::vector<Node> nodes;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ nodes.push_back(node);
+ }
+ for (int i = nodes.size() - 1; i >= 0; --i) {
+ snapshot.addNode(nodes[i]);
+ }
+ }
+ virtual void clear() {
+ Node node;
+ for (notifier()->first(node); node != INVALID;
+ notifier()->next(node)) {
+ snapshot.eraseNode(node);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
+ public:
+
+ EdgeObserverProxy(Snapshot& _snapshot)
+ : snapshot(_snapshot) {}
+
+ using EdgeNotifier::ObserverBase::attach;
+ using EdgeNotifier::ObserverBase::detach;
+ using EdgeNotifier::ObserverBase::attached;
+
+ protected:
+
+ virtual void add(const Edge& edge) {
+ snapshot.addEdge(edge);
+ }
+ virtual void add(const std::vector<Edge>& edges) {
+ for (int i = edges.size() - 1; i >= 0; ++i) {
+ snapshot.addEdge(edges[i]);
+ }
+ }
+ virtual void erase(const Edge& edge) {
+ snapshot.eraseEdge(edge);
+ }
+ virtual void erase(const std::vector<Edge>& edges) {
+ for (int i = 0; i < int(edges.size()); ++i) {
+ snapshot.eraseEdge(edges[i]);
+ }
+ }
+ virtual void build() {
+ Edge edge;
+ std::vector<Edge> edges;
+ for (notifier()->first(edge); edge != INVALID;
+ notifier()->next(edge)) {
+ edges.push_back(edge);
+ }
+ for (int i = edges.size() - 1; i >= 0; --i) {
+ snapshot.addEdge(edges[i]);
+ }
+ }
+ virtual void clear() {
+ Edge edge;
+ for (notifier()->first(edge); edge != INVALID;
+ notifier()->next(edge)) {
+ snapshot.eraseEdge(edge);
+ }
+ }
+
+ Snapshot& snapshot;
+ };
+
+ ListBpGraph *graph;
+
+ NodeObserverProxy node_observer_proxy;
+ EdgeObserverProxy edge_observer_proxy;
+
+ std::list<Node> added_nodes;
+ std::list<Edge> added_edges;
+
+
+ void addNode(const Node& node) {
+ added_nodes.push_front(node);
+ }
+ void eraseNode(const Node& node) {
+ std::list<Node>::iterator it =
+ std::find(added_nodes.begin(), added_nodes.end(), node);
+ if (it == added_nodes.end()) {
+ clear();
+ edge_observer_proxy.detach();
+ throw NodeNotifier::ImmediateDetach();
+ } else {
+ added_nodes.erase(it);
+ }
+ }
+
+ void addEdge(const Edge& edge) {
+ added_edges.push_front(edge);
+ }
+ void eraseEdge(const Edge& edge) {
+ std::list<Edge>::iterator it =
+ std::find(added_edges.begin(), added_edges.end(), edge);
+ if (it == added_edges.end()) {
+ clear();
+ node_observer_proxy.detach();
+ throw EdgeNotifier::ImmediateDetach();
+ } else {
+ added_edges.erase(it);
+ }
+ }
+
+ void attach(ListBpGraph &_graph) {
+ graph = &_graph;
+ node_observer_proxy.attach(graph->notifier(Node()));
+ edge_observer_proxy.attach(graph->notifier(Edge()));
+ }
+
+ void detach() {
+ node_observer_proxy.detach();
+ edge_observer_proxy.detach();
+ }
+
+ bool attached() const {
+ return node_observer_proxy.attached();
+ }
+
+ void clear() {
+ added_nodes.clear();
+ added_edges.clear();
+ }
+
+ public:
+
+ /// \brief Default constructor.
+ ///
+ /// Default constructor.
+ /// You have to call save() to actually make a snapshot.
+ Snapshot()
+ : graph(0), node_observer_proxy(*this),
+ edge_observer_proxy(*this) {}
+
+ /// \brief Constructor that immediately makes a snapshot.
+ ///
+ /// This constructor immediately makes a snapshot of the given graph.
+ Snapshot(ListBpGraph &gr)
+ : node_observer_proxy(*this),
+ edge_observer_proxy(*this) {
+ attach(gr);
+ }
+
+ /// \brief Make a snapshot.
+ ///
+ /// This function makes a snapshot of the given graph.
+ /// It can be called more than once. In case of a repeated
+ /// call, the previous snapshot gets lost.
+ void save(ListBpGraph &gr) {
+ if (attached()) {
+ detach();
+ clear();
+ }
+ attach(gr);
+ }
+
+ /// \brief Undo the changes until the last snapshot.
+ ///
+ /// This function undos the changes until the last snapshot
+ /// created by save() or Snapshot(ListBpGraph&).
+ ///
+ /// \warning This method invalidates the snapshot, i.e. repeated
+ /// restoring is not supported unless you call save() again.
+ void restore() {
+ detach();
+ for(std::list<Edge>::iterator it = added_edges.begin();
+ it != added_edges.end(); ++it) {
+ graph->erase(*it);
+ }
+ for(std::list<Node>::iterator it = added_nodes.begin();
+ it != added_nodes.end(); ++it) {
+ graph->erase(*it);
+ }
+ clear();
+ }
+
+ /// \brief Returns \c true if the snapshot is valid.
+ ///
+ /// This function returns \c true if the snapshot is valid.
+ bool valid() const {
+ return attached();
+ }
+ };
+ };
+
+ /// @}
+} //namespace lemon
+
+
+#endif