Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/maps.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/maps.h4057
1 files changed, 4057 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/maps.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/maps.h
new file mode 100644
index 00000000000..1bc49e911ca
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/maps.h
@@ -0,0 +1,4057 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_MAPS_H
+#define LEMON_MAPS_H
+
+#include <iterator>
+#include <functional>
+#include <vector>
+#include <map>
+
+#include <lemon/core.h>
+
+///\file
+///\ingroup maps
+///\brief Miscellaneous property maps
+
+namespace lemon {
+
+ /// \addtogroup maps
+ /// @{
+
+ /// Base class of maps.
+
+ /// Base class of maps. It provides the necessary type definitions
+ /// required by the map %concepts.
+ template<typename K, typename V>
+ class MapBase {
+ public:
+ /// \brief The key type of the map.
+ typedef K Key;
+ /// \brief The value type of the map.
+ /// (The type of objects associated with the keys).
+ typedef V Value;
+ };
+
+
+ /// Null map. (a.k.a. DoNothingMap)
+
+ /// This map can be used if you have to provide a map only for
+ /// its type definitions, or if you have to provide a writable map,
+ /// but data written to it is not required (i.e. it will be sent to
+ /// <tt>/dev/null</tt>).
+ /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
+ ///
+ /// \sa ConstMap
+ template<typename K, typename V>
+ class NullMap : public MapBase<K, V> {
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef V Value;
+
+ /// Gives back a default constructed element.
+ Value operator[](const Key&) const { return Value(); }
+ /// Absorbs the value.
+ void set(const Key&, const Value&) {}
+ };
+
+ /// Returns a \c NullMap class
+
+ /// This function just returns a \c NullMap class.
+ /// \relates NullMap
+ template <typename K, typename V>
+ NullMap<K, V> nullMap() {
+ return NullMap<K, V>();
+ }
+
+
+ /// Constant map.
+
+ /// This \ref concepts::ReadMap "readable map" assigns a specified
+ /// value to each key.
+ ///
+ /// In other aspects it is equivalent to \c NullMap.
+ /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
+ /// concept, but it absorbs the data written to it.
+ ///
+ /// The simplest way of using this map is through the constMap()
+ /// function.
+ ///
+ /// \sa NullMap
+ /// \sa IdentityMap
+ template<typename K, typename V>
+ class ConstMap : public MapBase<K, V> {
+ private:
+ V _value;
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef V Value;
+
+ /// Default constructor
+
+ /// Default constructor.
+ /// The value of the map will be default constructed.
+ ConstMap() {}
+
+ /// Constructor with specified initial value
+
+ /// Constructor with specified initial value.
+ /// \param v The initial value of the map.
+ ConstMap(const Value &v) : _value(v) {}
+
+ /// Gives back the specified value.
+ Value operator[](const Key&) const { return _value; }
+
+ /// Absorbs the value.
+ void set(const Key&, const Value&) {}
+
+ /// Sets the value that is assigned to each key.
+ void setAll(const Value &v) {
+ _value = v;
+ }
+
+ template<typename V1>
+ ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
+ };
+
+ /// Returns a \c ConstMap class
+
+ /// This function just returns a \c ConstMap class.
+ /// \relates ConstMap
+ template<typename K, typename V>
+ inline ConstMap<K, V> constMap(const V &v) {
+ return ConstMap<K, V>(v);
+ }
+
+ template<typename K, typename V>
+ inline ConstMap<K, V> constMap() {
+ return ConstMap<K, V>();
+ }
+
+
+ template<typename T, T v>
+ struct Const {};
+
+ /// Constant map with inlined constant value.
+
+ /// This \ref concepts::ReadMap "readable map" assigns a specified
+ /// value to each key.
+ ///
+ /// In other aspects it is equivalent to \c NullMap.
+ /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
+ /// concept, but it absorbs the data written to it.
+ ///
+ /// The simplest way of using this map is through the constMap()
+ /// function.
+ ///
+ /// \sa NullMap
+ /// \sa IdentityMap
+ template<typename K, typename V, V v>
+ class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef V Value;
+
+ /// Constructor.
+ ConstMap() {}
+
+ /// Gives back the specified value.
+ Value operator[](const Key&) const { return v; }
+
+ /// Absorbs the value.
+ void set(const Key&, const Value&) {}
+ };
+
+ /// Returns a \c ConstMap class with inlined constant value
+
+ /// This function just returns a \c ConstMap class with inlined
+ /// constant value.
+ /// \relates ConstMap
+ template<typename K, typename V, V v>
+ inline ConstMap<K, Const<V, v> > constMap() {
+ return ConstMap<K, Const<V, v> >();
+ }
+
+
+ /// Identity map.
+
+ /// This \ref concepts::ReadMap "read-only map" gives back the given
+ /// key as value without any modification.
+ ///
+ /// \sa ConstMap
+ template <typename T>
+ class IdentityMap : public MapBase<T, T> {
+ public:
+ ///\e
+ typedef T Key;
+ ///\e
+ typedef T Value;
+
+ /// Gives back the given value without any modification.
+ Value operator[](const Key &k) const {
+ return k;
+ }
+ };
+
+ /// Returns an \c IdentityMap class
+
+ /// This function just returns an \c IdentityMap class.
+ /// \relates IdentityMap
+ template<typename T>
+ inline IdentityMap<T> identityMap() {
+ return IdentityMap<T>();
+ }
+
+
+ /// \brief Map for storing values for integer keys from the range
+ /// <tt>[0..size-1]</tt>.
+ ///
+ /// This map is essentially a wrapper for \c std::vector. It assigns
+ /// values to integer keys from the range <tt>[0..size-1]</tt>.
+ /// It can be used together with some data structures, e.g.
+ /// heap types and \c UnionFind, when the used items are small
+ /// integers. This map conforms to the \ref concepts::ReferenceMap
+ /// "ReferenceMap" concept.
+ ///
+ /// The simplest way of using this map is through the rangeMap()
+ /// function.
+ template <typename V>
+ class RangeMap : public MapBase<int, V> {
+ template <typename V1>
+ friend class RangeMap;
+ private:
+
+ typedef std::vector<V> Vector;
+ Vector _vector;
+
+ public:
+
+ /// Key type
+ typedef int Key;
+ /// Value type
+ typedef V Value;
+ /// Reference type
+ typedef typename Vector::reference Reference;
+ /// Const reference type
+ typedef typename Vector::const_reference ConstReference;
+
+ typedef True ReferenceMapTag;
+
+ public:
+
+ /// Constructor with specified default value.
+ RangeMap(int size = 0, const Value &value = Value())
+ : _vector(size, value) {}
+
+ /// Constructs the map from an appropriate \c std::vector.
+ template <typename V1>
+ RangeMap(const std::vector<V1>& vector)
+ : _vector(vector.begin(), vector.end()) {}
+
+ /// Constructs the map from another \c RangeMap.
+ template <typename V1>
+ RangeMap(const RangeMap<V1> &c)
+ : _vector(c._vector.begin(), c._vector.end()) {}
+
+ /// Returns the size of the map.
+ int size() {
+ return _vector.size();
+ }
+
+ /// Resizes the map.
+
+ /// Resizes the underlying \c std::vector container, so changes the
+ /// keyset of the map.
+ /// \param size The new size of the map. The new keyset will be the
+ /// range <tt>[0..size-1]</tt>.
+ /// \param value The default value to assign to the new keys.
+ void resize(int size, const Value &value = Value()) {
+ _vector.resize(size, value);
+ }
+
+ private:
+
+ RangeMap& operator=(const RangeMap&);
+
+ public:
+
+ ///\e
+ Reference operator[](const Key &k) {
+ return _vector[k];
+ }
+
+ ///\e
+ ConstReference operator[](const Key &k) const {
+ return _vector[k];
+ }
+
+ ///\e
+ void set(const Key &k, const Value &v) {
+ _vector[k] = v;
+ }
+ };
+
+ /// Returns a \c RangeMap class
+
+ /// This function just returns a \c RangeMap class.
+ /// \relates RangeMap
+ template<typename V>
+ inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
+ return RangeMap<V>(size, value);
+ }
+
+ /// \brief Returns a \c RangeMap class created from an appropriate
+ /// \c std::vector
+
+ /// This function just returns a \c RangeMap class created from an
+ /// appropriate \c std::vector.
+ /// \relates RangeMap
+ template<typename V>
+ inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
+ return RangeMap<V>(vector);
+ }
+
+
+ /// Map type based on \c std::map
+
+ /// This map is essentially a wrapper for \c std::map with addition
+ /// that you can specify a default value for the keys that are not
+ /// stored actually. This value can be different from the default
+ /// contructed value (i.e. \c %Value()).
+ /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
+ /// concept.
+ ///
+ /// This map is useful if a default value should be assigned to most of
+ /// the keys and different values should be assigned only to a few
+ /// keys (i.e. the map is "sparse").
+ /// The name of this type also refers to this important usage.
+ ///
+ /// Apart form that, this map can be used in many other cases since it
+ /// is based on \c std::map, which is a general associative container.
+ /// However, keep in mind that it is usually not as efficient as other
+ /// maps.
+ ///
+ /// The simplest way of using this map is through the sparseMap()
+ /// function.
+ template <typename K, typename V, typename Comp = std::less<K> >
+ class SparseMap : public MapBase<K, V> {
+ template <typename K1, typename V1, typename C1>
+ friend class SparseMap;
+ public:
+
+ /// Key type
+ typedef K Key;
+ /// Value type
+ typedef V Value;
+ /// Reference type
+ typedef Value& Reference;
+ /// Const reference type
+ typedef const Value& ConstReference;
+
+ typedef True ReferenceMapTag;
+
+ private:
+
+ typedef std::map<K, V, Comp> Map;
+ Map _map;
+ Value _value;
+
+ public:
+
+ /// \brief Constructor with specified default value.
+ SparseMap(const Value &value = Value()) : _value(value) {}
+ /// \brief Constructs the map from an appropriate \c std::map, and
+ /// explicitly specifies a default value.
+ template <typename V1, typename Comp1>
+ SparseMap(const std::map<Key, V1, Comp1> &map,
+ const Value &value = Value())
+ : _map(map.begin(), map.end()), _value(value) {}
+
+ /// \brief Constructs the map from another \c SparseMap.
+ template<typename V1, typename Comp1>
+ SparseMap(const SparseMap<Key, V1, Comp1> &c)
+ : _map(c._map.begin(), c._map.end()), _value(c._value) {}
+
+ private:
+
+ SparseMap& operator=(const SparseMap&);
+
+ public:
+
+ ///\e
+ Reference operator[](const Key &k) {
+ typename Map::iterator it = _map.lower_bound(k);
+ if (it != _map.end() && !_map.key_comp()(k, it->first))
+ return it->second;
+ else
+ return _map.insert(it, std::make_pair(k, _value))->second;
+ }
+
+ ///\e
+ ConstReference operator[](const Key &k) const {
+ typename Map::const_iterator it = _map.find(k);
+ if (it != _map.end())
+ return it->second;
+ else
+ return _value;
+ }
+
+ ///\e
+ void set(const Key &k, const Value &v) {
+ typename Map::iterator it = _map.lower_bound(k);
+ if (it != _map.end() && !_map.key_comp()(k, it->first))
+ it->second = v;
+ else
+ _map.insert(it, std::make_pair(k, v));
+ }
+
+ ///\e
+ void setAll(const Value &v) {
+ _value = v;
+ _map.clear();
+ }
+ };
+
+ /// Returns a \c SparseMap class
+
+ /// This function just returns a \c SparseMap class with specified
+ /// default value.
+ /// \relates SparseMap
+ template<typename K, typename V, typename Compare>
+ inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
+ return SparseMap<K, V, Compare>(value);
+ }
+
+ template<typename K, typename V>
+ inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
+ return SparseMap<K, V, std::less<K> >(value);
+ }
+
+ /// \brief Returns a \c SparseMap class created from an appropriate
+ /// \c std::map
+
+ /// This function just returns a \c SparseMap class created from an
+ /// appropriate \c std::map.
+ /// \relates SparseMap
+ template<typename K, typename V, typename Compare>
+ inline SparseMap<K, V, Compare>
+ sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
+ {
+ return SparseMap<K, V, Compare>(map, value);
+ }
+
+ /// @}
+
+ /// \addtogroup map_adaptors
+ /// @{
+
+ /// Composition of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the
+ /// composition of two given maps. That is to say, if \c m1 is of
+ /// type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// ComposeMap<M1, M2> cm(m1,m2);
+ /// \endcode
+ /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
+ ///
+ /// The \c Key type of the map is inherited from \c M2 and the
+ /// \c Value type is from \c M1.
+ /// \c M2::Value must be convertible to \c M1::Key.
+ ///
+ /// The simplest way of using this map is through the composeMap()
+ /// function.
+ ///
+ /// \sa CombineMap
+ template <typename M1, typename M2>
+ class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M2::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+
+ ///\e
+ typename MapTraits<M1>::ConstReturnValue
+ operator[](const Key &k) const { return _m1[_m2[k]]; }
+ };
+
+ /// Returns a \c ComposeMap class
+
+ /// This function just returns a \c ComposeMap class.
+ ///
+ /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
+ /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
+ /// will be equal to <tt>m1[m2[x]]</tt>.
+ ///
+ /// \relates ComposeMap
+ template <typename M1, typename M2>
+ inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
+ return ComposeMap<M1, M2>(m1, m2);
+ }
+
+
+ /// Combination of two maps using an STL (binary) functor.
+
+ /// This \ref concepts::ReadMap "read-only map" takes two maps and a
+ /// binary functor and returns the combination of the two given maps
+ /// using the functor.
+ /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
+ /// and \c f is of \c F, then for
+ /// \code
+ /// CombineMap<M1,M2,F,V> cm(m1,m2,f);
+ /// \endcode
+ /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
+ ///
+ /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
+ /// must be convertible to \c M2::Key) and the \c Value type is \c V.
+ /// \c M2::Value and \c M1::Value must be convertible to the
+ /// corresponding input parameter of \c F and the return type of \c F
+ /// must be convertible to \c V.
+ ///
+ /// The simplest way of using this map is through the combineMap()
+ /// function.
+ ///
+ /// \sa ComposeMap
+ template<typename M1, typename M2, typename F,
+ typename V = typename F::result_type>
+ class CombineMap : public MapBase<typename M1::Key, V> {
+ const M1 &_m1;
+ const M2 &_m2;
+ F _f;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef V Value;
+
+ /// Constructor
+ CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
+ : _m1(m1), _m2(m2), _f(f) {}
+ ///\e
+ Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
+ };
+
+ /// Returns a \c CombineMap class
+
+ /// This function just returns a \c CombineMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c double
+ /// values, then
+ /// \code
+ /// combineMap(m1,m2,std::plus<double>())
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// addMap(m1,m2)
+ /// \endcode
+ ///
+ /// This function is specialized for adaptable binary function
+ /// classes and C++ functions.
+ ///
+ /// \relates CombineMap
+ template<typename M1, typename M2, typename F, typename V>
+ inline CombineMap<M1, M2, F, V>
+ combineMap(const M1 &m1, const M2 &m2, const F &f) {
+ return CombineMap<M1, M2, F, V>(m1,m2,f);
+ }
+
+ template<typename M1, typename M2, typename F>
+ inline CombineMap<M1, M2, F, typename F::result_type>
+ combineMap(const M1 &m1, const M2 &m2, const F &f) {
+ return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
+ }
+
+ template<typename M1, typename M2, typename K1, typename K2, typename V>
+ inline CombineMap<M1, M2, V (*)(K1, K2), V>
+ combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
+ return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
+ }
+
+
+ /// Converts an STL style (unary) functor to a map
+
+ /// This \ref concepts::ReadMap "read-only map" returns the value
+ /// of a given functor. Actually, it just wraps the functor and
+ /// provides the \c Key and \c Value typedefs.
+ ///
+ /// Template parameters \c K and \c V will become its \c Key and
+ /// \c Value. In most cases they have to be given explicitly because
+ /// a functor typically does not provide \c argument_type and
+ /// \c result_type typedefs.
+ /// Parameter \c F is the type of the used functor.
+ ///
+ /// The simplest way of using this map is through the functorToMap()
+ /// function.
+ ///
+ /// \sa MapToFunctor
+ template<typename F,
+ typename K = typename F::argument_type,
+ typename V = typename F::result_type>
+ class FunctorToMap : public MapBase<K, V> {
+ F _f;
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef V Value;
+
+ /// Constructor
+ FunctorToMap(const F &f = F()) : _f(f) {}
+ ///\e
+ Value operator[](const Key &k) const { return _f(k); }
+ };
+
+ /// Returns a \c FunctorToMap class
+
+ /// This function just returns a \c FunctorToMap class.
+ ///
+ /// This function is specialized for adaptable binary function
+ /// classes and C++ functions.
+ ///
+ /// \relates FunctorToMap
+ template<typename K, typename V, typename F>
+ inline FunctorToMap<F, K, V> functorToMap(const F &f) {
+ return FunctorToMap<F, K, V>(f);
+ }
+
+ template <typename F>
+ inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
+ functorToMap(const F &f)
+ {
+ return FunctorToMap<F, typename F::argument_type,
+ typename F::result_type>(f);
+ }
+
+ template <typename K, typename V>
+ inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
+ return FunctorToMap<V (*)(K), K, V>(f);
+ }
+
+
+ /// Converts a map to an STL style (unary) functor
+
+ /// This class converts a map to an STL style (unary) functor.
+ /// That is it provides an <tt>operator()</tt> to read its values.
+ ///
+ /// For the sake of convenience it also works as a usual
+ /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
+ /// and the \c Key and \c Value typedefs also exist.
+ ///
+ /// The simplest way of using this map is through the mapToFunctor()
+ /// function.
+ ///
+ ///\sa FunctorToMap
+ template <typename M>
+ class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
+ const M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ typedef typename M::Key argument_type;
+ typedef typename M::Value result_type;
+
+ /// Constructor
+ MapToFunctor(const M &m) : _m(m) {}
+ ///\e
+ Value operator()(const Key &k) const { return _m[k]; }
+ ///\e
+ Value operator[](const Key &k) const { return _m[k]; }
+ };
+
+ /// Returns a \c MapToFunctor class
+
+ /// This function just returns a \c MapToFunctor class.
+ /// \relates MapToFunctor
+ template<typename M>
+ inline MapToFunctor<M> mapToFunctor(const M &m) {
+ return MapToFunctor<M>(m);
+ }
+
+
+ /// \brief Map adaptor to convert the \c Value type of a map to
+ /// another type using the default conversion.
+
+ /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
+ /// "readable map" to another type using the default conversion.
+ /// The \c Key type of it is inherited from \c M and the \c Value
+ /// type is \c V.
+ /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
+ ///
+ /// The simplest way of using this map is through the convertMap()
+ /// function.
+ template <typename M, typename V>
+ class ConvertMap : public MapBase<typename M::Key, V> {
+ const M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef V Value;
+
+ /// Constructor
+
+ /// Constructor.
+ /// \param m The underlying map.
+ ConvertMap(const M &m) : _m(m) {}
+
+ ///\e
+ Value operator[](const Key &k) const { return _m[k]; }
+ };
+
+ /// Returns a \c ConvertMap class
+
+ /// This function just returns a \c ConvertMap class.
+ /// \relates ConvertMap
+ template<typename V, typename M>
+ inline ConvertMap<M, V> convertMap(const M &map) {
+ return ConvertMap<M, V>(map);
+ }
+
+
+ /// Applies all map setting operations to two maps
+
+ /// This map has two \ref concepts::WriteMap "writable map" parameters
+ /// and each write request will be passed to both of them.
+ /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
+ /// operations will return the corresponding values of \c M1.
+ ///
+ /// The \c Key and \c Value types are inherited from \c M1.
+ /// The \c Key and \c Value of \c M2 must be convertible from those
+ /// of \c M1.
+ ///
+ /// The simplest way of using this map is through the forkMap()
+ /// function.
+ template<typename M1, typename M2>
+ class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
+ M1 &_m1;
+ M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
+ /// Returns the value associated with the given key in the first map.
+ Value operator[](const Key &k) const { return _m1[k]; }
+ /// Sets the value associated with the given key in both maps.
+ void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
+ };
+
+ /// Returns a \c ForkMap class
+
+ /// This function just returns a \c ForkMap class.
+ /// \relates ForkMap
+ template <typename M1, typename M2>
+ inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
+ return ForkMap<M1,M2>(m1,m2);
+ }
+
+
+ /// Sum of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the sum
+ /// of the values of the two given maps.
+ /// Its \c Key and \c Value types are inherited from \c M1.
+ /// The \c Key and \c Value of \c M2 must be convertible to those of
+ /// \c M1.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// AddMap<M1,M2> am(m1,m2);
+ /// \endcode
+ /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the addMap()
+ /// function.
+ ///
+ /// \sa SubMap, MulMap, DivMap
+ /// \sa ShiftMap, ShiftWriteMap
+ template<typename M1, typename M2>
+ class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
+ };
+
+ /// Returns an \c AddMap class
+
+ /// This function just returns an \c AddMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c double
+ /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]+m2[x]</tt>.
+ ///
+ /// \relates AddMap
+ template<typename M1, typename M2>
+ inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
+ return AddMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Difference of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the difference
+ /// of the values of the two given maps.
+ /// Its \c Key and \c Value types are inherited from \c M1.
+ /// The \c Key and \c Value of \c M2 must be convertible to those of
+ /// \c M1.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// SubMap<M1,M2> sm(m1,m2);
+ /// \endcode
+ /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the subMap()
+ /// function.
+ ///
+ /// \sa AddMap, MulMap, DivMap
+ template<typename M1, typename M2>
+ class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
+ };
+
+ /// Returns a \c SubMap class
+
+ /// This function just returns a \c SubMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c double
+ /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]-m2[x]</tt>.
+ ///
+ /// \relates SubMap
+ template<typename M1, typename M2>
+ inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
+ return SubMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Product of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the product
+ /// of the values of the two given maps.
+ /// Its \c Key and \c Value types are inherited from \c M1.
+ /// The \c Key and \c Value of \c M2 must be convertible to those of
+ /// \c M1.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// MulMap<M1,M2> mm(m1,m2);
+ /// \endcode
+ /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the mulMap()
+ /// function.
+ ///
+ /// \sa AddMap, SubMap, DivMap
+ /// \sa ScaleMap, ScaleWriteMap
+ template<typename M1, typename M2>
+ class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
+ };
+
+ /// Returns a \c MulMap class
+
+ /// This function just returns a \c MulMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c double
+ /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]*m2[x]</tt>.
+ ///
+ /// \relates MulMap
+ template<typename M1, typename M2>
+ inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
+ return MulMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Quotient of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the quotient
+ /// of the values of the two given maps.
+ /// Its \c Key and \c Value types are inherited from \c M1.
+ /// The \c Key and \c Value of \c M2 must be convertible to those of
+ /// \c M1.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// DivMap<M1,M2> dm(m1,m2);
+ /// \endcode
+ /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the divMap()
+ /// function.
+ ///
+ /// \sa AddMap, SubMap, MulMap
+ template<typename M1, typename M2>
+ class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef typename M1::Value Value;
+
+ /// Constructor
+ DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
+ };
+
+ /// Returns a \c DivMap class
+
+ /// This function just returns a \c DivMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c double
+ /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]/m2[x]</tt>.
+ ///
+ /// \relates DivMap
+ template<typename M1, typename M2>
+ inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
+ return DivMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Shifts a map with a constant.
+
+ /// This \ref concepts::ReadMap "read-only map" returns the sum of
+ /// the given map and a constant value (i.e. it shifts the map with
+ /// the constant). Its \c Key and \c Value are inherited from \c M.
+ ///
+ /// Actually,
+ /// \code
+ /// ShiftMap<M> sh(m,v);
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ConstMap<M::Key, M::Value> cm(v);
+ /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
+ /// \endcode
+ ///
+ /// The simplest way of using this map is through the shiftMap()
+ /// function.
+ ///
+ /// \sa ShiftWriteMap
+ template<typename M, typename C = typename M::Value>
+ class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
+ const M &_m;
+ C _v;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+
+ /// Constructor.
+ /// \param m The undelying map.
+ /// \param v The constant value.
+ ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m[k]+_v; }
+ };
+
+ /// Shifts a map with a constant (read-write version).
+
+ /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
+ /// of the given map and a constant value (i.e. it shifts the map with
+ /// the constant). Its \c Key and \c Value are inherited from \c M.
+ /// It makes also possible to write the map.
+ ///
+ /// The simplest way of using this map is through the shiftWriteMap()
+ /// function.
+ ///
+ /// \sa ShiftMap
+ template<typename M, typename C = typename M::Value>
+ class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
+ M &_m;
+ C _v;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+
+ /// Constructor.
+ /// \param m The undelying map.
+ /// \param v The constant value.
+ ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m[k]+_v; }
+ ///\e
+ void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
+ };
+
+ /// Returns a \c ShiftMap class
+
+ /// This function just returns a \c ShiftMap class.
+ ///
+ /// For example, if \c m is a map with \c double values and \c v is
+ /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
+ /// <tt>m[x]+v</tt>.
+ ///
+ /// \relates ShiftMap
+ template<typename M, typename C>
+ inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
+ return ShiftMap<M, C>(m,v);
+ }
+
+ /// Returns a \c ShiftWriteMap class
+
+ /// This function just returns a \c ShiftWriteMap class.
+ ///
+ /// For example, if \c m is a map with \c double values and \c v is
+ /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
+ /// <tt>m[x]+v</tt>.
+ /// Moreover it makes also possible to write the map.
+ ///
+ /// \relates ShiftWriteMap
+ template<typename M, typename C>
+ inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
+ return ShiftWriteMap<M, C>(m,v);
+ }
+
+
+ /// Scales a map with a constant.
+
+ /// This \ref concepts::ReadMap "read-only map" returns the value of
+ /// the given map multiplied from the left side with a constant value.
+ /// Its \c Key and \c Value are inherited from \c M.
+ ///
+ /// Actually,
+ /// \code
+ /// ScaleMap<M> sc(m,v);
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ConstMap<M::Key, M::Value> cm(v);
+ /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
+ /// \endcode
+ ///
+ /// The simplest way of using this map is through the scaleMap()
+ /// function.
+ ///
+ /// \sa ScaleWriteMap
+ template<typename M, typename C = typename M::Value>
+ class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
+ const M &_m;
+ C _v;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+
+ /// Constructor.
+ /// \param m The undelying map.
+ /// \param v The constant value.
+ ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
+ ///\e
+ Value operator[](const Key &k) const { return _v*_m[k]; }
+ };
+
+ /// Scales a map with a constant (read-write version).
+
+ /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
+ /// the given map multiplied from the left side with a constant value.
+ /// Its \c Key and \c Value are inherited from \c M.
+ /// It can also be used as write map if the \c / operator is defined
+ /// between \c Value and \c C and the given multiplier is not zero.
+ ///
+ /// The simplest way of using this map is through the scaleWriteMap()
+ /// function.
+ ///
+ /// \sa ScaleMap
+ template<typename M, typename C = typename M::Value>
+ class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
+ M &_m;
+ C _v;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+
+ /// Constructor.
+ /// \param m The undelying map.
+ /// \param v The constant value.
+ ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
+ ///\e
+ Value operator[](const Key &k) const { return _v*_m[k]; }
+ ///\e
+ void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
+ };
+
+ /// Returns a \c ScaleMap class
+
+ /// This function just returns a \c ScaleMap class.
+ ///
+ /// For example, if \c m is a map with \c double values and \c v is
+ /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
+ /// <tt>v*m[x]</tt>.
+ ///
+ /// \relates ScaleMap
+ template<typename M, typename C>
+ inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
+ return ScaleMap<M, C>(m,v);
+ }
+
+ /// Returns a \c ScaleWriteMap class
+
+ /// This function just returns a \c ScaleWriteMap class.
+ ///
+ /// For example, if \c m is a map with \c double values and \c v is
+ /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
+ /// <tt>v*m[x]</tt>.
+ /// Moreover it makes also possible to write the map.
+ ///
+ /// \relates ScaleWriteMap
+ template<typename M, typename C>
+ inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
+ return ScaleWriteMap<M, C>(m,v);
+ }
+
+
+ /// Negative of a map
+
+ /// This \ref concepts::ReadMap "read-only map" returns the negative
+ /// of the values of the given map (using the unary \c - operator).
+ /// Its \c Key and \c Value are inherited from \c M.
+ ///
+ /// If M::Value is \c int, \c double etc., then
+ /// \code
+ /// NegMap<M> neg(m);
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ScaleMap<M> neg(m,-1);
+ /// \endcode
+ ///
+ /// The simplest way of using this map is through the negMap()
+ /// function.
+ ///
+ /// \sa NegWriteMap
+ template<typename M>
+ class NegMap : public MapBase<typename M::Key, typename M::Value> {
+ const M& _m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+ NegMap(const M &m) : _m(m) {}
+ ///\e
+ Value operator[](const Key &k) const { return -_m[k]; }
+ };
+
+ /// Negative of a map (read-write version)
+
+ /// This \ref concepts::ReadWriteMap "read-write map" returns the
+ /// negative of the values of the given map (using the unary \c -
+ /// operator).
+ /// Its \c Key and \c Value are inherited from \c M.
+ /// It makes also possible to write the map.
+ ///
+ /// If M::Value is \c int, \c double etc., then
+ /// \code
+ /// NegWriteMap<M> neg(m);
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ScaleWriteMap<M> neg(m,-1);
+ /// \endcode
+ ///
+ /// The simplest way of using this map is through the negWriteMap()
+ /// function.
+ ///
+ /// \sa NegMap
+ template<typename M>
+ class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
+ M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+ NegWriteMap(M &m) : _m(m) {}
+ ///\e
+ Value operator[](const Key &k) const { return -_m[k]; }
+ ///\e
+ void set(const Key &k, const Value &v) { _m.set(k, -v); }
+ };
+
+ /// Returns a \c NegMap class
+
+ /// This function just returns a \c NegMap class.
+ ///
+ /// For example, if \c m is a map with \c double values, then
+ /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
+ ///
+ /// \relates NegMap
+ template <typename M>
+ inline NegMap<M> negMap(const M &m) {
+ return NegMap<M>(m);
+ }
+
+ /// Returns a \c NegWriteMap class
+
+ /// This function just returns a \c NegWriteMap class.
+ ///
+ /// For example, if \c m is a map with \c double values, then
+ /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
+ /// Moreover it makes also possible to write the map.
+ ///
+ /// \relates NegWriteMap
+ template <typename M>
+ inline NegWriteMap<M> negWriteMap(M &m) {
+ return NegWriteMap<M>(m);
+ }
+
+
+ /// Absolute value of a map
+
+ /// This \ref concepts::ReadMap "read-only map" returns the absolute
+ /// value of the values of the given map.
+ /// Its \c Key and \c Value are inherited from \c M.
+ /// \c Value must be comparable to \c 0 and the unary \c -
+ /// operator must be defined for it, of course.
+ ///
+ /// The simplest way of using this map is through the absMap()
+ /// function.
+ template<typename M>
+ class AbsMap : public MapBase<typename M::Key, typename M::Value> {
+ const M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef typename M::Value Value;
+
+ /// Constructor
+ AbsMap(const M &m) : _m(m) {}
+ ///\e
+ Value operator[](const Key &k) const {
+ Value tmp = _m[k];
+ return tmp >= 0 ? tmp : -tmp;
+ }
+
+ };
+
+ /// Returns an \c AbsMap class
+
+ /// This function just returns an \c AbsMap class.
+ ///
+ /// For example, if \c m is a map with \c double values, then
+ /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
+ /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
+ /// negative.
+ ///
+ /// \relates AbsMap
+ template<typename M>
+ inline AbsMap<M> absMap(const M &m) {
+ return AbsMap<M>(m);
+ }
+
+ /// @}
+
+ // Logical maps and map adaptors:
+
+ /// \addtogroup maps
+ /// @{
+
+ /// Constant \c true map.
+
+ /// This \ref concepts::ReadMap "read-only map" assigns \c true to
+ /// each key.
+ ///
+ /// Note that
+ /// \code
+ /// TrueMap<K> tm;
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ConstMap<K,bool> tm(true);
+ /// \endcode
+ ///
+ /// \sa FalseMap
+ /// \sa ConstMap
+ template <typename K>
+ class TrueMap : public MapBase<K, bool> {
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef bool Value;
+
+ /// Gives back \c true.
+ Value operator[](const Key&) const { return true; }
+ };
+
+ /// Returns a \c TrueMap class
+
+ /// This function just returns a \c TrueMap class.
+ /// \relates TrueMap
+ template<typename K>
+ inline TrueMap<K> trueMap() {
+ return TrueMap<K>();
+ }
+
+
+ /// Constant \c false map.
+
+ /// This \ref concepts::ReadMap "read-only map" assigns \c false to
+ /// each key.
+ ///
+ /// Note that
+ /// \code
+ /// FalseMap<K> fm;
+ /// \endcode
+ /// is equivalent to
+ /// \code
+ /// ConstMap<K,bool> fm(false);
+ /// \endcode
+ ///
+ /// \sa TrueMap
+ /// \sa ConstMap
+ template <typename K>
+ class FalseMap : public MapBase<K, bool> {
+ public:
+ ///\e
+ typedef K Key;
+ ///\e
+ typedef bool Value;
+
+ /// Gives back \c false.
+ Value operator[](const Key&) const { return false; }
+ };
+
+ /// Returns a \c FalseMap class
+
+ /// This function just returns a \c FalseMap class.
+ /// \relates FalseMap
+ template<typename K>
+ inline FalseMap<K> falseMap() {
+ return FalseMap<K>();
+ }
+
+ /// @}
+
+ /// \addtogroup map_adaptors
+ /// @{
+
+ /// Logical 'and' of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the logical
+ /// 'and' of the values of the two given maps.
+ /// Its \c Key type is inherited from \c M1 and its \c Value type is
+ /// \c bool. \c M2::Key must be convertible to \c M1::Key.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// AndMap<M1,M2> am(m1,m2);
+ /// \endcode
+ /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the andMap()
+ /// function.
+ ///
+ /// \sa OrMap
+ /// \sa NotMap, NotWriteMap
+ template<typename M1, typename M2>
+ class AndMap : public MapBase<typename M1::Key, bool> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
+ };
+
+ /// Returns an \c AndMap class
+
+ /// This function just returns an \c AndMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c bool values,
+ /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]&&m2[x]</tt>.
+ ///
+ /// \relates AndMap
+ template<typename M1, typename M2>
+ inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
+ return AndMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Logical 'or' of two maps
+
+ /// This \ref concepts::ReadMap "read-only map" returns the logical
+ /// 'or' of the values of the two given maps.
+ /// Its \c Key type is inherited from \c M1 and its \c Value type is
+ /// \c bool. \c M2::Key must be convertible to \c M1::Key.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// OrMap<M1,M2> om(m1,m2);
+ /// \endcode
+ /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the orMap()
+ /// function.
+ ///
+ /// \sa AndMap
+ /// \sa NotMap, NotWriteMap
+ template<typename M1, typename M2>
+ class OrMap : public MapBase<typename M1::Key, bool> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
+ };
+
+ /// Returns an \c OrMap class
+
+ /// This function just returns an \c OrMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are both maps with \c bool values,
+ /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]||m2[x]</tt>.
+ ///
+ /// \relates OrMap
+ template<typename M1, typename M2>
+ inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
+ return OrMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Logical 'not' of a map
+
+ /// This \ref concepts::ReadMap "read-only map" returns the logical
+ /// negation of the values of the given map.
+ /// Its \c Key is inherited from \c M and its \c Value is \c bool.
+ ///
+ /// The simplest way of using this map is through the notMap()
+ /// function.
+ ///
+ /// \sa NotWriteMap
+ template <typename M>
+ class NotMap : public MapBase<typename M::Key, bool> {
+ const M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ NotMap(const M &m) : _m(m) {}
+ ///\e
+ Value operator[](const Key &k) const { return !_m[k]; }
+ };
+
+ /// Logical 'not' of a map (read-write version)
+
+ /// This \ref concepts::ReadWriteMap "read-write map" returns the
+ /// logical negation of the values of the given map.
+ /// Its \c Key is inherited from \c M and its \c Value is \c bool.
+ /// It makes also possible to write the map. When a value is set,
+ /// the opposite value is set to the original map.
+ ///
+ /// The simplest way of using this map is through the notWriteMap()
+ /// function.
+ ///
+ /// \sa NotMap
+ template <typename M>
+ class NotWriteMap : public MapBase<typename M::Key, bool> {
+ M &_m;
+ public:
+ ///\e
+ typedef typename M::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ NotWriteMap(M &m) : _m(m) {}
+ ///\e
+ Value operator[](const Key &k) const { return !_m[k]; }
+ ///\e
+ void set(const Key &k, bool v) { _m.set(k, !v); }
+ };
+
+ /// Returns a \c NotMap class
+
+ /// This function just returns a \c NotMap class.
+ ///
+ /// For example, if \c m is a map with \c bool values, then
+ /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
+ ///
+ /// \relates NotMap
+ template <typename M>
+ inline NotMap<M> notMap(const M &m) {
+ return NotMap<M>(m);
+ }
+
+ /// Returns a \c NotWriteMap class
+
+ /// This function just returns a \c NotWriteMap class.
+ ///
+ /// For example, if \c m is a map with \c bool values, then
+ /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
+ /// Moreover it makes also possible to write the map.
+ ///
+ /// \relates NotWriteMap
+ template <typename M>
+ inline NotWriteMap<M> notWriteMap(M &m) {
+ return NotWriteMap<M>(m);
+ }
+
+
+ /// Combination of two maps using the \c == operator
+
+ /// This \ref concepts::ReadMap "read-only map" assigns \c true to
+ /// the keys for which the corresponding values of the two maps are
+ /// equal.
+ /// Its \c Key type is inherited from \c M1 and its \c Value type is
+ /// \c bool. \c M2::Key must be convertible to \c M1::Key.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// EqualMap<M1,M2> em(m1,m2);
+ /// \endcode
+ /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the equalMap()
+ /// function.
+ ///
+ /// \sa LessMap
+ template<typename M1, typename M2>
+ class EqualMap : public MapBase<typename M1::Key, bool> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
+ };
+
+ /// Returns an \c EqualMap class
+
+ /// This function just returns an \c EqualMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are maps with keys and values of
+ /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]==m2[x]</tt>.
+ ///
+ /// \relates EqualMap
+ template<typename M1, typename M2>
+ inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
+ return EqualMap<M1, M2>(m1,m2);
+ }
+
+
+ /// Combination of two maps using the \c < operator
+
+ /// This \ref concepts::ReadMap "read-only map" assigns \c true to
+ /// the keys for which the corresponding value of the first map is
+ /// less then the value of the second map.
+ /// Its \c Key type is inherited from \c M1 and its \c Value type is
+ /// \c bool. \c M2::Key must be convertible to \c M1::Key.
+ ///
+ /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
+ /// \code
+ /// LessMap<M1,M2> lm(m1,m2);
+ /// \endcode
+ /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
+ ///
+ /// The simplest way of using this map is through the lessMap()
+ /// function.
+ ///
+ /// \sa EqualMap
+ template<typename M1, typename M2>
+ class LessMap : public MapBase<typename M1::Key, bool> {
+ const M1 &_m1;
+ const M2 &_m2;
+ public:
+ ///\e
+ typedef typename M1::Key Key;
+ ///\e
+ typedef bool Value;
+
+ /// Constructor
+ LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
+ ///\e
+ Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
+ };
+
+ /// Returns an \c LessMap class
+
+ /// This function just returns an \c LessMap class.
+ ///
+ /// For example, if \c m1 and \c m2 are maps with keys and values of
+ /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
+ /// <tt>m1[x]<m2[x]</tt>.
+ ///
+ /// \relates LessMap
+ template<typename M1, typename M2>
+ inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
+ return LessMap<M1, M2>(m1,m2);
+ }
+
+ namespace _maps_bits {
+
+ template <typename _Iterator, typename Enable = void>
+ struct IteratorTraits {
+ typedef typename std::iterator_traits<_Iterator>::value_type Value;
+ };
+
+ template <typename _Iterator>
+ struct IteratorTraits<_Iterator,
+ typename exists<typename _Iterator::container_type>::type>
+ {
+ typedef typename _Iterator::container_type::value_type Value;
+ };
+
+ }
+
+ /// @}
+
+ /// \addtogroup maps
+ /// @{
+
+ /// \brief Writable bool map for logging each \c true assigned element
+ ///
+ /// A \ref concepts::WriteMap "writable" bool map for logging
+ /// each \c true assigned element, i.e it copies subsequently each
+ /// keys set to \c true to the given iterator.
+ /// The most important usage of it is storing certain nodes or arcs
+ /// that were marked \c true by an algorithm.
+ ///
+ /// There are several algorithms that provide solutions through bool
+ /// maps and most of them assign \c true at most once for each key.
+ /// In these cases it is a natural request to store each \c true
+ /// assigned elements (in order of the assignment), which can be
+ /// easily done with LoggerBoolMap.
+ ///
+ /// The simplest way of using this map is through the loggerBoolMap()
+ /// function.
+ ///
+ /// \tparam IT The type of the iterator.
+ /// \tparam KEY The key type of the map. The default value set
+ /// according to the iterator type should work in most cases.
+ ///
+ /// \note The container of the iterator must contain enough space
+ /// for the elements or the iterator should be an inserter iterator.
+#ifdef DOXYGEN
+ template <typename IT, typename KEY>
+#else
+ template <typename IT,
+ typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
+#endif
+ class LoggerBoolMap : public MapBase<KEY, bool> {
+ public:
+
+ ///\e
+ typedef KEY Key;
+ ///\e
+ typedef bool Value;
+ ///\e
+ typedef IT Iterator;
+
+ /// Constructor
+ LoggerBoolMap(Iterator it)
+ : _begin(it), _end(it) {}
+
+ /// Gives back the given iterator set for the first key
+ Iterator begin() const {
+ return _begin;
+ }
+
+ /// Gives back the the 'after the last' iterator
+ Iterator end() const {
+ return _end;
+ }
+
+ /// The set function of the map
+ void set(const Key& key, Value value) {
+ if (value) {
+ *_end++ = key;
+ }
+ }
+
+ private:
+ Iterator _begin;
+ Iterator _end;
+ };
+
+ /// Returns a \c LoggerBoolMap class
+
+ /// This function just returns a \c LoggerBoolMap class.
+ ///
+ /// The most important usage of it is storing certain nodes or arcs
+ /// that were marked \c true by an algorithm.
+ /// For example, it makes easier to store the nodes in the processing
+ /// order of Dfs algorithm, as the following examples show.
+ /// \code
+ /// std::vector<Node> v;
+ /// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
+ /// \endcode
+ /// \code
+ /// std::vector<Node> v(countNodes(g));
+ /// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
+ /// \endcode
+ ///
+ /// \note The container of the iterator must contain enough space
+ /// for the elements or the iterator should be an inserter iterator.
+ ///
+ /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
+ /// it cannot be used when a readable map is needed, for example, as
+ /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
+ ///
+ /// \relates LoggerBoolMap
+ template<typename Iterator>
+ inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
+ return LoggerBoolMap<Iterator>(it);
+ }
+
+ /// @}
+
+ /// \addtogroup graph_maps
+ /// @{
+
+ /// \brief Provides an immutable and unique id for each item in a graph.
+ ///
+ /// IdMap provides a unique and immutable id for each item of the
+ /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
+ /// - \b unique: different items get different ids,
+ /// - \b immutable: the id of an item does not change (even if you
+ /// delete other nodes).
+ ///
+ /// Using this map you get access (i.e. can read) the inner id values of
+ /// the items stored in the graph, which is returned by the \c id()
+ /// function of the graph. This map can be inverted with its member
+ /// class \c InverseMap or with the \c operator()() member.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ ///
+ /// \see RangeIdMap
+ template <typename GR, typename K>
+ class IdMap : public MapBase<K, int> {
+ public:
+ /// The graph type of IdMap.
+ typedef GR Graph;
+ typedef GR Digraph;
+ /// The key type of IdMap (\c Node, \c Arc or \c Edge).
+ typedef K Item;
+ /// The key type of IdMap (\c Node, \c Arc or \c Edge).
+ typedef K Key;
+ /// The value type of IdMap.
+ typedef int Value;
+
+ /// \brief Constructor.
+ ///
+ /// Constructor of the map.
+ explicit IdMap(const Graph& graph) : _graph(&graph) {}
+
+ /// \brief Gives back the \e id of the item.
+ ///
+ /// Gives back the immutable and unique \e id of the item.
+ int operator[](const Item& item) const { return _graph->id(item);}
+
+ /// \brief Gives back the \e item by its id.
+ ///
+ /// Gives back the \e item by its id.
+ Item operator()(int id) { return _graph->fromId(id, Item()); }
+
+ private:
+ const Graph* _graph;
+
+ public:
+
+ /// \brief The inverse map type of IdMap.
+ ///
+ /// The inverse map type of IdMap. The subscript operator gives back
+ /// an item by its id.
+ /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
+ /// \see inverse()
+ class InverseMap {
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor for creating an id-to-item map.
+ explicit InverseMap(const Graph& graph) : _graph(&graph) {}
+
+ /// \brief Constructor.
+ ///
+ /// Constructor for creating an id-to-item map.
+ explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
+
+ /// \brief Gives back an item by its id.
+ ///
+ /// Gives back an item by its id.
+ Item operator[](int id) const { return _graph->fromId(id, Item());}
+
+ private:
+ const Graph* _graph;
+ };
+
+ /// \brief Gives back the inverse of the map.
+ ///
+ /// Gives back the inverse of the IdMap.
+ InverseMap inverse() const { return InverseMap(*_graph);}
+ };
+
+ /// \brief Returns an \c IdMap class.
+ ///
+ /// This function just returns an \c IdMap class.
+ /// \relates IdMap
+ template <typename K, typename GR>
+ inline IdMap<GR, K> idMap(const GR& graph) {
+ return IdMap<GR, K>(graph);
+ }
+
+ /// \brief General cross reference graph map type.
+
+ /// This class provides simple invertable graph maps.
+ /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
+ /// and if a key is set to a new value, then stores it in the inverse map.
+ /// The graph items can be accessed by their values either using
+ /// \c InverseMap or \c operator()(), and the values of the map can be
+ /// accessed with an STL compatible forward iterator (\c ValueIt).
+ ///
+ /// This map is intended to be used when all associated values are
+ /// different (the map is actually invertable) or there are only a few
+ /// items with the same value.
+ /// Otherwise consider to use \c IterableValueMap, which is more
+ /// suitable and more efficient for such cases. It provides iterators
+ /// to traverse the items with the same associated value, but
+ /// it does not have \c InverseMap.
+ ///
+ /// This type is not reference map, so it cannot be modified with
+ /// the subscript operator.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ /// \tparam V The value type of the map.
+ ///
+ /// \see IterableValueMap
+ template <typename GR, typename K, typename V>
+ class CrossRefMap
+ : protected ItemSetTraits<GR, K>::template Map<V>::Type {
+ private:
+
+ typedef typename ItemSetTraits<GR, K>::
+ template Map<V>::Type Map;
+
+ typedef std::multimap<V, K> Container;
+ Container _inv_map;
+
+ public:
+
+ /// The graph type of CrossRefMap.
+ typedef GR Graph;
+ typedef GR Digraph;
+ /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
+ typedef K Item;
+ /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
+ typedef K Key;
+ /// The value type of CrossRefMap.
+ typedef V Value;
+
+ /// \brief Constructor.
+ ///
+ /// Construct a new CrossRefMap for the given graph.
+ explicit CrossRefMap(const Graph& graph) : Map(graph) {}
+
+ /// \brief Forward iterator for values.
+ ///
+ /// This iterator is an STL compatible forward
+ /// iterator on the values of the map. The values can
+ /// be accessed in the <tt>[beginValue, endValue)</tt> range.
+ /// They are considered with multiplicity, so each value is
+ /// traversed for each item it is assigned to.
+ class ValueIt
+ : public std::iterator<std::forward_iterator_tag, Value> {
+ friend class CrossRefMap;
+ private:
+ ValueIt(typename Container::const_iterator _it)
+ : it(_it) {}
+ public:
+
+ /// Constructor
+ ValueIt() {}
+
+ /// \e
+ ValueIt& operator++() { ++it; return *this; }
+ /// \e
+ ValueIt operator++(int) {
+ ValueIt tmp(*this);
+ operator++();
+ return tmp;
+ }
+
+ /// \e
+ const Value& operator*() const { return it->first; }
+ /// \e
+ const Value* operator->() const { return &(it->first); }
+
+ /// \e
+ bool operator==(ValueIt jt) const { return it == jt.it; }
+ /// \e
+ bool operator!=(ValueIt jt) const { return it != jt.it; }
+
+ private:
+ typename Container::const_iterator it;
+ };
+
+ /// Alias for \c ValueIt
+ typedef ValueIt ValueIterator;
+
+ /// \brief Returns an iterator to the first value.
+ ///
+ /// Returns an STL compatible iterator to the
+ /// first value of the map. The values of the
+ /// map can be accessed in the <tt>[beginValue, endValue)</tt>
+ /// range.
+ ValueIt beginValue() const {
+ return ValueIt(_inv_map.begin());
+ }
+
+ /// \brief Returns an iterator after the last value.
+ ///
+ /// Returns an STL compatible iterator after the
+ /// last value of the map. The values of the
+ /// map can be accessed in the <tt>[beginValue, endValue)</tt>
+ /// range.
+ ValueIt endValue() const {
+ return ValueIt(_inv_map.end());
+ }
+
+ /// \brief Sets the value associated with the given key.
+ ///
+ /// Sets the value associated with the given key.
+ void set(const Key& key, const Value& val) {
+ Value oldval = Map::operator[](key);
+ typename Container::iterator it;
+ for (it = _inv_map.equal_range(oldval).first;
+ it != _inv_map.equal_range(oldval).second; ++it) {
+ if (it->second == key) {
+ _inv_map.erase(it);
+ break;
+ }
+ }
+ _inv_map.insert(std::make_pair(val, key));
+ Map::set(key, val);
+ }
+
+ /// \brief Returns the value associated with the given key.
+ ///
+ /// Returns the value associated with the given key.
+ typename MapTraits<Map>::ConstReturnValue
+ operator[](const Key& key) const {
+ return Map::operator[](key);
+ }
+
+ /// \brief Gives back an item by its value.
+ ///
+ /// This function gives back an item that is assigned to
+ /// the given value or \c INVALID if no such item exists.
+ /// If there are more items with the same associated value,
+ /// only one of them is returned.
+ Key operator()(const Value& val) const {
+ typename Container::const_iterator it = _inv_map.find(val);
+ return it != _inv_map.end() ? it->second : INVALID;
+ }
+
+ /// \brief Returns the number of items with the given value.
+ ///
+ /// This function returns the number of items with the given value
+ /// associated with it.
+ int count(const Value &val) const {
+ return _inv_map.count(val);
+ }
+
+ protected:
+
+ /// \brief Erase the key from the map and the inverse map.
+ ///
+ /// Erase the key from the map and the inverse map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void erase(const Key& key) {
+ Value val = Map::operator[](key);
+ typename Container::iterator it;
+ for (it = _inv_map.equal_range(val).first;
+ it != _inv_map.equal_range(val).second; ++it) {
+ if (it->second == key) {
+ _inv_map.erase(it);
+ break;
+ }
+ }
+ Map::erase(key);
+ }
+
+ /// \brief Erase more keys from the map and the inverse map.
+ ///
+ /// Erase more keys from the map and the inverse map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void erase(const std::vector<Key>& keys) {
+ for (int i = 0; i < int(keys.size()); ++i) {
+ Value val = Map::operator[](keys[i]);
+ typename Container::iterator it;
+ for (it = _inv_map.equal_range(val).first;
+ it != _inv_map.equal_range(val).second; ++it) {
+ if (it->second == keys[i]) {
+ _inv_map.erase(it);
+ break;
+ }
+ }
+ }
+ Map::erase(keys);
+ }
+
+ /// \brief Clear the keys from the map and the inverse map.
+ ///
+ /// Clear the keys from the map and the inverse map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void clear() {
+ _inv_map.clear();
+ Map::clear();
+ }
+
+ public:
+
+ /// \brief The inverse map type of CrossRefMap.
+ ///
+ /// The inverse map type of CrossRefMap. The subscript operator gives
+ /// back an item by its value.
+ /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
+ /// \see inverse()
+ class InverseMap {
+ public:
+ /// \brief Constructor
+ ///
+ /// Constructor of the InverseMap.
+ explicit InverseMap(const CrossRefMap& inverted)
+ : _inverted(inverted) {}
+
+ /// The value type of the InverseMap.
+ typedef typename CrossRefMap::Key Value;
+ /// The key type of the InverseMap.
+ typedef typename CrossRefMap::Value Key;
+
+ /// \brief Subscript operator.
+ ///
+ /// Subscript operator. It gives back an item
+ /// that is assigned to the given value or \c INVALID
+ /// if no such item exists.
+ Value operator[](const Key& key) const {
+ return _inverted(key);
+ }
+
+ private:
+ const CrossRefMap& _inverted;
+ };
+
+ /// \brief Gives back the inverse of the map.
+ ///
+ /// Gives back the inverse of the CrossRefMap.
+ InverseMap inverse() const {
+ return InverseMap(*this);
+ }
+
+ };
+
+ /// \brief Provides continuous and unique id for the
+ /// items of a graph.
+ ///
+ /// RangeIdMap provides a unique and continuous
+ /// id for each item of a given type (\c Node, \c Arc or
+ /// \c Edge) in a graph. This id is
+ /// - \b unique: different items get different ids,
+ /// - \b continuous: the range of the ids is the set of integers
+ /// between 0 and \c n-1, where \c n is the number of the items of
+ /// this type (\c Node, \c Arc or \c Edge).
+ /// - So, the ids can change when deleting an item of the same type.
+ ///
+ /// Thus this id is not (necessarily) the same as what can get using
+ /// the \c id() function of the graph or \ref IdMap.
+ /// This map can be inverted with its member class \c InverseMap,
+ /// or with the \c operator()() member.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ ///
+ /// \see IdMap
+ template <typename GR, typename K>
+ class RangeIdMap
+ : protected ItemSetTraits<GR, K>::template Map<int>::Type {
+
+ typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
+
+ public:
+ /// The graph type of RangeIdMap.
+ typedef GR Graph;
+ typedef GR Digraph;
+ /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
+ typedef K Item;
+ /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
+ typedef K Key;
+ /// The value type of RangeIdMap.
+ typedef int Value;
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ explicit RangeIdMap(const Graph& gr) : Map(gr) {
+ Item it;
+ const typename Map::Notifier* nf = Map::notifier();
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Map::set(it, _inv_map.size());
+ _inv_map.push_back(it);
+ }
+ }
+
+ protected:
+
+ /// \brief Adds a new key to the map.
+ ///
+ /// Add a new key to the map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void add(const Item& item) {
+ Map::add(item);
+ Map::set(item, _inv_map.size());
+ _inv_map.push_back(item);
+ }
+
+ /// \brief Add more new keys to the map.
+ ///
+ /// Add more new keys to the map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void add(const std::vector<Item>& items) {
+ Map::add(items);
+ for (int i = 0; i < int(items.size()); ++i) {
+ Map::set(items[i], _inv_map.size());
+ _inv_map.push_back(items[i]);
+ }
+ }
+
+ /// \brief Erase the key from the map.
+ ///
+ /// Erase the key from the map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void erase(const Item& item) {
+ Map::set(_inv_map.back(), Map::operator[](item));
+ _inv_map[Map::operator[](item)] = _inv_map.back();
+ _inv_map.pop_back();
+ Map::erase(item);
+ }
+
+ /// \brief Erase more keys from the map.
+ ///
+ /// Erase more keys from the map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void erase(const std::vector<Item>& items) {
+ for (int i = 0; i < int(items.size()); ++i) {
+ Map::set(_inv_map.back(), Map::operator[](items[i]));
+ _inv_map[Map::operator[](items[i])] = _inv_map.back();
+ _inv_map.pop_back();
+ }
+ Map::erase(items);
+ }
+
+ /// \brief Build the unique map.
+ ///
+ /// Build the unique map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void build() {
+ Map::build();
+ Item it;
+ const typename Map::Notifier* nf = Map::notifier();
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Map::set(it, _inv_map.size());
+ _inv_map.push_back(it);
+ }
+ }
+
+ /// \brief Clear the keys from the map.
+ ///
+ /// Clear the keys from the map. It is called by the
+ /// \c AlterationNotifier.
+ virtual void clear() {
+ _inv_map.clear();
+ Map::clear();
+ }
+
+ public:
+
+ /// \brief Returns the maximal value plus one.
+ ///
+ /// Returns the maximal value plus one in the map.
+ unsigned int size() const {
+ return _inv_map.size();
+ }
+
+ /// \brief Swaps the position of the two items in the map.
+ ///
+ /// Swaps the position of the two items in the map.
+ void swap(const Item& p, const Item& q) {
+ int pi = Map::operator[](p);
+ int qi = Map::operator[](q);
+ Map::set(p, qi);
+ _inv_map[qi] = p;
+ Map::set(q, pi);
+ _inv_map[pi] = q;
+ }
+
+ /// \brief Gives back the \e range \e id of the item
+ ///
+ /// Gives back the \e range \e id of the item.
+ int operator[](const Item& item) const {
+ return Map::operator[](item);
+ }
+
+ /// \brief Gives back the item belonging to a \e range \e id
+ ///
+ /// Gives back the item belonging to the given \e range \e id.
+ Item operator()(int id) const {
+ return _inv_map[id];
+ }
+
+ private:
+
+ typedef std::vector<Item> Container;
+ Container _inv_map;
+
+ public:
+
+ /// \brief The inverse map type of RangeIdMap.
+ ///
+ /// The inverse map type of RangeIdMap. The subscript operator gives
+ /// back an item by its \e range \e id.
+ /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
+ class InverseMap {
+ public:
+ /// \brief Constructor
+ ///
+ /// Constructor of the InverseMap.
+ explicit InverseMap(const RangeIdMap& inverted)
+ : _inverted(inverted) {}
+
+
+ /// The value type of the InverseMap.
+ typedef typename RangeIdMap::Key Value;
+ /// The key type of the InverseMap.
+ typedef typename RangeIdMap::Value Key;
+
+ /// \brief Subscript operator.
+ ///
+ /// Subscript operator. It gives back the item
+ /// that the given \e range \e id currently belongs to.
+ Value operator[](const Key& key) const {
+ return _inverted(key);
+ }
+
+ /// \brief Size of the map.
+ ///
+ /// Returns the size of the map.
+ unsigned int size() const {
+ return _inverted.size();
+ }
+
+ private:
+ const RangeIdMap& _inverted;
+ };
+
+ /// \brief Gives back the inverse of the map.
+ ///
+ /// Gives back the inverse of the RangeIdMap.
+ const InverseMap inverse() const {
+ return InverseMap(*this);
+ }
+ };
+
+ /// \brief Returns a \c RangeIdMap class.
+ ///
+ /// This function just returns an \c RangeIdMap class.
+ /// \relates RangeIdMap
+ template <typename K, typename GR>
+ inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
+ return RangeIdMap<GR, K>(graph);
+ }
+
+ /// \brief Dynamic iterable \c bool map.
+ ///
+ /// This class provides a special graph map type which can store a
+ /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
+ /// For both \c true and \c false values it is possible to iterate on
+ /// the keys mapped to the value.
+ ///
+ /// This type is a reference map, so it can be modified with the
+ /// subscript operator.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ ///
+ /// \see IterableIntMap, IterableValueMap
+ /// \see CrossRefMap
+ template <typename GR, typename K>
+ class IterableBoolMap
+ : protected ItemSetTraits<GR, K>::template Map<int>::Type {
+ private:
+ typedef GR Graph;
+
+ typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
+ typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
+
+ std::vector<K> _array;
+ int _sep;
+
+ public:
+
+ /// Indicates that the map is reference map.
+ typedef True ReferenceMapTag;
+
+ /// The key type
+ typedef K Key;
+ /// The value type
+ typedef bool Value;
+ /// The const reference type.
+ typedef const Value& ConstReference;
+
+ private:
+
+ int position(const Key& key) const {
+ return Parent::operator[](key);
+ }
+
+ public:
+
+ /// \brief Reference to the value of the map.
+ ///
+ /// This class is similar to the \c bool type. It can be converted to
+ /// \c bool and it provides the same operators.
+ class Reference {
+ friend class IterableBoolMap;
+ private:
+ Reference(IterableBoolMap& map, const Key& key)
+ : _key(key), _map(map) {}
+ public:
+
+ Reference& operator=(const Reference& value) {
+ _map.set(_key, static_cast<bool>(value));
+ return *this;
+ }
+
+ operator bool() const {
+ return static_cast<const IterableBoolMap&>(_map)[_key];
+ }
+
+ Reference& operator=(bool value) {
+ _map.set(_key, value);
+ return *this;
+ }
+ Reference& operator&=(bool value) {
+ _map.set(_key, _map[_key] & value);
+ return *this;
+ }
+ Reference& operator|=(bool value) {
+ _map.set(_key, _map[_key] | value);
+ return *this;
+ }
+ Reference& operator^=(bool value) {
+ _map.set(_key, _map[_key] ^ value);
+ return *this;
+ }
+ private:
+ Key _key;
+ IterableBoolMap& _map;
+ };
+
+ /// \brief Constructor of the map with a default value.
+ ///
+ /// Constructor of the map with a default value.
+ explicit IterableBoolMap(const Graph& graph, bool def = false)
+ : Parent(graph) {
+ typename Parent::Notifier* nf = Parent::notifier();
+ Key it;
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Parent::set(it, _array.size());
+ _array.push_back(it);
+ }
+ _sep = (def ? _array.size() : 0);
+ }
+
+ /// \brief Const subscript operator of the map.
+ ///
+ /// Const subscript operator of the map.
+ bool operator[](const Key& key) const {
+ return position(key) < _sep;
+ }
+
+ /// \brief Subscript operator of the map.
+ ///
+ /// Subscript operator of the map.
+ Reference operator[](const Key& key) {
+ return Reference(*this, key);
+ }
+
+ /// \brief Set operation of the map.
+ ///
+ /// Set operation of the map.
+ void set(const Key& key, bool value) {
+ int pos = position(key);
+ if (value) {
+ if (pos < _sep) return;
+ Key tmp = _array[_sep];
+ _array[_sep] = key;
+ Parent::set(key, _sep);
+ _array[pos] = tmp;
+ Parent::set(tmp, pos);
+ ++_sep;
+ } else {
+ if (pos >= _sep) return;
+ --_sep;
+ Key tmp = _array[_sep];
+ _array[_sep] = key;
+ Parent::set(key, _sep);
+ _array[pos] = tmp;
+ Parent::set(tmp, pos);
+ }
+ }
+
+ /// \brief Set all items.
+ ///
+ /// Set all items in the map.
+ /// \note Constant time operation.
+ void setAll(bool value) {
+ _sep = (value ? _array.size() : 0);
+ }
+
+ /// \brief Returns the number of the keys mapped to \c true.
+ ///
+ /// Returns the number of the keys mapped to \c true.
+ int trueNum() const {
+ return _sep;
+ }
+
+ /// \brief Returns the number of the keys mapped to \c false.
+ ///
+ /// Returns the number of the keys mapped to \c false.
+ int falseNum() const {
+ return _array.size() - _sep;
+ }
+
+ /// \brief Iterator for the keys mapped to \c true.
+ ///
+ /// Iterator for the keys mapped to \c true. It works
+ /// like a graph item iterator, it can be converted to
+ /// the key type of the map, incremented with \c ++ operator, and
+ /// if the iterator leaves the last valid key, it will be equal to
+ /// \c INVALID.
+ class TrueIt : public Key {
+ public:
+ typedef Key Parent;
+
+ /// \brief Creates an iterator.
+ ///
+ /// Creates an iterator. It iterates on the
+ /// keys mapped to \c true.
+ /// \param map The IterableBoolMap.
+ explicit TrueIt(const IterableBoolMap& map)
+ : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
+ _map(&map) {}
+
+ /// \brief Invalid constructor \& conversion.
+ ///
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ TrueIt(Invalid) : Parent(INVALID), _map(0) {}
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ TrueIt& operator++() {
+ int pos = _map->position(*this);
+ Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
+ return *this;
+ }
+
+ private:
+ const IterableBoolMap* _map;
+ };
+
+ /// \brief Iterator for the keys mapped to \c false.
+ ///
+ /// Iterator for the keys mapped to \c false. It works
+ /// like a graph item iterator, it can be converted to
+ /// the key type of the map, incremented with \c ++ operator, and
+ /// if the iterator leaves the last valid key, it will be equal to
+ /// \c INVALID.
+ class FalseIt : public Key {
+ public:
+ typedef Key Parent;
+
+ /// \brief Creates an iterator.
+ ///
+ /// Creates an iterator. It iterates on the
+ /// keys mapped to \c false.
+ /// \param map The IterableBoolMap.
+ explicit FalseIt(const IterableBoolMap& map)
+ : Parent(map._sep < int(map._array.size()) ?
+ map._array.back() : INVALID), _map(&map) {}
+
+ /// \brief Invalid constructor \& conversion.
+ ///
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ FalseIt(Invalid) : Parent(INVALID), _map(0) {}
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ FalseIt& operator++() {
+ int pos = _map->position(*this);
+ Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
+ return *this;
+ }
+
+ private:
+ const IterableBoolMap* _map;
+ };
+
+ /// \brief Iterator for the keys mapped to a given value.
+ ///
+ /// Iterator for the keys mapped to a given value. It works
+ /// like a graph item iterator, it can be converted to
+ /// the key type of the map, incremented with \c ++ operator, and
+ /// if the iterator leaves the last valid key, it will be equal to
+ /// \c INVALID.
+ class ItemIt : public Key {
+ public:
+ typedef Key Parent;
+
+ /// \brief Creates an iterator with a value.
+ ///
+ /// Creates an iterator with a value. It iterates on the
+ /// keys mapped to the given value.
+ /// \param map The IterableBoolMap.
+ /// \param value The value.
+ ItemIt(const IterableBoolMap& map, bool value)
+ : Parent(value ?
+ (map._sep > 0 ?
+ map._array[map._sep - 1] : INVALID) :
+ (map._sep < int(map._array.size()) ?
+ map._array.back() : INVALID)), _map(&map) {}
+
+ /// \brief Invalid constructor \& conversion.
+ ///
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ItemIt(Invalid) : Parent(INVALID), _map(0) {}
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ ItemIt& operator++() {
+ int pos = _map->position(*this);
+ int _sep = pos >= _map->_sep ? _map->_sep : 0;
+ Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
+ return *this;
+ }
+
+ private:
+ const IterableBoolMap* _map;
+ };
+
+ protected:
+
+ virtual void add(const Key& key) {
+ Parent::add(key);
+ Parent::set(key, _array.size());
+ _array.push_back(key);
+ }
+
+ virtual void add(const std::vector<Key>& keys) {
+ Parent::add(keys);
+ for (int i = 0; i < int(keys.size()); ++i) {
+ Parent::set(keys[i], _array.size());
+ _array.push_back(keys[i]);
+ }
+ }
+
+ virtual void erase(const Key& key) {
+ int pos = position(key);
+ if (pos < _sep) {
+ --_sep;
+ Parent::set(_array[_sep], pos);
+ _array[pos] = _array[_sep];
+ Parent::set(_array.back(), _sep);
+ _array[_sep] = _array.back();
+ _array.pop_back();
+ } else {
+ Parent::set(_array.back(), pos);
+ _array[pos] = _array.back();
+ _array.pop_back();
+ }
+ Parent::erase(key);
+ }
+
+ virtual void erase(const std::vector<Key>& keys) {
+ for (int i = 0; i < int(keys.size()); ++i) {
+ int pos = position(keys[i]);
+ if (pos < _sep) {
+ --_sep;
+ Parent::set(_array[_sep], pos);
+ _array[pos] = _array[_sep];
+ Parent::set(_array.back(), _sep);
+ _array[_sep] = _array.back();
+ _array.pop_back();
+ } else {
+ Parent::set(_array.back(), pos);
+ _array[pos] = _array.back();
+ _array.pop_back();
+ }
+ }
+ Parent::erase(keys);
+ }
+
+ virtual void build() {
+ Parent::build();
+ typename Parent::Notifier* nf = Parent::notifier();
+ Key it;
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Parent::set(it, _array.size());
+ _array.push_back(it);
+ }
+ _sep = 0;
+ }
+
+ virtual void clear() {
+ _array.clear();
+ _sep = 0;
+ Parent::clear();
+ }
+
+ };
+
+
+ namespace _maps_bits {
+ template <typename Item>
+ struct IterableIntMapNode {
+ IterableIntMapNode() : value(-1) {}
+ IterableIntMapNode(int _value) : value(_value) {}
+ Item prev, next;
+ int value;
+ };
+ }
+
+ /// \brief Dynamic iterable integer map.
+ ///
+ /// This class provides a special graph map type which can store an
+ /// integer value for graph items (\c Node, \c Arc or \c Edge).
+ /// For each non-negative value it is possible to iterate on the keys
+ /// mapped to the value.
+ ///
+ /// This map is intended to be used with small integer values, for which
+ /// it is efficient, and supports iteration only for non-negative values.
+ /// If you need large values and/or iteration for negative integers,
+ /// consider to use \ref IterableValueMap instead.
+ ///
+ /// This type is a reference map, so it can be modified with the
+ /// subscript operator.
+ ///
+ /// \note The size of the data structure depends on the largest
+ /// value in the map.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ ///
+ /// \see IterableBoolMap, IterableValueMap
+ /// \see CrossRefMap
+ template <typename GR, typename K>
+ class IterableIntMap
+ : protected ItemSetTraits<GR, K>::
+ template Map<_maps_bits::IterableIntMapNode<K> >::Type {
+ public:
+ typedef typename ItemSetTraits<GR, K>::
+ template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
+
+ /// The key type
+ typedef K Key;
+ /// The value type
+ typedef int Value;
+ /// The graph type
+ typedef GR Graph;
+
+ /// \brief Constructor of the map.
+ ///
+ /// Constructor of the map. It sets all values to -1.
+ explicit IterableIntMap(const Graph& graph)
+ : Parent(graph) {}
+
+ /// \brief Constructor of the map with a given value.
+ ///
+ /// Constructor of the map with a given value.
+ explicit IterableIntMap(const Graph& graph, int value)
+ : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
+ if (value >= 0) {
+ for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
+ lace(it);
+ }
+ }
+ }
+
+ private:
+
+ void unlace(const Key& key) {
+ typename Parent::Value& node = Parent::operator[](key);
+ if (node.value < 0) return;
+ if (node.prev != INVALID) {
+ Parent::operator[](node.prev).next = node.next;
+ } else {
+ _first[node.value] = node.next;
+ }
+ if (node.next != INVALID) {
+ Parent::operator[](node.next).prev = node.prev;
+ }
+ while (!_first.empty() && _first.back() == INVALID) {
+ _first.pop_back();
+ }
+ }
+
+ void lace(const Key& key) {
+ typename Parent::Value& node = Parent::operator[](key);
+ if (node.value < 0) return;
+ if (node.value >= int(_first.size())) {
+ _first.resize(node.value + 1, INVALID);
+ }
+ node.prev = INVALID;
+ node.next = _first[node.value];
+ if (node.next != INVALID) {
+ Parent::operator[](node.next).prev = key;
+ }
+ _first[node.value] = key;
+ }
+
+ public:
+
+ /// Indicates that the map is reference map.
+ typedef True ReferenceMapTag;
+
+ /// \brief Reference to the value of the map.
+ ///
+ /// This class is similar to the \c int type. It can
+ /// be converted to \c int and it has the same operators.
+ class Reference {
+ friend class IterableIntMap;
+ private:
+ Reference(IterableIntMap& map, const Key& key)
+ : _key(key), _map(map) {}
+ public:
+
+ Reference& operator=(const Reference& value) {
+ _map.set(_key, static_cast<const int&>(value));
+ return *this;
+ }
+
+ operator const int&() const {
+ return static_cast<const IterableIntMap&>(_map)[_key];
+ }
+
+ Reference& operator=(int value) {
+ _map.set(_key, value);
+ return *this;
+ }
+ Reference& operator++() {
+ _map.set(_key, _map[_key] + 1);
+ return *this;
+ }
+ int operator++(int) {
+ int value = _map[_key];
+ _map.set(_key, value + 1);
+ return value;
+ }
+ Reference& operator--() {
+ _map.set(_key, _map[_key] - 1);
+ return *this;
+ }
+ int operator--(int) {
+ int value = _map[_key];
+ _map.set(_key, value - 1);
+ return value;
+ }
+ Reference& operator+=(int value) {
+ _map.set(_key, _map[_key] + value);
+ return *this;
+ }
+ Reference& operator-=(int value) {
+ _map.set(_key, _map[_key] - value);
+ return *this;
+ }
+ Reference& operator*=(int value) {
+ _map.set(_key, _map[_key] * value);
+ return *this;
+ }
+ Reference& operator/=(int value) {
+ _map.set(_key, _map[_key] / value);
+ return *this;
+ }
+ Reference& operator%=(int value) {
+ _map.set(_key, _map[_key] % value);
+ return *this;
+ }
+ Reference& operator&=(int value) {
+ _map.set(_key, _map[_key] & value);
+ return *this;
+ }
+ Reference& operator|=(int value) {
+ _map.set(_key, _map[_key] | value);
+ return *this;
+ }
+ Reference& operator^=(int value) {
+ _map.set(_key, _map[_key] ^ value);
+ return *this;
+ }
+ Reference& operator<<=(int value) {
+ _map.set(_key, _map[_key] << value);
+ return *this;
+ }
+ Reference& operator>>=(int value) {
+ _map.set(_key, _map[_key] >> value);
+ return *this;
+ }
+
+ private:
+ Key _key;
+ IterableIntMap& _map;
+ };
+
+ /// The const reference type.
+ typedef const Value& ConstReference;
+
+ /// \brief Gives back the maximal value plus one.
+ ///
+ /// Gives back the maximal value plus one.
+ int size() const {
+ return _first.size();
+ }
+
+ /// \brief Set operation of the map.
+ ///
+ /// Set operation of the map.
+ void set(const Key& key, const Value& value) {
+ unlace(key);
+ Parent::operator[](key).value = value;
+ lace(key);
+ }
+
+ /// \brief Const subscript operator of the map.
+ ///
+ /// Const subscript operator of the map.
+ const Value& operator[](const Key& key) const {
+ return Parent::operator[](key).value;
+ }
+
+ /// \brief Subscript operator of the map.
+ ///
+ /// Subscript operator of the map.
+ Reference operator[](const Key& key) {
+ return Reference(*this, key);
+ }
+
+ /// \brief Iterator for the keys with the same value.
+ ///
+ /// Iterator for the keys with the same value. It works
+ /// like a graph item iterator, it can be converted to
+ /// the item type of the map, incremented with \c ++ operator, and
+ /// if the iterator leaves the last valid item, it will be equal to
+ /// \c INVALID.
+ class ItemIt : public Key {
+ public:
+ typedef Key Parent;
+
+ /// \brief Invalid constructor \& conversion.
+ ///
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ItemIt(Invalid) : Parent(INVALID), _map(0) {}
+
+ /// \brief Creates an iterator with a value.
+ ///
+ /// Creates an iterator with a value. It iterates on the
+ /// keys mapped to the given value.
+ /// \param map The IterableIntMap.
+ /// \param value The value.
+ ItemIt(const IterableIntMap& map, int value) : _map(&map) {
+ if (value < 0 || value >= int(_map->_first.size())) {
+ Parent::operator=(INVALID);
+ } else {
+ Parent::operator=(_map->_first[value]);
+ }
+ }
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ ItemIt& operator++() {
+ Parent::operator=(_map->IterableIntMap::Parent::
+ operator[](static_cast<Parent&>(*this)).next);
+ return *this;
+ }
+
+ private:
+ const IterableIntMap* _map;
+ };
+
+ protected:
+
+ virtual void erase(const Key& key) {
+ unlace(key);
+ Parent::erase(key);
+ }
+
+ virtual void erase(const std::vector<Key>& keys) {
+ for (int i = 0; i < int(keys.size()); ++i) {
+ unlace(keys[i]);
+ }
+ Parent::erase(keys);
+ }
+
+ virtual void clear() {
+ _first.clear();
+ Parent::clear();
+ }
+
+ private:
+ std::vector<Key> _first;
+ };
+
+ namespace _maps_bits {
+ template <typename Item, typename Value>
+ struct IterableValueMapNode {
+ IterableValueMapNode(Value _value = Value()) : value(_value) {}
+ Item prev, next;
+ Value value;
+ };
+ }
+
+ /// \brief Dynamic iterable map for comparable values.
+ ///
+ /// This class provides a special graph map type which can store a
+ /// comparable value for graph items (\c Node, \c Arc or \c Edge).
+ /// For each value it is possible to iterate on the keys mapped to
+ /// the value (\c ItemIt), and the values of the map can be accessed
+ /// with an STL compatible forward iterator (\c ValueIt).
+ /// The map stores a linked list for each value, which contains
+ /// the items mapped to the value, and the used values are stored
+ /// in balanced binary tree (\c std::map).
+ ///
+ /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
+ /// specialized for \c bool and \c int values, respectively.
+ ///
+ /// This type is not reference map, so it cannot be modified with
+ /// the subscript operator.
+ ///
+ /// \tparam GR The graph type.
+ /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
+ /// \c GR::Edge).
+ /// \tparam V The value type of the map. It can be any comparable
+ /// value type.
+ ///
+ /// \see IterableBoolMap, IterableIntMap
+ /// \see CrossRefMap
+ template <typename GR, typename K, typename V>
+ class IterableValueMap
+ : protected ItemSetTraits<GR, K>::
+ template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
+ public:
+ typedef typename ItemSetTraits<GR, K>::
+ template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
+
+ /// The key type
+ typedef K Key;
+ /// The value type
+ typedef V Value;
+ /// The graph type
+ typedef GR Graph;
+
+ public:
+
+ /// \brief Constructor of the map with a given value.
+ ///
+ /// Constructor of the map with a given value.
+ explicit IterableValueMap(const Graph& graph,
+ const Value& value = Value())
+ : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
+ for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
+ lace(it);
+ }
+ }
+
+ protected:
+
+ void unlace(const Key& key) {
+ typename Parent::Value& node = Parent::operator[](key);
+ if (node.prev != INVALID) {
+ Parent::operator[](node.prev).next = node.next;
+ } else {
+ if (node.next != INVALID) {
+ _first[node.value] = node.next;
+ } else {
+ _first.erase(node.value);
+ }
+ }
+ if (node.next != INVALID) {
+ Parent::operator[](node.next).prev = node.prev;
+ }
+ }
+
+ void lace(const Key& key) {
+ typename Parent::Value& node = Parent::operator[](key);
+ typename std::map<Value, Key>::iterator it = _first.find(node.value);
+ if (it == _first.end()) {
+ node.prev = node.next = INVALID;
+ _first.insert(std::make_pair(node.value, key));
+ } else {
+ node.prev = INVALID;
+ node.next = it->second;
+ if (node.next != INVALID) {
+ Parent::operator[](node.next).prev = key;
+ }
+ it->second = key;
+ }
+ }
+
+ public:
+
+ /// \brief Forward iterator for values.
+ ///
+ /// This iterator is an STL compatible forward
+ /// iterator on the values of the map. The values can
+ /// be accessed in the <tt>[beginValue, endValue)</tt> range.
+ class ValueIt
+ : public std::iterator<std::forward_iterator_tag, Value> {
+ friend class IterableValueMap;
+ private:
+ ValueIt(typename std::map<Value, Key>::const_iterator _it)
+ : it(_it) {}
+ public:
+
+ /// Constructor
+ ValueIt() {}
+
+ /// \e
+ ValueIt& operator++() { ++it; return *this; }
+ /// \e
+ ValueIt operator++(int) {
+ ValueIt tmp(*this);
+ operator++();
+ return tmp;
+ }
+
+ /// \e
+ const Value& operator*() const { return it->first; }
+ /// \e
+ const Value* operator->() const { return &(it->first); }
+
+ /// \e
+ bool operator==(ValueIt jt) const { return it == jt.it; }
+ /// \e
+ bool operator!=(ValueIt jt) const { return it != jt.it; }
+
+ private:
+ typename std::map<Value, Key>::const_iterator it;
+ };
+
+ /// \brief Returns an iterator to the first value.
+ ///
+ /// Returns an STL compatible iterator to the
+ /// first value of the map. The values of the
+ /// map can be accessed in the <tt>[beginValue, endValue)</tt>
+ /// range.
+ ValueIt beginValue() const {
+ return ValueIt(_first.begin());
+ }
+
+ /// \brief Returns an iterator after the last value.
+ ///
+ /// Returns an STL compatible iterator after the
+ /// last value of the map. The values of the
+ /// map can be accessed in the <tt>[beginValue, endValue)</tt>
+ /// range.
+ ValueIt endValue() const {
+ return ValueIt(_first.end());
+ }
+
+ /// \brief Set operation of the map.
+ ///
+ /// Set operation of the map.
+ void set(const Key& key, const Value& value) {
+ unlace(key);
+ Parent::operator[](key).value = value;
+ lace(key);
+ }
+
+ /// \brief Const subscript operator of the map.
+ ///
+ /// Const subscript operator of the map.
+ const Value& operator[](const Key& key) const {
+ return Parent::operator[](key).value;
+ }
+
+ /// \brief Iterator for the keys with the same value.
+ ///
+ /// Iterator for the keys with the same value. It works
+ /// like a graph item iterator, it can be converted to
+ /// the item type of the map, incremented with \c ++ operator, and
+ /// if the iterator leaves the last valid item, it will be equal to
+ /// \c INVALID.
+ class ItemIt : public Key {
+ public:
+ typedef Key Parent;
+
+ /// \brief Invalid constructor \& conversion.
+ ///
+ /// This constructor initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ItemIt(Invalid) : Parent(INVALID), _map(0) {}
+
+ /// \brief Creates an iterator with a value.
+ ///
+ /// Creates an iterator with a value. It iterates on the
+ /// keys which have the given value.
+ /// \param map The IterableValueMap
+ /// \param value The value
+ ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
+ typename std::map<Value, Key>::const_iterator it =
+ map._first.find(value);
+ if (it == map._first.end()) {
+ Parent::operator=(INVALID);
+ } else {
+ Parent::operator=(it->second);
+ }
+ }
+
+ /// \brief Increment operator.
+ ///
+ /// Increment Operator.
+ ItemIt& operator++() {
+ Parent::operator=(_map->IterableValueMap::Parent::
+ operator[](static_cast<Parent&>(*this)).next);
+ return *this;
+ }
+
+
+ private:
+ const IterableValueMap* _map;
+ };
+
+ protected:
+
+ virtual void add(const Key& key) {
+ Parent::add(key);
+ lace(key);
+ }
+
+ virtual void add(const std::vector<Key>& keys) {
+ Parent::add(keys);
+ for (int i = 0; i < int(keys.size()); ++i) {
+ lace(keys[i]);
+ }
+ }
+
+ virtual void erase(const Key& key) {
+ unlace(key);
+ Parent::erase(key);
+ }
+
+ virtual void erase(const std::vector<Key>& keys) {
+ for (int i = 0; i < int(keys.size()); ++i) {
+ unlace(keys[i]);
+ }
+ Parent::erase(keys);
+ }
+
+ virtual void build() {
+ Parent::build();
+ for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
+ lace(it);
+ }
+ }
+
+ virtual void clear() {
+ _first.clear();
+ Parent::clear();
+ }
+
+ private:
+ std::map<Value, Key> _first;
+ };
+
+ /// \brief Map of the source nodes of arcs in a digraph.
+ ///
+ /// SourceMap provides access for the source node of each arc in a digraph,
+ /// which is returned by the \c source() function of the digraph.
+ /// \tparam GR The digraph type.
+ /// \see TargetMap
+ template <typename GR>
+ class SourceMap {
+ public:
+
+ /// The key type (the \c Arc type of the digraph).
+ typedef typename GR::Arc Key;
+ /// The value type (the \c Node type of the digraph).
+ typedef typename GR::Node Value;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param digraph The digraph that the map belongs to.
+ explicit SourceMap(const GR& digraph) : _graph(digraph) {}
+
+ /// \brief Returns the source node of the given arc.
+ ///
+ /// Returns the source node of the given arc.
+ Value operator[](const Key& arc) const {
+ return _graph.source(arc);
+ }
+
+ private:
+ const GR& _graph;
+ };
+
+ /// \brief Returns a \c SourceMap class.
+ ///
+ /// This function just returns an \c SourceMap class.
+ /// \relates SourceMap
+ template <typename GR>
+ inline SourceMap<GR> sourceMap(const GR& graph) {
+ return SourceMap<GR>(graph);
+ }
+
+ /// \brief Map of the target nodes of arcs in a digraph.
+ ///
+ /// TargetMap provides access for the target node of each arc in a digraph,
+ /// which is returned by the \c target() function of the digraph.
+ /// \tparam GR The digraph type.
+ /// \see SourceMap
+ template <typename GR>
+ class TargetMap {
+ public:
+
+ /// The key type (the \c Arc type of the digraph).
+ typedef typename GR::Arc Key;
+ /// The value type (the \c Node type of the digraph).
+ typedef typename GR::Node Value;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param digraph The digraph that the map belongs to.
+ explicit TargetMap(const GR& digraph) : _graph(digraph) {}
+
+ /// \brief Returns the target node of the given arc.
+ ///
+ /// Returns the target node of the given arc.
+ Value operator[](const Key& e) const {
+ return _graph.target(e);
+ }
+
+ private:
+ const GR& _graph;
+ };
+
+ /// \brief Returns a \c TargetMap class.
+ ///
+ /// This function just returns a \c TargetMap class.
+ /// \relates TargetMap
+ template <typename GR>
+ inline TargetMap<GR> targetMap(const GR& graph) {
+ return TargetMap<GR>(graph);
+ }
+
+ /// \brief Map of the "forward" directed arc view of edges in a graph.
+ ///
+ /// ForwardMap provides access for the "forward" directed arc view of
+ /// each edge in a graph, which is returned by the \c direct() function
+ /// of the graph with \c true parameter.
+ /// \tparam GR The graph type.
+ /// \see BackwardMap
+ template <typename GR>
+ class ForwardMap {
+ public:
+
+ /// The key type (the \c Edge type of the digraph).
+ typedef typename GR::Edge Key;
+ /// The value type (the \c Arc type of the digraph).
+ typedef typename GR::Arc Value;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param graph The graph that the map belongs to.
+ explicit ForwardMap(const GR& graph) : _graph(graph) {}
+
+ /// \brief Returns the "forward" directed arc view of the given edge.
+ ///
+ /// Returns the "forward" directed arc view of the given edge.
+ Value operator[](const Key& key) const {
+ return _graph.direct(key, true);
+ }
+
+ private:
+ const GR& _graph;
+ };
+
+ /// \brief Returns a \c ForwardMap class.
+ ///
+ /// This function just returns an \c ForwardMap class.
+ /// \relates ForwardMap
+ template <typename GR>
+ inline ForwardMap<GR> forwardMap(const GR& graph) {
+ return ForwardMap<GR>(graph);
+ }
+
+ /// \brief Map of the "backward" directed arc view of edges in a graph.
+ ///
+ /// BackwardMap provides access for the "backward" directed arc view of
+ /// each edge in a graph, which is returned by the \c direct() function
+ /// of the graph with \c false parameter.
+ /// \tparam GR The graph type.
+ /// \see ForwardMap
+ template <typename GR>
+ class BackwardMap {
+ public:
+
+ /// The key type (the \c Edge type of the digraph).
+ typedef typename GR::Edge Key;
+ /// The value type (the \c Arc type of the digraph).
+ typedef typename GR::Arc Value;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param graph The graph that the map belongs to.
+ explicit BackwardMap(const GR& graph) : _graph(graph) {}
+
+ /// \brief Returns the "backward" directed arc view of the given edge.
+ ///
+ /// Returns the "backward" directed arc view of the given edge.
+ Value operator[](const Key& key) const {
+ return _graph.direct(key, false);
+ }
+
+ private:
+ const GR& _graph;
+ };
+
+ /// \brief Returns a \c BackwardMap class
+
+ /// This function just returns a \c BackwardMap class.
+ /// \relates BackwardMap
+ template <typename GR>
+ inline BackwardMap<GR> backwardMap(const GR& graph) {
+ return BackwardMap<GR>(graph);
+ }
+
+ /// \brief Map of the in-degrees of nodes in a digraph.
+ ///
+ /// This map returns the in-degree of a node. Once it is constructed,
+ /// the degrees are stored in a standard \c NodeMap, so each query is done
+ /// in constant time. On the other hand, the values are updated automatically
+ /// whenever the digraph changes.
+ ///
+ /// \warning Besides \c addNode() and \c addArc(), a digraph structure
+ /// may provide alternative ways to modify the digraph.
+ /// The correct behavior of InDegMap is not guarantied if these additional
+ /// features are used. For example, the functions
+ /// \ref ListDigraph::changeSource() "changeSource()",
+ /// \ref ListDigraph::changeTarget() "changeTarget()" and
+ /// \ref ListDigraph::reverseArc() "reverseArc()"
+ /// of \ref ListDigraph will \e not update the degree values correctly.
+ ///
+ /// \sa OutDegMap
+ template <typename GR>
+ class InDegMap
+ : protected ItemSetTraits<GR, typename GR::Arc>
+ ::ItemNotifier::ObserverBase {
+
+ public:
+
+ /// The graph type of InDegMap
+ typedef GR Graph;
+ typedef GR Digraph;
+ /// The key type
+ typedef typename Digraph::Node Key;
+ /// The value type
+ typedef int Value;
+
+ typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
+ ::ItemNotifier::ObserverBase Parent;
+
+ private:
+
+ class AutoNodeMap
+ : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
+ public:
+
+ typedef typename ItemSetTraits<Digraph, Key>::
+ template Map<int>::Type Parent;
+
+ AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
+
+ virtual void add(const Key& key) {
+ Parent::add(key);
+ Parent::set(key, 0);
+ }
+
+ virtual void add(const std::vector<Key>& keys) {
+ Parent::add(keys);
+ for (int i = 0; i < int(keys.size()); ++i) {
+ Parent::set(keys[i], 0);
+ }
+ }
+
+ virtual void build() {
+ Parent::build();
+ Key it;
+ typename Parent::Notifier* nf = Parent::notifier();
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Parent::set(it, 0);
+ }
+ }
+ };
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor for creating an in-degree map.
+ explicit InDegMap(const Digraph& graph)
+ : _digraph(graph), _deg(graph) {
+ Parent::attach(_digraph.notifier(typename Digraph::Arc()));
+
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = countInArcs(_digraph, it);
+ }
+ }
+
+ /// \brief Gives back the in-degree of a Node.
+ ///
+ /// Gives back the in-degree of a Node.
+ int operator[](const Key& key) const {
+ return _deg[key];
+ }
+
+ protected:
+
+ typedef typename Digraph::Arc Arc;
+
+ virtual void add(const Arc& arc) {
+ ++_deg[_digraph.target(arc)];
+ }
+
+ virtual void add(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ ++_deg[_digraph.target(arcs[i])];
+ }
+ }
+
+ virtual void erase(const Arc& arc) {
+ --_deg[_digraph.target(arc)];
+ }
+
+ virtual void erase(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ --_deg[_digraph.target(arcs[i])];
+ }
+ }
+
+ virtual void build() {
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = countInArcs(_digraph, it);
+ }
+ }
+
+ virtual void clear() {
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = 0;
+ }
+ }
+ private:
+
+ const Digraph& _digraph;
+ AutoNodeMap _deg;
+ };
+
+ /// \brief Map of the out-degrees of nodes in a digraph.
+ ///
+ /// This map returns the out-degree of a node. Once it is constructed,
+ /// the degrees are stored in a standard \c NodeMap, so each query is done
+ /// in constant time. On the other hand, the values are updated automatically
+ /// whenever the digraph changes.
+ ///
+ /// \warning Besides \c addNode() and \c addArc(), a digraph structure
+ /// may provide alternative ways to modify the digraph.
+ /// The correct behavior of OutDegMap is not guarantied if these additional
+ /// features are used. For example, the functions
+ /// \ref ListDigraph::changeSource() "changeSource()",
+ /// \ref ListDigraph::changeTarget() "changeTarget()" and
+ /// \ref ListDigraph::reverseArc() "reverseArc()"
+ /// of \ref ListDigraph will \e not update the degree values correctly.
+ ///
+ /// \sa InDegMap
+ template <typename GR>
+ class OutDegMap
+ : protected ItemSetTraits<GR, typename GR::Arc>
+ ::ItemNotifier::ObserverBase {
+
+ public:
+
+ /// The graph type of OutDegMap
+ typedef GR Graph;
+ typedef GR Digraph;
+ /// The key type
+ typedef typename Digraph::Node Key;
+ /// The value type
+ typedef int Value;
+
+ typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
+ ::ItemNotifier::ObserverBase Parent;
+
+ private:
+
+ class AutoNodeMap
+ : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
+ public:
+
+ typedef typename ItemSetTraits<Digraph, Key>::
+ template Map<int>::Type Parent;
+
+ AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
+
+ virtual void add(const Key& key) {
+ Parent::add(key);
+ Parent::set(key, 0);
+ }
+ virtual void add(const std::vector<Key>& keys) {
+ Parent::add(keys);
+ for (int i = 0; i < int(keys.size()); ++i) {
+ Parent::set(keys[i], 0);
+ }
+ }
+ virtual void build() {
+ Parent::build();
+ Key it;
+ typename Parent::Notifier* nf = Parent::notifier();
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Parent::set(it, 0);
+ }
+ }
+ };
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor for creating an out-degree map.
+ explicit OutDegMap(const Digraph& graph)
+ : _digraph(graph), _deg(graph) {
+ Parent::attach(_digraph.notifier(typename Digraph::Arc()));
+
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = countOutArcs(_digraph, it);
+ }
+ }
+
+ /// \brief Gives back the out-degree of a Node.
+ ///
+ /// Gives back the out-degree of a Node.
+ int operator[](const Key& key) const {
+ return _deg[key];
+ }
+
+ protected:
+
+ typedef typename Digraph::Arc Arc;
+
+ virtual void add(const Arc& arc) {
+ ++_deg[_digraph.source(arc)];
+ }
+
+ virtual void add(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ ++_deg[_digraph.source(arcs[i])];
+ }
+ }
+
+ virtual void erase(const Arc& arc) {
+ --_deg[_digraph.source(arc)];
+ }
+
+ virtual void erase(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ --_deg[_digraph.source(arcs[i])];
+ }
+ }
+
+ virtual void build() {
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = countOutArcs(_digraph, it);
+ }
+ }
+
+ virtual void clear() {
+ for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
+ _deg[it] = 0;
+ }
+ }
+ private:
+
+ const Digraph& _digraph;
+ AutoNodeMap _deg;
+ };
+
+ /// \brief Potential difference map
+ ///
+ /// PotentialDifferenceMap returns the difference between the potentials of
+ /// the source and target nodes of each arc in a digraph, i.e. it returns
+ /// \code
+ /// potential[gr.target(arc)] - potential[gr.source(arc)].
+ /// \endcode
+ /// \tparam GR The digraph type.
+ /// \tparam POT A node map storing the potentials.
+ template <typename GR, typename POT>
+ class PotentialDifferenceMap {
+ public:
+ /// Key type
+ typedef typename GR::Arc Key;
+ /// Value type
+ typedef typename POT::Value Value;
+
+ /// \brief Constructor
+ ///
+ /// Contructor of the map.
+ explicit PotentialDifferenceMap(const GR& gr,
+ const POT& potential)
+ : _digraph(gr), _potential(potential) {}
+
+ /// \brief Returns the potential difference for the given arc.
+ ///
+ /// Returns the potential difference for the given arc, i.e.
+ /// \code
+ /// potential[gr.target(arc)] - potential[gr.source(arc)].
+ /// \endcode
+ Value operator[](const Key& arc) const {
+ return _potential[_digraph.target(arc)] -
+ _potential[_digraph.source(arc)];
+ }
+
+ private:
+ const GR& _digraph;
+ const POT& _potential;
+ };
+
+ /// \brief Returns a PotentialDifferenceMap.
+ ///
+ /// This function just returns a PotentialDifferenceMap.
+ /// \relates PotentialDifferenceMap
+ template <typename GR, typename POT>
+ PotentialDifferenceMap<GR, POT>
+ potentialDifferenceMap(const GR& gr, const POT& potential) {
+ return PotentialDifferenceMap<GR, POT>(gr, potential);
+ }
+
+
+ /// \brief Copy the values of a graph map to another map.
+ ///
+ /// This function copies the values of a graph map to another graph map.
+ /// \c To::Key must be equal or convertible to \c From::Key and
+ /// \c From::Value must be equal or convertible to \c To::Value.
+ ///
+ /// For example, an edge map of \c int value type can be copied to
+ /// an arc map of \c double value type in an undirected graph, but
+ /// an arc map cannot be copied to an edge map.
+ /// Note that even a \ref ConstMap can be copied to a standard graph map,
+ /// but \ref mapFill() can also be used for this purpose.
+ ///
+ /// \param gr The graph for which the maps are defined.
+ /// \param from The map from which the values have to be copied.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+ /// \param to The map to which the values have to be copied.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ template <typename GR, typename From, typename To>
+ void mapCopy(const GR& gr, const From& from, To& to) {
+ typedef typename To::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ to.set(it, from[it]);
+ }
+ }
+
+ /// \brief Compare two graph maps.
+ ///
+ /// This function compares the values of two graph maps. It returns
+ /// \c true if the maps assign the same value for all items in the graph.
+ /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
+ /// and their \c Value types must be comparable using \c %operator==().
+ ///
+ /// \param gr The graph for which the maps are defined.
+ /// \param map1 The first map.
+ /// \param map2 The second map.
+ template <typename GR, typename Map1, typename Map2>
+ bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
+ typedef typename Map2::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (!(map1[it] == map2[it])) return false;
+ }
+ return true;
+ }
+
+ /// \brief Return an item having minimum value of a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// minimum value of the given graph map.
+ /// If the item set is empty, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ template <typename GR, typename Map>
+ typename Map::Key mapMin(const GR& gr, const Map& map) {
+ return mapMin(gr, map, std::less<typename Map::Value>());
+ }
+
+ /// \brief Return an item having minimum value of a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// minimum value of the given graph map.
+ /// If the item set is empty, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param comp Comparison function object.
+ template <typename GR, typename Map, typename Comp>
+ typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
+ typedef typename Map::Key Item;
+ typedef typename Map::Value Value;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ ItemIt min_item(gr);
+ if (min_item == INVALID) return INVALID;
+ Value min = map[min_item];
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (comp(map[it], min)) {
+ min = map[it];
+ min_item = it;
+ }
+ }
+ return min_item;
+ }
+
+ /// \brief Return an item having maximum value of a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// maximum value of the given graph map.
+ /// If the item set is empty, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ template <typename GR, typename Map>
+ typename Map::Key mapMax(const GR& gr, const Map& map) {
+ return mapMax(gr, map, std::less<typename Map::Value>());
+ }
+
+ /// \brief Return an item having maximum value of a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// maximum value of the given graph map.
+ /// If the item set is empty, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param comp Comparison function object.
+ template <typename GR, typename Map, typename Comp>
+ typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
+ typedef typename Map::Key Item;
+ typedef typename Map::Value Value;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ ItemIt max_item(gr);
+ if (max_item == INVALID) return INVALID;
+ Value max = map[max_item];
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (comp(max, map[it])) {
+ max = map[it];
+ max_item = it;
+ }
+ }
+ return max_item;
+ }
+
+ /// \brief Return the minimum value of a graph map.
+ ///
+ /// This function returns the minimum value of the given graph map.
+ /// The corresponding item set of the graph must not be empty.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ template <typename GR, typename Map>
+ typename Map::Value mapMinValue(const GR& gr, const Map& map) {
+ return map[mapMin(gr, map, std::less<typename Map::Value>())];
+ }
+
+ /// \brief Return the minimum value of a graph map.
+ ///
+ /// This function returns the minimum value of the given graph map.
+ /// The corresponding item set of the graph must not be empty.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param comp Comparison function object.
+ template <typename GR, typename Map, typename Comp>
+ typename Map::Value
+ mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
+ return map[mapMin(gr, map, comp)];
+ }
+
+ /// \brief Return the maximum value of a graph map.
+ ///
+ /// This function returns the maximum value of the given graph map.
+ /// The corresponding item set of the graph must not be empty.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ template <typename GR, typename Map>
+ typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
+ return map[mapMax(gr, map, std::less<typename Map::Value>())];
+ }
+
+ /// \brief Return the maximum value of a graph map.
+ ///
+ /// This function returns the maximum value of the given graph map.
+ /// The corresponding item set of the graph must not be empty.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param comp Comparison function object.
+ template <typename GR, typename Map, typename Comp>
+ typename Map::Value
+ mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
+ return map[mapMax(gr, map, comp)];
+ }
+
+ /// \brief Return an item having a specified value in a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// the specified assigned value in the given graph map.
+ /// If no such item exists, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param val The value that have to be found.
+ template <typename GR, typename Map>
+ typename Map::Key
+ mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
+ typedef typename Map::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (map[it] == val) return it;
+ }
+ return INVALID;
+ }
+
+ /// \brief Return an item having value for which a certain predicate is
+ /// true in a graph map.
+ ///
+ /// This function returns an item (\c Node, \c Arc or \c Edge) having
+ /// such assigned value for which the specified predicate is true
+ /// in the given graph map.
+ /// If no such item exists, it returns \c INVALID.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param pred The predicate function object.
+ template <typename GR, typename Map, typename Pred>
+ typename Map::Key
+ mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
+ typedef typename Map::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (pred(map[it])) return it;
+ }
+ return INVALID;
+ }
+
+ /// \brief Return the number of items having a specified value in a
+ /// graph map.
+ ///
+ /// This function returns the number of items (\c Node, \c Arc or \c Edge)
+ /// having the specified assigned value in the given graph map.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param val The value that have to be counted.
+ template <typename GR, typename Map>
+ int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
+ typedef typename Map::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ int cnt = 0;
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (map[it] == val) ++cnt;
+ }
+ return cnt;
+ }
+
+ /// \brief Return the number of items having values for which a certain
+ /// predicate is true in a graph map.
+ ///
+ /// This function returns the number of items (\c Node, \c Arc or \c Edge)
+ /// having such assigned values for which the specified predicate is true
+ /// in the given graph map.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map.
+ /// \param pred The predicate function object.
+ template <typename GR, typename Map, typename Pred>
+ int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
+ typedef typename Map::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ int cnt = 0;
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ if (pred(map[it])) ++cnt;
+ }
+ return cnt;
+ }
+
+ /// \brief Fill a graph map with a certain value.
+ ///
+ /// This function sets the specified value for all items (\c Node,
+ /// \c Arc or \c Edge) in the given graph map.
+ ///
+ /// \param gr The graph for which the map is defined.
+ /// \param map The graph map. It must conform to the
+ /// \ref concepts::WriteMap "WriteMap" concept.
+ /// \param val The value.
+ template <typename GR, typename Map>
+ void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
+ typedef typename Map::Key Item;
+ typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
+
+ for (ItemIt it(gr); it != INVALID; ++it) {
+ map.set(it, val);
+ }
+ }
+
+ /// @}
+}
+
+#endif // LEMON_MAPS_H