Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/matching.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/matching.h3505
1 files changed, 3505 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/matching.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/matching.h
new file mode 100644
index 00000000000..5ee23412835
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/matching.h
@@ -0,0 +1,3505 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_MATCHING_H
+#define LEMON_MATCHING_H
+
+#include <vector>
+#include <queue>
+#include <set>
+#include <limits>
+
+#include <lemon/core.h>
+#include <lemon/unionfind.h>
+#include <lemon/bin_heap.h>
+#include <lemon/maps.h>
+#include <lemon/fractional_matching.h>
+
+///\ingroup matching
+///\file
+///\brief Maximum matching algorithms in general graphs.
+
+namespace lemon {
+
+ /// \ingroup matching
+ ///
+ /// \brief Maximum cardinality matching in general graphs
+ ///
+ /// This class implements Edmonds' alternating forest matching algorithm
+ /// for finding a maximum cardinality matching in a general undirected graph.
+ /// It can be started from an arbitrary initial matching
+ /// (the default is the empty one).
+ ///
+ /// The dual solution of the problem is a map of the nodes to
+ /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
+ /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
+ /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
+ /// with factor-critical components, the nodes in \c ODD/A form the
+ /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
+ /// a perfect matching. The number of the factor-critical components
+ /// minus the number of barrier nodes is a lower bound on the
+ /// unmatched nodes, and the matching is optimal if and only if this bound is
+ /// tight. This decomposition can be obtained using \ref status() or
+ /// \ref statusMap() after running the algorithm.
+ ///
+ /// \tparam GR The undirected graph type the algorithm runs on.
+ template <typename GR>
+ class MaxMatching {
+ public:
+
+ /// The graph type of the algorithm
+ typedef GR Graph;
+ /// The type of the matching map
+ typedef typename Graph::template NodeMap<typename Graph::Arc>
+ MatchingMap;
+
+ ///\brief Status constants for Gallai-Edmonds decomposition.
+ ///
+ ///These constants are used for indicating the Gallai-Edmonds
+ ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
+ ///induce a subgraph with factor-critical components, the nodes with
+ ///status \c ODD (or \c A) form the canonical barrier, and the nodes
+ ///with status \c MATCHED (or \c C) induce a subgraph having a
+ ///perfect matching.
+ enum Status {
+ EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.)
+ D = 1,
+ MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.)
+ C = 0,
+ ODD = -1, ///< = -1. (\c A is an alias for \c ODD.)
+ A = -1,
+ UNMATCHED = -2 ///< = -2.
+ };
+
+ /// The type of the status map
+ typedef typename Graph::template NodeMap<Status> StatusMap;
+
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ typedef UnionFindEnum<IntNodeMap> BlossomSet;
+ typedef ExtendFindEnum<IntNodeMap> TreeSet;
+ typedef RangeMap<Node> NodeIntMap;
+ typedef MatchingMap EarMap;
+ typedef std::vector<Node> NodeQueue;
+
+ const Graph& _graph;
+ MatchingMap* _matching;
+ StatusMap* _status;
+
+ EarMap* _ear;
+
+ IntNodeMap* _blossom_set_index;
+ BlossomSet* _blossom_set;
+ NodeIntMap* _blossom_rep;
+
+ IntNodeMap* _tree_set_index;
+ TreeSet* _tree_set;
+
+ NodeQueue _node_queue;
+ int _process, _postpone, _last;
+
+ int _node_num;
+
+ private:
+
+ void createStructures() {
+ _node_num = countNodes(_graph);
+ if (!_matching) {
+ _matching = new MatchingMap(_graph);
+ }
+ if (!_status) {
+ _status = new StatusMap(_graph);
+ }
+ if (!_ear) {
+ _ear = new EarMap(_graph);
+ }
+ if (!_blossom_set) {
+ _blossom_set_index = new IntNodeMap(_graph);
+ _blossom_set = new BlossomSet(*_blossom_set_index);
+ }
+ if (!_blossom_rep) {
+ _blossom_rep = new NodeIntMap(_node_num);
+ }
+ if (!_tree_set) {
+ _tree_set_index = new IntNodeMap(_graph);
+ _tree_set = new TreeSet(*_tree_set_index);
+ }
+ _node_queue.resize(_node_num);
+ }
+
+ void destroyStructures() {
+ if (_matching) {
+ delete _matching;
+ }
+ if (_status) {
+ delete _status;
+ }
+ if (_ear) {
+ delete _ear;
+ }
+ if (_blossom_set) {
+ delete _blossom_set;
+ delete _blossom_set_index;
+ }
+ if (_blossom_rep) {
+ delete _blossom_rep;
+ }
+ if (_tree_set) {
+ delete _tree_set_index;
+ delete _tree_set;
+ }
+ }
+
+ void processDense(const Node& n) {
+ _process = _postpone = _last = 0;
+ _node_queue[_last++] = n;
+
+ while (_process != _last) {
+ Node u = _node_queue[_process++];
+ for (OutArcIt a(_graph, u); a != INVALID; ++a) {
+ Node v = _graph.target(a);
+ if ((*_status)[v] == MATCHED) {
+ extendOnArc(a);
+ } else if ((*_status)[v] == UNMATCHED) {
+ augmentOnArc(a);
+ return;
+ }
+ }
+ }
+
+ while (_postpone != _last) {
+ Node u = _node_queue[_postpone++];
+
+ for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
+ Node v = _graph.target(a);
+
+ if ((*_status)[v] == EVEN) {
+ if (_blossom_set->find(u) != _blossom_set->find(v)) {
+ shrinkOnEdge(a);
+ }
+ }
+
+ while (_process != _last) {
+ Node w = _node_queue[_process++];
+ for (OutArcIt b(_graph, w); b != INVALID; ++b) {
+ Node x = _graph.target(b);
+ if ((*_status)[x] == MATCHED) {
+ extendOnArc(b);
+ } else if ((*_status)[x] == UNMATCHED) {
+ augmentOnArc(b);
+ return;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void processSparse(const Node& n) {
+ _process = _last = 0;
+ _node_queue[_last++] = n;
+ while (_process != _last) {
+ Node u = _node_queue[_process++];
+ for (OutArcIt a(_graph, u); a != INVALID; ++a) {
+ Node v = _graph.target(a);
+
+ if ((*_status)[v] == EVEN) {
+ if (_blossom_set->find(u) != _blossom_set->find(v)) {
+ shrinkOnEdge(a);
+ }
+ } else if ((*_status)[v] == MATCHED) {
+ extendOnArc(a);
+ } else if ((*_status)[v] == UNMATCHED) {
+ augmentOnArc(a);
+ return;
+ }
+ }
+ }
+ }
+
+ void shrinkOnEdge(const Edge& e) {
+ Node nca = INVALID;
+
+ {
+ std::set<Node> left_set, right_set;
+
+ Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
+ left_set.insert(left);
+
+ Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
+ right_set.insert(right);
+
+ while (true) {
+ if ((*_matching)[left] == INVALID) break;
+ left = _graph.target((*_matching)[left]);
+ left = (*_blossom_rep)[_blossom_set->
+ find(_graph.target((*_ear)[left]))];
+ if (right_set.find(left) != right_set.end()) {
+ nca = left;
+ break;
+ }
+ left_set.insert(left);
+
+ if ((*_matching)[right] == INVALID) break;
+ right = _graph.target((*_matching)[right]);
+ right = (*_blossom_rep)[_blossom_set->
+ find(_graph.target((*_ear)[right]))];
+ if (left_set.find(right) != left_set.end()) {
+ nca = right;
+ break;
+ }
+ right_set.insert(right);
+ }
+
+ if (nca == INVALID) {
+ if ((*_matching)[left] == INVALID) {
+ nca = right;
+ while (left_set.find(nca) == left_set.end()) {
+ nca = _graph.target((*_matching)[nca]);
+ nca =(*_blossom_rep)[_blossom_set->
+ find(_graph.target((*_ear)[nca]))];
+ }
+ } else {
+ nca = left;
+ while (right_set.find(nca) == right_set.end()) {
+ nca = _graph.target((*_matching)[nca]);
+ nca = (*_blossom_rep)[_blossom_set->
+ find(_graph.target((*_ear)[nca]))];
+ }
+ }
+ }
+ }
+
+ {
+
+ Node node = _graph.u(e);
+ Arc arc = _graph.direct(e, true);
+ Node base = (*_blossom_rep)[_blossom_set->find(node)];
+
+ while (base != nca) {
+ (*_ear)[node] = arc;
+
+ Node n = node;
+ while (n != base) {
+ n = _graph.target((*_matching)[n]);
+ Arc a = (*_ear)[n];
+ n = _graph.target(a);
+ (*_ear)[n] = _graph.oppositeArc(a);
+ }
+ node = _graph.target((*_matching)[base]);
+ _tree_set->erase(base);
+ _tree_set->erase(node);
+ _blossom_set->insert(node, _blossom_set->find(base));
+ (*_status)[node] = EVEN;
+ _node_queue[_last++] = node;
+ arc = _graph.oppositeArc((*_ear)[node]);
+ node = _graph.target((*_ear)[node]);
+ base = (*_blossom_rep)[_blossom_set->find(node)];
+ _blossom_set->join(_graph.target(arc), base);
+ }
+ }
+
+ (*_blossom_rep)[_blossom_set->find(nca)] = nca;
+
+ {
+
+ Node node = _graph.v(e);
+ Arc arc = _graph.direct(e, false);
+ Node base = (*_blossom_rep)[_blossom_set->find(node)];
+
+ while (base != nca) {
+ (*_ear)[node] = arc;
+
+ Node n = node;
+ while (n != base) {
+ n = _graph.target((*_matching)[n]);
+ Arc a = (*_ear)[n];
+ n = _graph.target(a);
+ (*_ear)[n] = _graph.oppositeArc(a);
+ }
+ node = _graph.target((*_matching)[base]);
+ _tree_set->erase(base);
+ _tree_set->erase(node);
+ _blossom_set->insert(node, _blossom_set->find(base));
+ (*_status)[node] = EVEN;
+ _node_queue[_last++] = node;
+ arc = _graph.oppositeArc((*_ear)[node]);
+ node = _graph.target((*_ear)[node]);
+ base = (*_blossom_rep)[_blossom_set->find(node)];
+ _blossom_set->join(_graph.target(arc), base);
+ }
+ }
+
+ (*_blossom_rep)[_blossom_set->find(nca)] = nca;
+ }
+
+ void extendOnArc(const Arc& a) {
+ Node base = _graph.source(a);
+ Node odd = _graph.target(a);
+
+ (*_ear)[odd] = _graph.oppositeArc(a);
+ Node even = _graph.target((*_matching)[odd]);
+ (*_blossom_rep)[_blossom_set->insert(even)] = even;
+ (*_status)[odd] = ODD;
+ (*_status)[even] = EVEN;
+ int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
+ _tree_set->insert(odd, tree);
+ _tree_set->insert(even, tree);
+ _node_queue[_last++] = even;
+
+ }
+
+ void augmentOnArc(const Arc& a) {
+ Node even = _graph.source(a);
+ Node odd = _graph.target(a);
+
+ int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
+
+ (*_matching)[odd] = _graph.oppositeArc(a);
+ (*_status)[odd] = MATCHED;
+
+ Arc arc = (*_matching)[even];
+ (*_matching)[even] = a;
+
+ while (arc != INVALID) {
+ odd = _graph.target(arc);
+ arc = (*_ear)[odd];
+ even = _graph.target(arc);
+ (*_matching)[odd] = arc;
+ arc = (*_matching)[even];
+ (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
+ }
+
+ for (typename TreeSet::ItemIt it(*_tree_set, tree);
+ it != INVALID; ++it) {
+ if ((*_status)[it] == ODD) {
+ (*_status)[it] = MATCHED;
+ } else {
+ int blossom = _blossom_set->find(it);
+ for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
+ jt != INVALID; ++jt) {
+ (*_status)[jt] = MATCHED;
+ }
+ _blossom_set->eraseClass(blossom);
+ }
+ }
+ _tree_set->eraseClass(tree);
+
+ }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ MaxMatching(const Graph& graph)
+ : _graph(graph), _matching(0), _status(0), _ear(0),
+ _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
+ _tree_set_index(0), _tree_set(0) {}
+
+ ~MaxMatching() {
+ destroyStructures();
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to use the
+ /// \c run() member function.\n
+ /// If you need better control on the execution, you have to call
+ /// one of the functions \ref init(), \ref greedyInit() or
+ /// \ref matchingInit() first, then you can start the algorithm with
+ /// \ref startSparse() or \ref startDense().
+
+ ///@{
+
+ /// \brief Set the initial matching to the empty matching.
+ ///
+ /// This function sets the initial matching to the empty matching.
+ void init() {
+ createStructures();
+ for(NodeIt n(_graph); n != INVALID; ++n) {
+ (*_matching)[n] = INVALID;
+ (*_status)[n] = UNMATCHED;
+ }
+ }
+
+ /// \brief Find an initial matching in a greedy way.
+ ///
+ /// This function finds an initial matching in a greedy way.
+ void greedyInit() {
+ createStructures();
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_matching)[n] = INVALID;
+ (*_status)[n] = UNMATCHED;
+ }
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_matching)[n] == INVALID) {
+ for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
+ Node v = _graph.target(a);
+ if ((*_matching)[v] == INVALID && v != n) {
+ (*_matching)[n] = a;
+ (*_status)[n] = MATCHED;
+ (*_matching)[v] = _graph.oppositeArc(a);
+ (*_status)[v] = MATCHED;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+
+ /// \brief Initialize the matching from a map.
+ ///
+ /// This function initializes the matching from a \c bool valued edge
+ /// map. This map should have the property that there are no two incident
+ /// edges with \c true value, i.e. it really contains a matching.
+ /// \return \c true if the map contains a matching.
+ template <typename MatchingMap>
+ bool matchingInit(const MatchingMap& matching) {
+ createStructures();
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_matching)[n] = INVALID;
+ (*_status)[n] = UNMATCHED;
+ }
+ for(EdgeIt e(_graph); e!=INVALID; ++e) {
+ if (matching[e]) {
+
+ Node u = _graph.u(e);
+ if ((*_matching)[u] != INVALID) return false;
+ (*_matching)[u] = _graph.direct(e, true);
+ (*_status)[u] = MATCHED;
+
+ Node v = _graph.v(e);
+ if ((*_matching)[v] != INVALID) return false;
+ (*_matching)[v] = _graph.direct(e, false);
+ (*_status)[v] = MATCHED;
+ }
+ }
+ return true;
+ }
+
+ /// \brief Start Edmonds' algorithm
+ ///
+ /// This function runs the original Edmonds' algorithm.
+ ///
+ /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
+ /// called before using this function.
+ void startSparse() {
+ for(NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_status)[n] == UNMATCHED) {
+ (*_blossom_rep)[_blossom_set->insert(n)] = n;
+ _tree_set->insert(n);
+ (*_status)[n] = EVEN;
+ processSparse(n);
+ }
+ }
+ }
+
+ /// \brief Start Edmonds' algorithm with a heuristic improvement
+ /// for dense graphs
+ ///
+ /// This function runs Edmonds' algorithm with a heuristic of postponing
+ /// shrinks, therefore resulting in a faster algorithm for dense graphs.
+ ///
+ /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
+ /// called before using this function.
+ void startDense() {
+ for(NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_status)[n] == UNMATCHED) {
+ (*_blossom_rep)[_blossom_set->insert(n)] = n;
+ _tree_set->insert(n);
+ (*_status)[n] = EVEN;
+ processDense(n);
+ }
+ }
+ }
+
+
+ /// \brief Run Edmonds' algorithm
+ ///
+ /// This function runs Edmonds' algorithm. An additional heuristic of
+ /// postponing shrinks is used for relatively dense graphs
+ /// (for which <tt>m>=2*n</tt> holds).
+ void run() {
+ if (countEdges(_graph) < 2 * countNodes(_graph)) {
+ greedyInit();
+ startSparse();
+ } else {
+ init();
+ startDense();
+ }
+ }
+
+ /// @}
+
+ /// \name Primal Solution
+ /// Functions to get the primal solution, i.e. the maximum matching.
+
+ /// @{
+
+ /// \brief Return the size (cardinality) of the matching.
+ ///
+ /// This function returns the size (cardinality) of the current matching.
+ /// After run() it returns the size of the maximum matching in the graph.
+ int matchingSize() const {
+ int size = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_matching)[n] != INVALID) {
+ ++size;
+ }
+ }
+ return size / 2;
+ }
+
+ /// \brief Return \c true if the given edge is in the matching.
+ ///
+ /// This function returns \c true if the given edge is in the current
+ /// matching.
+ bool matching(const Edge& edge) const {
+ return edge == (*_matching)[_graph.u(edge)];
+ }
+
+ /// \brief Return the matching arc (or edge) incident to the given node.
+ ///
+ /// This function returns the matching arc (or edge) incident to the
+ /// given node in the current matching or \c INVALID if the node is
+ /// not covered by the matching.
+ Arc matching(const Node& n) const {
+ return (*_matching)[n];
+ }
+
+ /// \brief Return a const reference to the matching map.
+ ///
+ /// This function returns a const reference to a node map that stores
+ /// the matching arc (or edge) incident to each node.
+ const MatchingMap& matchingMap() const {
+ return *_matching;
+ }
+
+ /// \brief Return the mate of the given node.
+ ///
+ /// This function returns the mate of the given node in the current
+ /// matching or \c INVALID if the node is not covered by the matching.
+ Node mate(const Node& n) const {
+ return (*_matching)[n] != INVALID ?
+ _graph.target((*_matching)[n]) : INVALID;
+ }
+
+ /// @}
+
+ /// \name Dual Solution
+ /// Functions to get the dual solution, i.e. the Gallai-Edmonds
+ /// decomposition.
+
+ /// @{
+
+ /// \brief Return the status of the given node in the Edmonds-Gallai
+ /// decomposition.
+ ///
+ /// This function returns the \ref Status "status" of the given node
+ /// in the Edmonds-Gallai decomposition.
+ Status status(const Node& n) const {
+ return (*_status)[n];
+ }
+
+ /// \brief Return a const reference to the status map, which stores
+ /// the Edmonds-Gallai decomposition.
+ ///
+ /// This function returns a const reference to a node map that stores the
+ /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
+ const StatusMap& statusMap() const {
+ return *_status;
+ }
+
+ /// \brief Return \c true if the given node is in the barrier.
+ ///
+ /// This function returns \c true if the given node is in the barrier.
+ bool barrier(const Node& n) const {
+ return (*_status)[n] == ODD;
+ }
+
+ /// @}
+
+ };
+
+ /// \ingroup matching
+ ///
+ /// \brief Weighted matching in general graphs
+ ///
+ /// This class provides an efficient implementation of Edmond's
+ /// maximum weighted matching algorithm. The implementation is based
+ /// on extensive use of priority queues and provides
+ /// \f$O(nm\log n)\f$ time complexity.
+ ///
+ /// The maximum weighted matching problem is to find a subset of the
+ /// edges in an undirected graph with maximum overall weight for which
+ /// each node has at most one incident edge.
+ /// It can be formulated with the following linear program.
+ /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
+ /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
+ \quad \forall B\in\mathcal{O}\f] */
+ /// \f[x_e \ge 0\quad \forall e\in E\f]
+ /// \f[\max \sum_{e\in E}x_ew_e\f]
+ /// where \f$\delta(X)\f$ is the set of edges incident to a node in
+ /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
+ /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
+ /// subsets of the nodes.
+ ///
+ /// The algorithm calculates an optimal matching and a proof of the
+ /// optimality. The solution of the dual problem can be used to check
+ /// the result of the algorithm. The dual linear problem is the
+ /// following.
+ /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
+ z_B \ge w_{uv} \quad \forall uv\in E\f] */
+ /// \f[y_u \ge 0 \quad \forall u \in V\f]
+ /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
+ /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
+ \frac{\vert B \vert - 1}{2}z_B\f] */
+ ///
+ /// The algorithm can be executed with the run() function.
+ /// After it the matching (the primal solution) and the dual solution
+ /// can be obtained using the query functions and the
+ /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
+ /// which is able to iterate on the nodes of a blossom.
+ /// If the value type is integer, then the dual solution is multiplied
+ /// by \ref MaxWeightedMatching::dualScale "4".
+ ///
+ /// \tparam GR The undirected graph type the algorithm runs on.
+ /// \tparam WM The type edge weight map. The default type is
+ /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
+#ifdef DOXYGEN
+ template <typename GR, typename WM>
+#else
+ template <typename GR,
+ typename WM = typename GR::template EdgeMap<int> >
+#endif
+ class MaxWeightedMatching {
+ public:
+
+ /// The graph type of the algorithm
+ typedef GR Graph;
+ /// The type of the edge weight map
+ typedef WM WeightMap;
+ /// The value type of the edge weights
+ typedef typename WeightMap::Value Value;
+
+ /// The type of the matching map
+ typedef typename Graph::template NodeMap<typename Graph::Arc>
+ MatchingMap;
+
+ /// \brief Scaling factor for dual solution
+ ///
+ /// Scaling factor for dual solution. It is equal to 4 or 1
+ /// according to the value type.
+ static const int dualScale =
+ std::numeric_limits<Value>::is_integer ? 4 : 1;
+
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ typedef typename Graph::template NodeMap<Value> NodePotential;
+ typedef std::vector<Node> BlossomNodeList;
+
+ struct BlossomVariable {
+ int begin, end;
+ Value value;
+
+ BlossomVariable(int _begin, int _end, Value _value)
+ : begin(_begin), end(_end), value(_value) {}
+
+ };
+
+ typedef std::vector<BlossomVariable> BlossomPotential;
+
+ const Graph& _graph;
+ const WeightMap& _weight;
+
+ MatchingMap* _matching;
+
+ NodePotential* _node_potential;
+
+ BlossomPotential _blossom_potential;
+ BlossomNodeList _blossom_node_list;
+
+ int _node_num;
+ int _blossom_num;
+
+ typedef RangeMap<int> IntIntMap;
+
+ enum Status {
+ EVEN = -1, MATCHED = 0, ODD = 1
+ };
+
+ typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
+ struct BlossomData {
+ int tree;
+ Status status;
+ Arc pred, next;
+ Value pot, offset;
+ Node base;
+ };
+
+ IntNodeMap *_blossom_index;
+ BlossomSet *_blossom_set;
+ RangeMap<BlossomData>* _blossom_data;
+
+ IntNodeMap *_node_index;
+ IntArcMap *_node_heap_index;
+
+ struct NodeData {
+
+ NodeData(IntArcMap& node_heap_index)
+ : heap(node_heap_index) {}
+
+ int blossom;
+ Value pot;
+ BinHeap<Value, IntArcMap> heap;
+ std::map<int, Arc> heap_index;
+
+ int tree;
+ };
+
+ RangeMap<NodeData>* _node_data;
+
+ typedef ExtendFindEnum<IntIntMap> TreeSet;
+
+ IntIntMap *_tree_set_index;
+ TreeSet *_tree_set;
+
+ IntNodeMap *_delta1_index;
+ BinHeap<Value, IntNodeMap> *_delta1;
+
+ IntIntMap *_delta2_index;
+ BinHeap<Value, IntIntMap> *_delta2;
+
+ IntEdgeMap *_delta3_index;
+ BinHeap<Value, IntEdgeMap> *_delta3;
+
+ IntIntMap *_delta4_index;
+ BinHeap<Value, IntIntMap> *_delta4;
+
+ Value _delta_sum;
+ int _unmatched;
+
+ typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching;
+ FractionalMatching *_fractional;
+
+ void createStructures() {
+ _node_num = countNodes(_graph);
+ _blossom_num = _node_num * 3 / 2;
+
+ if (!_matching) {
+ _matching = new MatchingMap(_graph);
+ }
+
+ if (!_node_potential) {
+ _node_potential = new NodePotential(_graph);
+ }
+
+ if (!_blossom_set) {
+ _blossom_index = new IntNodeMap(_graph);
+ _blossom_set = new BlossomSet(*_blossom_index);
+ _blossom_data = new RangeMap<BlossomData>(_blossom_num);
+ } else if (_blossom_data->size() != _blossom_num) {
+ delete _blossom_data;
+ _blossom_data = new RangeMap<BlossomData>(_blossom_num);
+ }
+
+ if (!_node_index) {
+ _node_index = new IntNodeMap(_graph);
+ _node_heap_index = new IntArcMap(_graph);
+ _node_data = new RangeMap<NodeData>(_node_num,
+ NodeData(*_node_heap_index));
+ } else {
+ delete _node_data;
+ _node_data = new RangeMap<NodeData>(_node_num,
+ NodeData(*_node_heap_index));
+ }
+
+ if (!_tree_set) {
+ _tree_set_index = new IntIntMap(_blossom_num);
+ _tree_set = new TreeSet(*_tree_set_index);
+ } else {
+ _tree_set_index->resize(_blossom_num);
+ }
+
+ if (!_delta1) {
+ _delta1_index = new IntNodeMap(_graph);
+ _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
+ }
+
+ if (!_delta2) {
+ _delta2_index = new IntIntMap(_blossom_num);
+ _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
+ } else {
+ _delta2_index->resize(_blossom_num);
+ }
+
+ if (!_delta3) {
+ _delta3_index = new IntEdgeMap(_graph);
+ _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
+ }
+
+ if (!_delta4) {
+ _delta4_index = new IntIntMap(_blossom_num);
+ _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
+ } else {
+ _delta4_index->resize(_blossom_num);
+ }
+ }
+
+ void destroyStructures() {
+ if (_matching) {
+ delete _matching;
+ }
+ if (_node_potential) {
+ delete _node_potential;
+ }
+ if (_blossom_set) {
+ delete _blossom_index;
+ delete _blossom_set;
+ delete _blossom_data;
+ }
+
+ if (_node_index) {
+ delete _node_index;
+ delete _node_heap_index;
+ delete _node_data;
+ }
+
+ if (_tree_set) {
+ delete _tree_set_index;
+ delete _tree_set;
+ }
+ if (_delta1) {
+ delete _delta1_index;
+ delete _delta1;
+ }
+ if (_delta2) {
+ delete _delta2_index;
+ delete _delta2;
+ }
+ if (_delta3) {
+ delete _delta3_index;
+ delete _delta3;
+ }
+ if (_delta4) {
+ delete _delta4_index;
+ delete _delta4;
+ }
+ }
+
+ void matchedToEven(int blossom, int tree) {
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+
+ if (!_blossom_set->trivial(blossom)) {
+ (*_blossom_data)[blossom].pot -=
+ 2 * (_delta_sum - (*_blossom_data)[blossom].offset);
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+
+ _blossom_set->increase(n, std::numeric_limits<Value>::max());
+ int ni = (*_node_index)[n];
+
+ (*_node_data)[ni].heap.clear();
+ (*_node_data)[ni].heap_index.clear();
+
+ (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
+
+ _delta1->push(n, (*_node_data)[ni].pot);
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+ if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
+ _delta3->push(e, rw / 2);
+ }
+ } else {
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ if ((*_node_data)[vi].heap[it->second] > rw) {
+ (*_node_data)[vi].heap.replace(it->second, e);
+ (*_node_data)[vi].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[vi].heap.push(e, rw);
+ (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
+ }
+
+ if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
+ _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_delta2->state(vb) != _delta2->IN_HEAP) {
+ _delta2->push(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset) {
+ _delta2->decrease(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ (*_blossom_data)[blossom].offset = 0;
+ }
+
+ void matchedToOdd(int blossom) {
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+ (*_blossom_data)[blossom].offset += _delta_sum;
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
+ (*_blossom_data)[blossom].offset);
+ }
+ }
+
+ void evenToMatched(int blossom, int tree) {
+ if (!_blossom_set->trivial(blossom)) {
+ (*_blossom_data)[blossom].pot += 2 * _delta_sum;
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+ int ni = (*_node_index)[n];
+ (*_node_data)[ni].pot -= _delta_sum;
+
+ _delta1->erase(n);
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if (vb == blossom) {
+ if (_delta3->state(e) == _delta3->IN_HEAP) {
+ _delta3->erase(e);
+ }
+ } else if ((*_blossom_data)[vb].status == EVEN) {
+
+ if (_delta3->state(e) == _delta3->IN_HEAP) {
+ _delta3->erase(e);
+ }
+
+ int vt = _tree_set->find(vb);
+
+ if (vt != tree) {
+
+ Arc r = _graph.oppositeArc(e);
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[ni].heap_index.find(vt);
+
+ if (it != (*_node_data)[ni].heap_index.end()) {
+ if ((*_node_data)[ni].heap[it->second] > rw) {
+ (*_node_data)[ni].heap.replace(it->second, r);
+ (*_node_data)[ni].heap.decrease(r, rw);
+ it->second = r;
+ }
+ } else {
+ (*_node_data)[ni].heap.push(r, rw);
+ (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
+ }
+
+ if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
+ _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
+
+ if (_delta2->state(blossom) != _delta2->IN_HEAP) {
+ _delta2->push(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ } else if ((*_delta2)[blossom] >
+ _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset){
+ _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ }
+ }
+ }
+ } else {
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ (*_node_data)[vi].heap.erase(it->second);
+ (*_node_data)[vi].heap_index.erase(it);
+ if ((*_node_data)[vi].heap.empty()) {
+ _blossom_set->increase(v, std::numeric_limits<Value>::max());
+ } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
+ _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
+ }
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_blossom_set->classPrio(vb) ==
+ std::numeric_limits<Value>::max()) {
+ _delta2->erase(vb);
+ } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset) {
+ _delta2->increase(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void oddToMatched(int blossom) {
+ (*_blossom_data)[blossom].offset -= _delta_sum;
+
+ if (_blossom_set->classPrio(blossom) !=
+ std::numeric_limits<Value>::max()) {
+ _delta2->push(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ }
+
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->erase(blossom);
+ }
+ }
+
+ void oddToEven(int blossom, int tree) {
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->erase(blossom);
+ (*_blossom_data)[blossom].pot -=
+ 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+ int ni = (*_node_index)[n];
+
+ _blossom_set->increase(n, std::numeric_limits<Value>::max());
+
+ (*_node_data)[ni].heap.clear();
+ (*_node_data)[ni].heap_index.clear();
+ (*_node_data)[ni].pot +=
+ 2 * _delta_sum - (*_blossom_data)[blossom].offset;
+
+ _delta1->push(n, (*_node_data)[ni].pot);
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+ if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
+ _delta3->push(e, rw / 2);
+ }
+ } else {
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ if ((*_node_data)[vi].heap[it->second] > rw) {
+ (*_node_data)[vi].heap.replace(it->second, e);
+ (*_node_data)[vi].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[vi].heap.push(e, rw);
+ (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
+ }
+
+ if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
+ _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_delta2->state(vb) != _delta2->IN_HEAP) {
+ _delta2->push(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset) {
+ _delta2->decrease(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ (*_blossom_data)[blossom].offset = 0;
+ }
+
+ void alternatePath(int even, int tree) {
+ int odd;
+
+ evenToMatched(even, tree);
+ (*_blossom_data)[even].status = MATCHED;
+
+ while ((*_blossom_data)[even].pred != INVALID) {
+ odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
+ (*_blossom_data)[odd].status = MATCHED;
+ oddToMatched(odd);
+ (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
+
+ even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
+ (*_blossom_data)[even].status = MATCHED;
+ evenToMatched(even, tree);
+ (*_blossom_data)[even].next =
+ _graph.oppositeArc((*_blossom_data)[odd].pred);
+ }
+
+ }
+
+ void destroyTree(int tree) {
+ for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
+ if ((*_blossom_data)[b].status == EVEN) {
+ (*_blossom_data)[b].status = MATCHED;
+ evenToMatched(b, tree);
+ } else if ((*_blossom_data)[b].status == ODD) {
+ (*_blossom_data)[b].status = MATCHED;
+ oddToMatched(b);
+ }
+ }
+ _tree_set->eraseClass(tree);
+ }
+
+
+ void unmatchNode(const Node& node) {
+ int blossom = _blossom_set->find(node);
+ int tree = _tree_set->find(blossom);
+
+ alternatePath(blossom, tree);
+ destroyTree(tree);
+
+ (*_blossom_data)[blossom].base = node;
+ (*_blossom_data)[blossom].next = INVALID;
+ }
+
+ void augmentOnEdge(const Edge& edge) {
+
+ int left = _blossom_set->find(_graph.u(edge));
+ int right = _blossom_set->find(_graph.v(edge));
+
+ int left_tree = _tree_set->find(left);
+ alternatePath(left, left_tree);
+ destroyTree(left_tree);
+
+ int right_tree = _tree_set->find(right);
+ alternatePath(right, right_tree);
+ destroyTree(right_tree);
+
+ (*_blossom_data)[left].next = _graph.direct(edge, true);
+ (*_blossom_data)[right].next = _graph.direct(edge, false);
+ }
+
+ void augmentOnArc(const Arc& arc) {
+
+ int left = _blossom_set->find(_graph.source(arc));
+ int right = _blossom_set->find(_graph.target(arc));
+
+ (*_blossom_data)[left].status = MATCHED;
+
+ int right_tree = _tree_set->find(right);
+ alternatePath(right, right_tree);
+ destroyTree(right_tree);
+
+ (*_blossom_data)[left].next = arc;
+ (*_blossom_data)[right].next = _graph.oppositeArc(arc);
+ }
+
+ void extendOnArc(const Arc& arc) {
+ int base = _blossom_set->find(_graph.target(arc));
+ int tree = _tree_set->find(base);
+
+ int odd = _blossom_set->find(_graph.source(arc));
+ _tree_set->insert(odd, tree);
+ (*_blossom_data)[odd].status = ODD;
+ matchedToOdd(odd);
+ (*_blossom_data)[odd].pred = arc;
+
+ int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
+ (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
+ _tree_set->insert(even, tree);
+ (*_blossom_data)[even].status = EVEN;
+ matchedToEven(even, tree);
+ }
+
+ void shrinkOnEdge(const Edge& edge, int tree) {
+ int nca = -1;
+ std::vector<int> left_path, right_path;
+
+ {
+ std::set<int> left_set, right_set;
+ int left = _blossom_set->find(_graph.u(edge));
+ left_path.push_back(left);
+ left_set.insert(left);
+
+ int right = _blossom_set->find(_graph.v(edge));
+ right_path.push_back(right);
+ right_set.insert(right);
+
+ while (true) {
+
+ if ((*_blossom_data)[left].pred == INVALID) break;
+
+ left =
+ _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
+ left_path.push_back(left);
+ left =
+ _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
+ left_path.push_back(left);
+
+ left_set.insert(left);
+
+ if (right_set.find(left) != right_set.end()) {
+ nca = left;
+ break;
+ }
+
+ if ((*_blossom_data)[right].pred == INVALID) break;
+
+ right =
+ _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
+ right_path.push_back(right);
+ right =
+ _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
+ right_path.push_back(right);
+
+ right_set.insert(right);
+
+ if (left_set.find(right) != left_set.end()) {
+ nca = right;
+ break;
+ }
+
+ }
+
+ if (nca == -1) {
+ if ((*_blossom_data)[left].pred == INVALID) {
+ nca = right;
+ while (left_set.find(nca) == left_set.end()) {
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ right_path.push_back(nca);
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ right_path.push_back(nca);
+ }
+ } else {
+ nca = left;
+ while (right_set.find(nca) == right_set.end()) {
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ left_path.push_back(nca);
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ left_path.push_back(nca);
+ }
+ }
+ }
+ }
+
+ std::vector<int> subblossoms;
+ Arc prev;
+
+ prev = _graph.direct(edge, true);
+ for (int i = 0; left_path[i] != nca; i += 2) {
+ subblossoms.push_back(left_path[i]);
+ (*_blossom_data)[left_path[i]].next = prev;
+ _tree_set->erase(left_path[i]);
+
+ subblossoms.push_back(left_path[i + 1]);
+ (*_blossom_data)[left_path[i + 1]].status = EVEN;
+ oddToEven(left_path[i + 1], tree);
+ _tree_set->erase(left_path[i + 1]);
+ prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
+ }
+
+ int k = 0;
+ while (right_path[k] != nca) ++k;
+
+ subblossoms.push_back(nca);
+ (*_blossom_data)[nca].next = prev;
+
+ for (int i = k - 2; i >= 0; i -= 2) {
+ subblossoms.push_back(right_path[i + 1]);
+ (*_blossom_data)[right_path[i + 1]].status = EVEN;
+ oddToEven(right_path[i + 1], tree);
+ _tree_set->erase(right_path[i + 1]);
+
+ (*_blossom_data)[right_path[i + 1]].next =
+ (*_blossom_data)[right_path[i + 1]].pred;
+
+ subblossoms.push_back(right_path[i]);
+ _tree_set->erase(right_path[i]);
+ }
+
+ int surface =
+ _blossom_set->join(subblossoms.begin(), subblossoms.end());
+
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (!_blossom_set->trivial(subblossoms[i])) {
+ (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
+ }
+ (*_blossom_data)[subblossoms[i]].status = MATCHED;
+ }
+
+ (*_blossom_data)[surface].pot = -2 * _delta_sum;
+ (*_blossom_data)[surface].offset = 0;
+ (*_blossom_data)[surface].status = EVEN;
+ (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
+ (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
+
+ _tree_set->insert(surface, tree);
+ _tree_set->erase(nca);
+ }
+
+ void splitBlossom(int blossom) {
+ Arc next = (*_blossom_data)[blossom].next;
+ Arc pred = (*_blossom_data)[blossom].pred;
+
+ int tree = _tree_set->find(blossom);
+
+ (*_blossom_data)[blossom].status = MATCHED;
+ oddToMatched(blossom);
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+
+ std::vector<int> subblossoms;
+ _blossom_set->split(blossom, std::back_inserter(subblossoms));
+
+ Value offset = (*_blossom_data)[blossom].offset;
+ int b = _blossom_set->find(_graph.source(pred));
+ int d = _blossom_set->find(_graph.source(next));
+
+ int ib = -1, id = -1;
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (subblossoms[i] == b) ib = i;
+ if (subblossoms[i] == d) id = i;
+
+ (*_blossom_data)[subblossoms[i]].offset = offset;
+ if (!_blossom_set->trivial(subblossoms[i])) {
+ (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
+ }
+ if (_blossom_set->classPrio(subblossoms[i]) !=
+ std::numeric_limits<Value>::max()) {
+ _delta2->push(subblossoms[i],
+ _blossom_set->classPrio(subblossoms[i]) -
+ (*_blossom_data)[subblossoms[i]].offset);
+ }
+ }
+
+ if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
+ for (int i = (id + 1) % subblossoms.size();
+ i != ib; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+ }
+
+ for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ int ub = subblossoms[(i + 2) % subblossoms.size()];
+
+ (*_blossom_data)[sb].status = ODD;
+ matchedToOdd(sb);
+ _tree_set->insert(sb, tree);
+ (*_blossom_data)[sb].pred = pred;
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+
+ pred = (*_blossom_data)[ub].next;
+
+ (*_blossom_data)[tb].status = EVEN;
+ matchedToEven(tb, tree);
+ _tree_set->insert(tb, tree);
+ (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
+ }
+
+ (*_blossom_data)[subblossoms[id]].status = ODD;
+ matchedToOdd(subblossoms[id]);
+ _tree_set->insert(subblossoms[id], tree);
+ (*_blossom_data)[subblossoms[id]].next = next;
+ (*_blossom_data)[subblossoms[id]].pred = pred;
+
+ } else {
+
+ for (int i = (ib + 1) % subblossoms.size();
+ i != id; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+ }
+
+ for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ int ub = subblossoms[(i + 2) % subblossoms.size()];
+
+ (*_blossom_data)[sb].status = ODD;
+ matchedToOdd(sb);
+ _tree_set->insert(sb, tree);
+ (*_blossom_data)[sb].next = next;
+ (*_blossom_data)[sb].pred =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+
+ (*_blossom_data)[tb].status = EVEN;
+ matchedToEven(tb, tree);
+ _tree_set->insert(tb, tree);
+ (*_blossom_data)[tb].pred =
+ (*_blossom_data)[tb].next =
+ _graph.oppositeArc((*_blossom_data)[ub].next);
+ next = (*_blossom_data)[ub].next;
+ }
+
+ (*_blossom_data)[subblossoms[ib]].status = ODD;
+ matchedToOdd(subblossoms[ib]);
+ _tree_set->insert(subblossoms[ib], tree);
+ (*_blossom_data)[subblossoms[ib]].next = next;
+ (*_blossom_data)[subblossoms[ib]].pred = pred;
+ }
+ _tree_set->erase(blossom);
+ }
+
+ void extractBlossom(int blossom, const Node& base, const Arc& matching) {
+ if (_blossom_set->trivial(blossom)) {
+ int bi = (*_node_index)[base];
+ Value pot = (*_node_data)[bi].pot;
+
+ (*_matching)[base] = matching;
+ _blossom_node_list.push_back(base);
+ (*_node_potential)[base] = pot;
+ } else {
+
+ Value pot = (*_blossom_data)[blossom].pot;
+ int bn = _blossom_node_list.size();
+
+ std::vector<int> subblossoms;
+ _blossom_set->split(blossom, std::back_inserter(subblossoms));
+ int b = _blossom_set->find(base);
+ int ib = -1;
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (subblossoms[i] == b) { ib = i; break; }
+ }
+
+ for (int i = 1; i < int(subblossoms.size()); i += 2) {
+ int sb = subblossoms[(ib + i) % subblossoms.size()];
+ int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
+
+ Arc m = (*_blossom_data)[tb].next;
+ extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
+ extractBlossom(tb, _graph.source(m), m);
+ }
+ extractBlossom(subblossoms[ib], base, matching);
+
+ int en = _blossom_node_list.size();
+
+ _blossom_potential.push_back(BlossomVariable(bn, en, pot));
+ }
+ }
+
+ void extractMatching() {
+ std::vector<int> blossoms;
+ for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
+ blossoms.push_back(c);
+ }
+
+ for (int i = 0; i < int(blossoms.size()); ++i) {
+ if ((*_blossom_data)[blossoms[i]].next != INVALID) {
+
+ Value offset = (*_blossom_data)[blossoms[i]].offset;
+ (*_blossom_data)[blossoms[i]].pot += 2 * offset;
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
+ n != INVALID; ++n) {
+ (*_node_data)[(*_node_index)[n]].pot -= offset;
+ }
+
+ Arc matching = (*_blossom_data)[blossoms[i]].next;
+ Node base = _graph.source(matching);
+ extractBlossom(blossoms[i], base, matching);
+ } else {
+ Node base = (*_blossom_data)[blossoms[i]].base;
+ extractBlossom(blossoms[i], base, INVALID);
+ }
+ }
+ }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
+ : _graph(graph), _weight(weight), _matching(0),
+ _node_potential(0), _blossom_potential(), _blossom_node_list(),
+ _node_num(0), _blossom_num(0),
+
+ _blossom_index(0), _blossom_set(0), _blossom_data(0),
+ _node_index(0), _node_heap_index(0), _node_data(0),
+ _tree_set_index(0), _tree_set(0),
+
+ _delta1_index(0), _delta1(0),
+ _delta2_index(0), _delta2(0),
+ _delta3_index(0), _delta3(0),
+ _delta4_index(0), _delta4(0),
+
+ _delta_sum(), _unmatched(0),
+
+ _fractional(0)
+ {}
+
+ ~MaxWeightedMatching() {
+ destroyStructures();
+ if (_fractional) {
+ delete _fractional;
+ }
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to use the
+ /// \ref run() member function.
+
+ ///@{
+
+ /// \brief Initialize the algorithm
+ ///
+ /// This function initializes the algorithm.
+ void init() {
+ createStructures();
+
+ _blossom_node_list.clear();
+ _blossom_potential.clear();
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
+ }
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_delta1_index)[n] = _delta1->PRE_HEAP;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ (*_delta3_index)[e] = _delta3->PRE_HEAP;
+ }
+ for (int i = 0; i < _blossom_num; ++i) {
+ (*_delta2_index)[i] = _delta2->PRE_HEAP;
+ (*_delta4_index)[i] = _delta4->PRE_HEAP;
+ }
+
+ _unmatched = _node_num;
+
+ _delta1->clear();
+ _delta2->clear();
+ _delta3->clear();
+ _delta4->clear();
+ _blossom_set->clear();
+ _tree_set->clear();
+
+ int index = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Value max = 0;
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ if (_graph.target(e) == n) continue;
+ if ((dualScale * _weight[e]) / 2 > max) {
+ max = (dualScale * _weight[e]) / 2;
+ }
+ }
+ (*_node_index)[n] = index;
+ (*_node_data)[index].heap_index.clear();
+ (*_node_data)[index].heap.clear();
+ (*_node_data)[index].pot = max;
+ _delta1->push(n, max);
+ int blossom =
+ _blossom_set->insert(n, std::numeric_limits<Value>::max());
+
+ _tree_set->insert(blossom);
+
+ (*_blossom_data)[blossom].status = EVEN;
+ (*_blossom_data)[blossom].pred = INVALID;
+ (*_blossom_data)[blossom].next = INVALID;
+ (*_blossom_data)[blossom].pot = 0;
+ (*_blossom_data)[blossom].offset = 0;
+ ++index;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ int si = (*_node_index)[_graph.u(e)];
+ int ti = (*_node_index)[_graph.v(e)];
+ if (_graph.u(e) != _graph.v(e)) {
+ _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
+ dualScale * _weight[e]) / 2);
+ }
+ }
+ }
+
+ /// \brief Initialize the algorithm with fractional matching
+ ///
+ /// This function initializes the algorithm with a fractional
+ /// matching. This initialization is also called jumpstart heuristic.
+ void fractionalInit() {
+ createStructures();
+
+ _blossom_node_list.clear();
+ _blossom_potential.clear();
+
+ if (_fractional == 0) {
+ _fractional = new FractionalMatching(_graph, _weight, false);
+ }
+ _fractional->run();
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
+ }
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_delta1_index)[n] = _delta1->PRE_HEAP;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ (*_delta3_index)[e] = _delta3->PRE_HEAP;
+ }
+ for (int i = 0; i < _blossom_num; ++i) {
+ (*_delta2_index)[i] = _delta2->PRE_HEAP;
+ (*_delta4_index)[i] = _delta4->PRE_HEAP;
+ }
+
+ _unmatched = 0;
+
+ _delta1->clear();
+ _delta2->clear();
+ _delta3->clear();
+ _delta4->clear();
+ _blossom_set->clear();
+ _tree_set->clear();
+
+ int index = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Value pot = _fractional->nodeValue(n);
+ (*_node_index)[n] = index;
+ (*_node_data)[index].pot = pot;
+ (*_node_data)[index].heap_index.clear();
+ (*_node_data)[index].heap.clear();
+ int blossom =
+ _blossom_set->insert(n, std::numeric_limits<Value>::max());
+
+ (*_blossom_data)[blossom].status = MATCHED;
+ (*_blossom_data)[blossom].pred = INVALID;
+ (*_blossom_data)[blossom].next = _fractional->matching(n);
+ if (_fractional->matching(n) == INVALID) {
+ (*_blossom_data)[blossom].base = n;
+ }
+ (*_blossom_data)[blossom].pot = 0;
+ (*_blossom_data)[blossom].offset = 0;
+ ++index;
+ }
+
+ typename Graph::template NodeMap<bool> processed(_graph, false);
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if (processed[n]) continue;
+ processed[n] = true;
+ if (_fractional->matching(n) == INVALID) continue;
+ int num = 1;
+ Node v = _graph.target(_fractional->matching(n));
+ while (n != v) {
+ processed[v] = true;
+ v = _graph.target(_fractional->matching(v));
+ ++num;
+ }
+
+ if (num % 2 == 1) {
+ std::vector<int> subblossoms(num);
+
+ subblossoms[--num] = _blossom_set->find(n);
+ _delta1->push(n, _fractional->nodeValue(n));
+ v = _graph.target(_fractional->matching(n));
+ while (n != v) {
+ subblossoms[--num] = _blossom_set->find(v);
+ _delta1->push(v, _fractional->nodeValue(v));
+ v = _graph.target(_fractional->matching(v));
+ }
+
+ int surface =
+ _blossom_set->join(subblossoms.begin(), subblossoms.end());
+ (*_blossom_data)[surface].status = EVEN;
+ (*_blossom_data)[surface].pred = INVALID;
+ (*_blossom_data)[surface].next = INVALID;
+ (*_blossom_data)[surface].pot = 0;
+ (*_blossom_data)[surface].offset = 0;
+
+ _tree_set->insert(surface);
+ ++_unmatched;
+ }
+ }
+
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ int si = (*_node_index)[_graph.u(e)];
+ int sb = _blossom_set->find(_graph.u(e));
+ int ti = (*_node_index)[_graph.v(e)];
+ int tb = _blossom_set->find(_graph.v(e));
+ if ((*_blossom_data)[sb].status == EVEN &&
+ (*_blossom_data)[tb].status == EVEN && sb != tb) {
+ _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
+ dualScale * _weight[e]) / 2);
+ }
+ }
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ int nb = _blossom_set->find(n);
+ if ((*_blossom_data)[nb].status != MATCHED) continue;
+ int ni = (*_node_index)[n];
+
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.target(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+
+ int vt = _tree_set->find(vb);
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[ni].heap_index.find(vt);
+
+ if (it != (*_node_data)[ni].heap_index.end()) {
+ if ((*_node_data)[ni].heap[it->second] > rw) {
+ (*_node_data)[ni].heap.replace(it->second, e);
+ (*_node_data)[ni].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[ni].heap.push(e, rw);
+ (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
+ }
+ }
+ }
+
+ if (!(*_node_data)[ni].heap.empty()) {
+ _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
+ _delta2->push(nb, _blossom_set->classPrio(nb));
+ }
+ }
+ }
+
+ /// \brief Start the algorithm
+ ///
+ /// This function starts the algorithm.
+ ///
+ /// \pre \ref init() or \ref fractionalInit() must be called
+ /// before using this function.
+ void start() {
+ enum OpType {
+ D1, D2, D3, D4
+ };
+
+ while (_unmatched > 0) {
+ Value d1 = !_delta1->empty() ?
+ _delta1->prio() : std::numeric_limits<Value>::max();
+
+ Value d2 = !_delta2->empty() ?
+ _delta2->prio() : std::numeric_limits<Value>::max();
+
+ Value d3 = !_delta3->empty() ?
+ _delta3->prio() : std::numeric_limits<Value>::max();
+
+ Value d4 = !_delta4->empty() ?
+ _delta4->prio() : std::numeric_limits<Value>::max();
+
+ _delta_sum = d3; OpType ot = D3;
+ if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
+ if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
+ if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
+
+ switch (ot) {
+ case D1:
+ {
+ Node n = _delta1->top();
+ unmatchNode(n);
+ --_unmatched;
+ }
+ break;
+ case D2:
+ {
+ int blossom = _delta2->top();
+ Node n = _blossom_set->classTop(blossom);
+ Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
+ if ((*_blossom_data)[blossom].next == INVALID) {
+ augmentOnArc(a);
+ --_unmatched;
+ } else {
+ extendOnArc(a);
+ }
+ }
+ break;
+ case D3:
+ {
+ Edge e = _delta3->top();
+
+ int left_blossom = _blossom_set->find(_graph.u(e));
+ int right_blossom = _blossom_set->find(_graph.v(e));
+
+ if (left_blossom == right_blossom) {
+ _delta3->pop();
+ } else {
+ int left_tree = _tree_set->find(left_blossom);
+ int right_tree = _tree_set->find(right_blossom);
+
+ if (left_tree == right_tree) {
+ shrinkOnEdge(e, left_tree);
+ } else {
+ augmentOnEdge(e);
+ _unmatched -= 2;
+ }
+ }
+ } break;
+ case D4:
+ splitBlossom(_delta4->top());
+ break;
+ }
+ }
+ extractMatching();
+ }
+
+ /// \brief Run the algorithm.
+ ///
+ /// This method runs the \c %MaxWeightedMatching algorithm.
+ ///
+ /// \note mwm.run() is just a shortcut of the following code.
+ /// \code
+ /// mwm.fractionalInit();
+ /// mwm.start();
+ /// \endcode
+ void run() {
+ fractionalInit();
+ start();
+ }
+
+ /// @}
+
+ /// \name Primal Solution
+ /// Functions to get the primal solution, i.e. the maximum weighted
+ /// matching.\n
+ /// Either \ref run() or \ref start() function should be called before
+ /// using them.
+
+ /// @{
+
+ /// \brief Return the weight of the matching.
+ ///
+ /// This function returns the weight of the found matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value matchingWeight() const {
+ Value sum = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_matching)[n] != INVALID) {
+ sum += _weight[(*_matching)[n]];
+ }
+ }
+ return sum / 2;
+ }
+
+ /// \brief Return the size (cardinality) of the matching.
+ ///
+ /// This function returns the size (cardinality) of the found matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ int matchingSize() const {
+ int num = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_matching)[n] != INVALID) {
+ ++num;
+ }
+ }
+ return num /= 2;
+ }
+
+ /// \brief Return \c true if the given edge is in the matching.
+ ///
+ /// This function returns \c true if the given edge is in the found
+ /// matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ bool matching(const Edge& edge) const {
+ return edge == (*_matching)[_graph.u(edge)];
+ }
+
+ /// \brief Return the matching arc (or edge) incident to the given node.
+ ///
+ /// This function returns the matching arc (or edge) incident to the
+ /// given node in the found matching or \c INVALID if the node is
+ /// not covered by the matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Arc matching(const Node& node) const {
+ return (*_matching)[node];
+ }
+
+ /// \brief Return a const reference to the matching map.
+ ///
+ /// This function returns a const reference to a node map that stores
+ /// the matching arc (or edge) incident to each node.
+ const MatchingMap& matchingMap() const {
+ return *_matching;
+ }
+
+ /// \brief Return the mate of the given node.
+ ///
+ /// This function returns the mate of the given node in the found
+ /// matching or \c INVALID if the node is not covered by the matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Node mate(const Node& node) const {
+ return (*_matching)[node] != INVALID ?
+ _graph.target((*_matching)[node]) : INVALID;
+ }
+
+ /// @}
+
+ /// \name Dual Solution
+ /// Functions to get the dual solution.\n
+ /// Either \ref run() or \ref start() function should be called before
+ /// using them.
+
+ /// @{
+
+ /// \brief Return the value of the dual solution.
+ ///
+ /// This function returns the value of the dual solution.
+ /// It should be equal to the primal value scaled by \ref dualScale
+ /// "dual scale".
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value dualValue() const {
+ Value sum = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ sum += nodeValue(n);
+ }
+ for (int i = 0; i < blossomNum(); ++i) {
+ sum += blossomValue(i) * (blossomSize(i) / 2);
+ }
+ return sum;
+ }
+
+ /// \brief Return the dual value (potential) of the given node.
+ ///
+ /// This function returns the dual value (potential) of the given node.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value nodeValue(const Node& n) const {
+ return (*_node_potential)[n];
+ }
+
+ /// \brief Return the number of the blossoms in the basis.
+ ///
+ /// This function returns the number of the blossoms in the basis.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ /// \see BlossomIt
+ int blossomNum() const {
+ return _blossom_potential.size();
+ }
+
+ /// \brief Return the number of the nodes in the given blossom.
+ ///
+ /// This function returns the number of the nodes in the given blossom.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ /// \see BlossomIt
+ int blossomSize(int k) const {
+ return _blossom_potential[k].end - _blossom_potential[k].begin;
+ }
+
+ /// \brief Return the dual value (ptential) of the given blossom.
+ ///
+ /// This function returns the dual value (ptential) of the given blossom.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value blossomValue(int k) const {
+ return _blossom_potential[k].value;
+ }
+
+ /// \brief Iterator for obtaining the nodes of a blossom.
+ ///
+ /// This class provides an iterator for obtaining the nodes of the
+ /// given blossom. It lists a subset of the nodes.
+ /// Before using this iterator, you must allocate a
+ /// MaxWeightedMatching class and execute it.
+ class BlossomIt {
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor to get the nodes of the given variable.
+ ///
+ /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
+ /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
+ /// called before initializing this iterator.
+ BlossomIt(const MaxWeightedMatching& algorithm, int variable)
+ : _algorithm(&algorithm)
+ {
+ _index = _algorithm->_blossom_potential[variable].begin;
+ _last = _algorithm->_blossom_potential[variable].end;
+ }
+
+ /// \brief Conversion to \c Node.
+ ///
+ /// Conversion to \c Node.
+ operator Node() const {
+ return _algorithm->_blossom_node_list[_index];
+ }
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ BlossomIt& operator++() {
+ ++_index;
+ return *this;
+ }
+
+ /// \brief Validity checking
+ ///
+ /// Checks whether the iterator is invalid.
+ bool operator==(Invalid) const { return _index == _last; }
+
+ /// \brief Validity checking
+ ///
+ /// Checks whether the iterator is valid.
+ bool operator!=(Invalid) const { return _index != _last; }
+
+ private:
+ const MaxWeightedMatching* _algorithm;
+ int _last;
+ int _index;
+ };
+
+ /// @}
+
+ };
+
+ /// \ingroup matching
+ ///
+ /// \brief Weighted perfect matching in general graphs
+ ///
+ /// This class provides an efficient implementation of Edmond's
+ /// maximum weighted perfect matching algorithm. The implementation
+ /// is based on extensive use of priority queues and provides
+ /// \f$O(nm\log n)\f$ time complexity.
+ ///
+ /// The maximum weighted perfect matching problem is to find a subset of
+ /// the edges in an undirected graph with maximum overall weight for which
+ /// each node has exactly one incident edge.
+ /// It can be formulated with the following linear program.
+ /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
+ /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
+ \quad \forall B\in\mathcal{O}\f] */
+ /// \f[x_e \ge 0\quad \forall e\in E\f]
+ /// \f[\max \sum_{e\in E}x_ew_e\f]
+ /// where \f$\delta(X)\f$ is the set of edges incident to a node in
+ /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
+ /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
+ /// subsets of the nodes.
+ ///
+ /// The algorithm calculates an optimal matching and a proof of the
+ /// optimality. The solution of the dual problem can be used to check
+ /// the result of the algorithm. The dual linear problem is the
+ /// following.
+ /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
+ w_{uv} \quad \forall uv\in E\f] */
+ /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
+ /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
+ \frac{\vert B \vert - 1}{2}z_B\f] */
+ ///
+ /// The algorithm can be executed with the run() function.
+ /// After it the matching (the primal solution) and the dual solution
+ /// can be obtained using the query functions and the
+ /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
+ /// which is able to iterate on the nodes of a blossom.
+ /// If the value type is integer, then the dual solution is multiplied
+ /// by \ref MaxWeightedMatching::dualScale "4".
+ ///
+ /// \tparam GR The undirected graph type the algorithm runs on.
+ /// \tparam WM The type edge weight map. The default type is
+ /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
+#ifdef DOXYGEN
+ template <typename GR, typename WM>
+#else
+ template <typename GR,
+ typename WM = typename GR::template EdgeMap<int> >
+#endif
+ class MaxWeightedPerfectMatching {
+ public:
+
+ /// The graph type of the algorithm
+ typedef GR Graph;
+ /// The type of the edge weight map
+ typedef WM WeightMap;
+ /// The value type of the edge weights
+ typedef typename WeightMap::Value Value;
+
+ /// \brief Scaling factor for dual solution
+ ///
+ /// Scaling factor for dual solution, it is equal to 4 or 1
+ /// according to the value type.
+ static const int dualScale =
+ std::numeric_limits<Value>::is_integer ? 4 : 1;
+
+ /// The type of the matching map
+ typedef typename Graph::template NodeMap<typename Graph::Arc>
+ MatchingMap;
+
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ typedef typename Graph::template NodeMap<Value> NodePotential;
+ typedef std::vector<Node> BlossomNodeList;
+
+ struct BlossomVariable {
+ int begin, end;
+ Value value;
+
+ BlossomVariable(int _begin, int _end, Value _value)
+ : begin(_begin), end(_end), value(_value) {}
+
+ };
+
+ typedef std::vector<BlossomVariable> BlossomPotential;
+
+ const Graph& _graph;
+ const WeightMap& _weight;
+
+ MatchingMap* _matching;
+
+ NodePotential* _node_potential;
+
+ BlossomPotential _blossom_potential;
+ BlossomNodeList _blossom_node_list;
+
+ int _node_num;
+ int _blossom_num;
+
+ typedef RangeMap<int> IntIntMap;
+
+ enum Status {
+ EVEN = -1, MATCHED = 0, ODD = 1
+ };
+
+ typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
+ struct BlossomData {
+ int tree;
+ Status status;
+ Arc pred, next;
+ Value pot, offset;
+ };
+
+ IntNodeMap *_blossom_index;
+ BlossomSet *_blossom_set;
+ RangeMap<BlossomData>* _blossom_data;
+
+ IntNodeMap *_node_index;
+ IntArcMap *_node_heap_index;
+
+ struct NodeData {
+
+ NodeData(IntArcMap& node_heap_index)
+ : heap(node_heap_index) {}
+
+ int blossom;
+ Value pot;
+ BinHeap<Value, IntArcMap> heap;
+ std::map<int, Arc> heap_index;
+
+ int tree;
+ };
+
+ RangeMap<NodeData>* _node_data;
+
+ typedef ExtendFindEnum<IntIntMap> TreeSet;
+
+ IntIntMap *_tree_set_index;
+ TreeSet *_tree_set;
+
+ IntIntMap *_delta2_index;
+ BinHeap<Value, IntIntMap> *_delta2;
+
+ IntEdgeMap *_delta3_index;
+ BinHeap<Value, IntEdgeMap> *_delta3;
+
+ IntIntMap *_delta4_index;
+ BinHeap<Value, IntIntMap> *_delta4;
+
+ Value _delta_sum;
+ int _unmatched;
+
+ typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap>
+ FractionalMatching;
+ FractionalMatching *_fractional;
+
+ void createStructures() {
+ _node_num = countNodes(_graph);
+ _blossom_num = _node_num * 3 / 2;
+
+ if (!_matching) {
+ _matching = new MatchingMap(_graph);
+ }
+
+ if (!_node_potential) {
+ _node_potential = new NodePotential(_graph);
+ }
+
+ if (!_blossom_set) {
+ _blossom_index = new IntNodeMap(_graph);
+ _blossom_set = new BlossomSet(*_blossom_index);
+ _blossom_data = new RangeMap<BlossomData>(_blossom_num);
+ } else if (_blossom_data->size() != _blossom_num) {
+ delete _blossom_data;
+ _blossom_data = new RangeMap<BlossomData>(_blossom_num);
+ }
+
+ if (!_node_index) {
+ _node_index = new IntNodeMap(_graph);
+ _node_heap_index = new IntArcMap(_graph);
+ _node_data = new RangeMap<NodeData>(_node_num,
+ NodeData(*_node_heap_index));
+ } else if (_node_data->size() != _node_num) {
+ delete _node_data;
+ _node_data = new RangeMap<NodeData>(_node_num,
+ NodeData(*_node_heap_index));
+ }
+
+ if (!_tree_set) {
+ _tree_set_index = new IntIntMap(_blossom_num);
+ _tree_set = new TreeSet(*_tree_set_index);
+ } else {
+ _tree_set_index->resize(_blossom_num);
+ }
+
+ if (!_delta2) {
+ _delta2_index = new IntIntMap(_blossom_num);
+ _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
+ } else {
+ _delta2_index->resize(_blossom_num);
+ }
+
+ if (!_delta3) {
+ _delta3_index = new IntEdgeMap(_graph);
+ _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
+ }
+
+ if (!_delta4) {
+ _delta4_index = new IntIntMap(_blossom_num);
+ _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
+ } else {
+ _delta4_index->resize(_blossom_num);
+ }
+ }
+
+ void destroyStructures() {
+ if (_matching) {
+ delete _matching;
+ }
+ if (_node_potential) {
+ delete _node_potential;
+ }
+ if (_blossom_set) {
+ delete _blossom_index;
+ delete _blossom_set;
+ delete _blossom_data;
+ }
+
+ if (_node_index) {
+ delete _node_index;
+ delete _node_heap_index;
+ delete _node_data;
+ }
+
+ if (_tree_set) {
+ delete _tree_set_index;
+ delete _tree_set;
+ }
+ if (_delta2) {
+ delete _delta2_index;
+ delete _delta2;
+ }
+ if (_delta3) {
+ delete _delta3_index;
+ delete _delta3;
+ }
+ if (_delta4) {
+ delete _delta4_index;
+ delete _delta4;
+ }
+ }
+
+ void matchedToEven(int blossom, int tree) {
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+
+ if (!_blossom_set->trivial(blossom)) {
+ (*_blossom_data)[blossom].pot -=
+ 2 * (_delta_sum - (*_blossom_data)[blossom].offset);
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+
+ _blossom_set->increase(n, std::numeric_limits<Value>::max());
+ int ni = (*_node_index)[n];
+
+ (*_node_data)[ni].heap.clear();
+ (*_node_data)[ni].heap_index.clear();
+
+ (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+ if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
+ _delta3->push(e, rw / 2);
+ }
+ } else {
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ if ((*_node_data)[vi].heap[it->second] > rw) {
+ (*_node_data)[vi].heap.replace(it->second, e);
+ (*_node_data)[vi].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[vi].heap.push(e, rw);
+ (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
+ }
+
+ if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
+ _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_delta2->state(vb) != _delta2->IN_HEAP) {
+ _delta2->push(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset){
+ _delta2->decrease(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ (*_blossom_data)[blossom].offset = 0;
+ }
+
+ void matchedToOdd(int blossom) {
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+ (*_blossom_data)[blossom].offset += _delta_sum;
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
+ (*_blossom_data)[blossom].offset);
+ }
+ }
+
+ void evenToMatched(int blossom, int tree) {
+ if (!_blossom_set->trivial(blossom)) {
+ (*_blossom_data)[blossom].pot += 2 * _delta_sum;
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+ int ni = (*_node_index)[n];
+ (*_node_data)[ni].pot -= _delta_sum;
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if (vb == blossom) {
+ if (_delta3->state(e) == _delta3->IN_HEAP) {
+ _delta3->erase(e);
+ }
+ } else if ((*_blossom_data)[vb].status == EVEN) {
+
+ if (_delta3->state(e) == _delta3->IN_HEAP) {
+ _delta3->erase(e);
+ }
+
+ int vt = _tree_set->find(vb);
+
+ if (vt != tree) {
+
+ Arc r = _graph.oppositeArc(e);
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[ni].heap_index.find(vt);
+
+ if (it != (*_node_data)[ni].heap_index.end()) {
+ if ((*_node_data)[ni].heap[it->second] > rw) {
+ (*_node_data)[ni].heap.replace(it->second, r);
+ (*_node_data)[ni].heap.decrease(r, rw);
+ it->second = r;
+ }
+ } else {
+ (*_node_data)[ni].heap.push(r, rw);
+ (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
+ }
+
+ if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
+ _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
+
+ if (_delta2->state(blossom) != _delta2->IN_HEAP) {
+ _delta2->push(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ } else if ((*_delta2)[blossom] >
+ _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset){
+ _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ }
+ }
+ }
+ } else {
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ (*_node_data)[vi].heap.erase(it->second);
+ (*_node_data)[vi].heap_index.erase(it);
+ if ((*_node_data)[vi].heap.empty()) {
+ _blossom_set->increase(v, std::numeric_limits<Value>::max());
+ } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
+ _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
+ }
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_blossom_set->classPrio(vb) ==
+ std::numeric_limits<Value>::max()) {
+ _delta2->erase(vb);
+ } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset) {
+ _delta2->increase(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void oddToMatched(int blossom) {
+ (*_blossom_data)[blossom].offset -= _delta_sum;
+
+ if (_blossom_set->classPrio(blossom) !=
+ std::numeric_limits<Value>::max()) {
+ _delta2->push(blossom, _blossom_set->classPrio(blossom) -
+ (*_blossom_data)[blossom].offset);
+ }
+
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->erase(blossom);
+ }
+ }
+
+ void oddToEven(int blossom, int tree) {
+ if (!_blossom_set->trivial(blossom)) {
+ _delta4->erase(blossom);
+ (*_blossom_data)[blossom].pot -=
+ 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
+ }
+
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
+ n != INVALID; ++n) {
+ int ni = (*_node_index)[n];
+
+ _blossom_set->increase(n, std::numeric_limits<Value>::max());
+
+ (*_node_data)[ni].heap.clear();
+ (*_node_data)[ni].heap_index.clear();
+ (*_node_data)[ni].pot +=
+ 2 * _delta_sum - (*_blossom_data)[blossom].offset;
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.source(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+ if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
+ _delta3->push(e, rw / 2);
+ }
+ } else {
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[vi].heap_index.find(tree);
+
+ if (it != (*_node_data)[vi].heap_index.end()) {
+ if ((*_node_data)[vi].heap[it->second] > rw) {
+ (*_node_data)[vi].heap.replace(it->second, e);
+ (*_node_data)[vi].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[vi].heap.push(e, rw);
+ (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
+ }
+
+ if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
+ _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
+
+ if ((*_blossom_data)[vb].status == MATCHED) {
+ if (_delta2->state(vb) != _delta2->IN_HEAP) {
+ _delta2->push(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset) {
+ _delta2->decrease(vb, _blossom_set->classPrio(vb) -
+ (*_blossom_data)[vb].offset);
+ }
+ }
+ }
+ }
+ }
+ }
+ (*_blossom_data)[blossom].offset = 0;
+ }
+
+ void alternatePath(int even, int tree) {
+ int odd;
+
+ evenToMatched(even, tree);
+ (*_blossom_data)[even].status = MATCHED;
+
+ while ((*_blossom_data)[even].pred != INVALID) {
+ odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
+ (*_blossom_data)[odd].status = MATCHED;
+ oddToMatched(odd);
+ (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
+
+ even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
+ (*_blossom_data)[even].status = MATCHED;
+ evenToMatched(even, tree);
+ (*_blossom_data)[even].next =
+ _graph.oppositeArc((*_blossom_data)[odd].pred);
+ }
+
+ }
+
+ void destroyTree(int tree) {
+ for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
+ if ((*_blossom_data)[b].status == EVEN) {
+ (*_blossom_data)[b].status = MATCHED;
+ evenToMatched(b, tree);
+ } else if ((*_blossom_data)[b].status == ODD) {
+ (*_blossom_data)[b].status = MATCHED;
+ oddToMatched(b);
+ }
+ }
+ _tree_set->eraseClass(tree);
+ }
+
+ void augmentOnEdge(const Edge& edge) {
+
+ int left = _blossom_set->find(_graph.u(edge));
+ int right = _blossom_set->find(_graph.v(edge));
+
+ int left_tree = _tree_set->find(left);
+ alternatePath(left, left_tree);
+ destroyTree(left_tree);
+
+ int right_tree = _tree_set->find(right);
+ alternatePath(right, right_tree);
+ destroyTree(right_tree);
+
+ (*_blossom_data)[left].next = _graph.direct(edge, true);
+ (*_blossom_data)[right].next = _graph.direct(edge, false);
+ }
+
+ void extendOnArc(const Arc& arc) {
+ int base = _blossom_set->find(_graph.target(arc));
+ int tree = _tree_set->find(base);
+
+ int odd = _blossom_set->find(_graph.source(arc));
+ _tree_set->insert(odd, tree);
+ (*_blossom_data)[odd].status = ODD;
+ matchedToOdd(odd);
+ (*_blossom_data)[odd].pred = arc;
+
+ int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
+ (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
+ _tree_set->insert(even, tree);
+ (*_blossom_data)[even].status = EVEN;
+ matchedToEven(even, tree);
+ }
+
+ void shrinkOnEdge(const Edge& edge, int tree) {
+ int nca = -1;
+ std::vector<int> left_path, right_path;
+
+ {
+ std::set<int> left_set, right_set;
+ int left = _blossom_set->find(_graph.u(edge));
+ left_path.push_back(left);
+ left_set.insert(left);
+
+ int right = _blossom_set->find(_graph.v(edge));
+ right_path.push_back(right);
+ right_set.insert(right);
+
+ while (true) {
+
+ if ((*_blossom_data)[left].pred == INVALID) break;
+
+ left =
+ _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
+ left_path.push_back(left);
+ left =
+ _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
+ left_path.push_back(left);
+
+ left_set.insert(left);
+
+ if (right_set.find(left) != right_set.end()) {
+ nca = left;
+ break;
+ }
+
+ if ((*_blossom_data)[right].pred == INVALID) break;
+
+ right =
+ _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
+ right_path.push_back(right);
+ right =
+ _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
+ right_path.push_back(right);
+
+ right_set.insert(right);
+
+ if (left_set.find(right) != left_set.end()) {
+ nca = right;
+ break;
+ }
+
+ }
+
+ if (nca == -1) {
+ if ((*_blossom_data)[left].pred == INVALID) {
+ nca = right;
+ while (left_set.find(nca) == left_set.end()) {
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ right_path.push_back(nca);
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ right_path.push_back(nca);
+ }
+ } else {
+ nca = left;
+ while (right_set.find(nca) == right_set.end()) {
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ left_path.push_back(nca);
+ nca =
+ _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
+ left_path.push_back(nca);
+ }
+ }
+ }
+ }
+
+ std::vector<int> subblossoms;
+ Arc prev;
+
+ prev = _graph.direct(edge, true);
+ for (int i = 0; left_path[i] != nca; i += 2) {
+ subblossoms.push_back(left_path[i]);
+ (*_blossom_data)[left_path[i]].next = prev;
+ _tree_set->erase(left_path[i]);
+
+ subblossoms.push_back(left_path[i + 1]);
+ (*_blossom_data)[left_path[i + 1]].status = EVEN;
+ oddToEven(left_path[i + 1], tree);
+ _tree_set->erase(left_path[i + 1]);
+ prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
+ }
+
+ int k = 0;
+ while (right_path[k] != nca) ++k;
+
+ subblossoms.push_back(nca);
+ (*_blossom_data)[nca].next = prev;
+
+ for (int i = k - 2; i >= 0; i -= 2) {
+ subblossoms.push_back(right_path[i + 1]);
+ (*_blossom_data)[right_path[i + 1]].status = EVEN;
+ oddToEven(right_path[i + 1], tree);
+ _tree_set->erase(right_path[i + 1]);
+
+ (*_blossom_data)[right_path[i + 1]].next =
+ (*_blossom_data)[right_path[i + 1]].pred;
+
+ subblossoms.push_back(right_path[i]);
+ _tree_set->erase(right_path[i]);
+ }
+
+ int surface =
+ _blossom_set->join(subblossoms.begin(), subblossoms.end());
+
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (!_blossom_set->trivial(subblossoms[i])) {
+ (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
+ }
+ (*_blossom_data)[subblossoms[i]].status = MATCHED;
+ }
+
+ (*_blossom_data)[surface].pot = -2 * _delta_sum;
+ (*_blossom_data)[surface].offset = 0;
+ (*_blossom_data)[surface].status = EVEN;
+ (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
+ (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
+
+ _tree_set->insert(surface, tree);
+ _tree_set->erase(nca);
+ }
+
+ void splitBlossom(int blossom) {
+ Arc next = (*_blossom_data)[blossom].next;
+ Arc pred = (*_blossom_data)[blossom].pred;
+
+ int tree = _tree_set->find(blossom);
+
+ (*_blossom_data)[blossom].status = MATCHED;
+ oddToMatched(blossom);
+ if (_delta2->state(blossom) == _delta2->IN_HEAP) {
+ _delta2->erase(blossom);
+ }
+
+ std::vector<int> subblossoms;
+ _blossom_set->split(blossom, std::back_inserter(subblossoms));
+
+ Value offset = (*_blossom_data)[blossom].offset;
+ int b = _blossom_set->find(_graph.source(pred));
+ int d = _blossom_set->find(_graph.source(next));
+
+ int ib = -1, id = -1;
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (subblossoms[i] == b) ib = i;
+ if (subblossoms[i] == d) id = i;
+
+ (*_blossom_data)[subblossoms[i]].offset = offset;
+ if (!_blossom_set->trivial(subblossoms[i])) {
+ (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
+ }
+ if (_blossom_set->classPrio(subblossoms[i]) !=
+ std::numeric_limits<Value>::max()) {
+ _delta2->push(subblossoms[i],
+ _blossom_set->classPrio(subblossoms[i]) -
+ (*_blossom_data)[subblossoms[i]].offset);
+ }
+ }
+
+ if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
+ for (int i = (id + 1) % subblossoms.size();
+ i != ib; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+ }
+
+ for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ int ub = subblossoms[(i + 2) % subblossoms.size()];
+
+ (*_blossom_data)[sb].status = ODD;
+ matchedToOdd(sb);
+ _tree_set->insert(sb, tree);
+ (*_blossom_data)[sb].pred = pred;
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+
+ pred = (*_blossom_data)[ub].next;
+
+ (*_blossom_data)[tb].status = EVEN;
+ matchedToEven(tb, tree);
+ _tree_set->insert(tb, tree);
+ (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
+ }
+
+ (*_blossom_data)[subblossoms[id]].status = ODD;
+ matchedToOdd(subblossoms[id]);
+ _tree_set->insert(subblossoms[id], tree);
+ (*_blossom_data)[subblossoms[id]].next = next;
+ (*_blossom_data)[subblossoms[id]].pred = pred;
+
+ } else {
+
+ for (int i = (ib + 1) % subblossoms.size();
+ i != id; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ (*_blossom_data)[sb].next =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+ }
+
+ for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
+ int sb = subblossoms[i];
+ int tb = subblossoms[(i + 1) % subblossoms.size()];
+ int ub = subblossoms[(i + 2) % subblossoms.size()];
+
+ (*_blossom_data)[sb].status = ODD;
+ matchedToOdd(sb);
+ _tree_set->insert(sb, tree);
+ (*_blossom_data)[sb].next = next;
+ (*_blossom_data)[sb].pred =
+ _graph.oppositeArc((*_blossom_data)[tb].next);
+
+ (*_blossom_data)[tb].status = EVEN;
+ matchedToEven(tb, tree);
+ _tree_set->insert(tb, tree);
+ (*_blossom_data)[tb].pred =
+ (*_blossom_data)[tb].next =
+ _graph.oppositeArc((*_blossom_data)[ub].next);
+ next = (*_blossom_data)[ub].next;
+ }
+
+ (*_blossom_data)[subblossoms[ib]].status = ODD;
+ matchedToOdd(subblossoms[ib]);
+ _tree_set->insert(subblossoms[ib], tree);
+ (*_blossom_data)[subblossoms[ib]].next = next;
+ (*_blossom_data)[subblossoms[ib]].pred = pred;
+ }
+ _tree_set->erase(blossom);
+ }
+
+ void extractBlossom(int blossom, const Node& base, const Arc& matching) {
+ if (_blossom_set->trivial(blossom)) {
+ int bi = (*_node_index)[base];
+ Value pot = (*_node_data)[bi].pot;
+
+ (*_matching)[base] = matching;
+ _blossom_node_list.push_back(base);
+ (*_node_potential)[base] = pot;
+ } else {
+
+ Value pot = (*_blossom_data)[blossom].pot;
+ int bn = _blossom_node_list.size();
+
+ std::vector<int> subblossoms;
+ _blossom_set->split(blossom, std::back_inserter(subblossoms));
+ int b = _blossom_set->find(base);
+ int ib = -1;
+ for (int i = 0; i < int(subblossoms.size()); ++i) {
+ if (subblossoms[i] == b) { ib = i; break; }
+ }
+
+ for (int i = 1; i < int(subblossoms.size()); i += 2) {
+ int sb = subblossoms[(ib + i) % subblossoms.size()];
+ int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
+
+ Arc m = (*_blossom_data)[tb].next;
+ extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
+ extractBlossom(tb, _graph.source(m), m);
+ }
+ extractBlossom(subblossoms[ib], base, matching);
+
+ int en = _blossom_node_list.size();
+
+ _blossom_potential.push_back(BlossomVariable(bn, en, pot));
+ }
+ }
+
+ void extractMatching() {
+ std::vector<int> blossoms;
+ for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
+ blossoms.push_back(c);
+ }
+
+ for (int i = 0; i < int(blossoms.size()); ++i) {
+
+ Value offset = (*_blossom_data)[blossoms[i]].offset;
+ (*_blossom_data)[blossoms[i]].pot += 2 * offset;
+ for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
+ n != INVALID; ++n) {
+ (*_node_data)[(*_node_index)[n]].pot -= offset;
+ }
+
+ Arc matching = (*_blossom_data)[blossoms[i]].next;
+ Node base = _graph.source(matching);
+ extractBlossom(blossoms[i], base, matching);
+ }
+ }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
+ : _graph(graph), _weight(weight), _matching(0),
+ _node_potential(0), _blossom_potential(), _blossom_node_list(),
+ _node_num(0), _blossom_num(0),
+
+ _blossom_index(0), _blossom_set(0), _blossom_data(0),
+ _node_index(0), _node_heap_index(0), _node_data(0),
+ _tree_set_index(0), _tree_set(0),
+
+ _delta2_index(0), _delta2(0),
+ _delta3_index(0), _delta3(0),
+ _delta4_index(0), _delta4(0),
+
+ _delta_sum(), _unmatched(0),
+
+ _fractional(0)
+ {}
+
+ ~MaxWeightedPerfectMatching() {
+ destroyStructures();
+ if (_fractional) {
+ delete _fractional;
+ }
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to use the
+ /// \ref run() member function.
+
+ ///@{
+
+ /// \brief Initialize the algorithm
+ ///
+ /// This function initializes the algorithm.
+ void init() {
+ createStructures();
+
+ _blossom_node_list.clear();
+ _blossom_potential.clear();
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ (*_delta3_index)[e] = _delta3->PRE_HEAP;
+ }
+ for (int i = 0; i < _blossom_num; ++i) {
+ (*_delta2_index)[i] = _delta2->PRE_HEAP;
+ (*_delta4_index)[i] = _delta4->PRE_HEAP;
+ }
+
+ _unmatched = _node_num;
+
+ _delta2->clear();
+ _delta3->clear();
+ _delta4->clear();
+ _blossom_set->clear();
+ _tree_set->clear();
+
+ int index = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Value max = - std::numeric_limits<Value>::max();
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ if (_graph.target(e) == n) continue;
+ if ((dualScale * _weight[e]) / 2 > max) {
+ max = (dualScale * _weight[e]) / 2;
+ }
+ }
+ (*_node_index)[n] = index;
+ (*_node_data)[index].heap_index.clear();
+ (*_node_data)[index].heap.clear();
+ (*_node_data)[index].pot = max;
+ int blossom =
+ _blossom_set->insert(n, std::numeric_limits<Value>::max());
+
+ _tree_set->insert(blossom);
+
+ (*_blossom_data)[blossom].status = EVEN;
+ (*_blossom_data)[blossom].pred = INVALID;
+ (*_blossom_data)[blossom].next = INVALID;
+ (*_blossom_data)[blossom].pot = 0;
+ (*_blossom_data)[blossom].offset = 0;
+ ++index;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ int si = (*_node_index)[_graph.u(e)];
+ int ti = (*_node_index)[_graph.v(e)];
+ if (_graph.u(e) != _graph.v(e)) {
+ _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
+ dualScale * _weight[e]) / 2);
+ }
+ }
+ }
+
+ /// \brief Initialize the algorithm with fractional matching
+ ///
+ /// This function initializes the algorithm with a fractional
+ /// matching. This initialization is also called jumpstart heuristic.
+ void fractionalInit() {
+ createStructures();
+
+ _blossom_node_list.clear();
+ _blossom_potential.clear();
+
+ if (_fractional == 0) {
+ _fractional = new FractionalMatching(_graph, _weight, false);
+ }
+ if (!_fractional->run()) {
+ _unmatched = -1;
+ return;
+ }
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
+ }
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ (*_delta3_index)[e] = _delta3->PRE_HEAP;
+ }
+ for (int i = 0; i < _blossom_num; ++i) {
+ (*_delta2_index)[i] = _delta2->PRE_HEAP;
+ (*_delta4_index)[i] = _delta4->PRE_HEAP;
+ }
+
+ _unmatched = 0;
+
+ _delta2->clear();
+ _delta3->clear();
+ _delta4->clear();
+ _blossom_set->clear();
+ _tree_set->clear();
+
+ int index = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Value pot = _fractional->nodeValue(n);
+ (*_node_index)[n] = index;
+ (*_node_data)[index].pot = pot;
+ (*_node_data)[index].heap_index.clear();
+ (*_node_data)[index].heap.clear();
+ int blossom =
+ _blossom_set->insert(n, std::numeric_limits<Value>::max());
+
+ (*_blossom_data)[blossom].status = MATCHED;
+ (*_blossom_data)[blossom].pred = INVALID;
+ (*_blossom_data)[blossom].next = _fractional->matching(n);
+ (*_blossom_data)[blossom].pot = 0;
+ (*_blossom_data)[blossom].offset = 0;
+ ++index;
+ }
+
+ typename Graph::template NodeMap<bool> processed(_graph, false);
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if (processed[n]) continue;
+ processed[n] = true;
+ if (_fractional->matching(n) == INVALID) continue;
+ int num = 1;
+ Node v = _graph.target(_fractional->matching(n));
+ while (n != v) {
+ processed[v] = true;
+ v = _graph.target(_fractional->matching(v));
+ ++num;
+ }
+
+ if (num % 2 == 1) {
+ std::vector<int> subblossoms(num);
+
+ subblossoms[--num] = _blossom_set->find(n);
+ v = _graph.target(_fractional->matching(n));
+ while (n != v) {
+ subblossoms[--num] = _blossom_set->find(v);
+ v = _graph.target(_fractional->matching(v));
+ }
+
+ int surface =
+ _blossom_set->join(subblossoms.begin(), subblossoms.end());
+ (*_blossom_data)[surface].status = EVEN;
+ (*_blossom_data)[surface].pred = INVALID;
+ (*_blossom_data)[surface].next = INVALID;
+ (*_blossom_data)[surface].pot = 0;
+ (*_blossom_data)[surface].offset = 0;
+
+ _tree_set->insert(surface);
+ ++_unmatched;
+ }
+ }
+
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ int si = (*_node_index)[_graph.u(e)];
+ int sb = _blossom_set->find(_graph.u(e));
+ int ti = (*_node_index)[_graph.v(e)];
+ int tb = _blossom_set->find(_graph.v(e));
+ if ((*_blossom_data)[sb].status == EVEN &&
+ (*_blossom_data)[tb].status == EVEN && sb != tb) {
+ _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
+ dualScale * _weight[e]) / 2);
+ }
+ }
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ int nb = _blossom_set->find(n);
+ if ((*_blossom_data)[nb].status != MATCHED) continue;
+ int ni = (*_node_index)[n];
+
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.target(e);
+ int vb = _blossom_set->find(v);
+ int vi = (*_node_index)[v];
+
+ Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
+ dualScale * _weight[e];
+
+ if ((*_blossom_data)[vb].status == EVEN) {
+
+ int vt = _tree_set->find(vb);
+
+ typename std::map<int, Arc>::iterator it =
+ (*_node_data)[ni].heap_index.find(vt);
+
+ if (it != (*_node_data)[ni].heap_index.end()) {
+ if ((*_node_data)[ni].heap[it->second] > rw) {
+ (*_node_data)[ni].heap.replace(it->second, e);
+ (*_node_data)[ni].heap.decrease(e, rw);
+ it->second = e;
+ }
+ } else {
+ (*_node_data)[ni].heap.push(e, rw);
+ (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
+ }
+ }
+ }
+
+ if (!(*_node_data)[ni].heap.empty()) {
+ _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
+ _delta2->push(nb, _blossom_set->classPrio(nb));
+ }
+ }
+ }
+
+ /// \brief Start the algorithm
+ ///
+ /// This function starts the algorithm.
+ ///
+ /// \pre \ref init() or \ref fractionalInit() must be called before
+ /// using this function.
+ bool start() {
+ enum OpType {
+ D2, D3, D4
+ };
+
+ if (_unmatched == -1) return false;
+
+ while (_unmatched > 0) {
+ Value d2 = !_delta2->empty() ?
+ _delta2->prio() : std::numeric_limits<Value>::max();
+
+ Value d3 = !_delta3->empty() ?
+ _delta3->prio() : std::numeric_limits<Value>::max();
+
+ Value d4 = !_delta4->empty() ?
+ _delta4->prio() : std::numeric_limits<Value>::max();
+
+ _delta_sum = d3; OpType ot = D3;
+ if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
+ if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
+
+ if (_delta_sum == std::numeric_limits<Value>::max()) {
+ return false;
+ }
+
+ switch (ot) {
+ case D2:
+ {
+ int blossom = _delta2->top();
+ Node n = _blossom_set->classTop(blossom);
+ Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
+ extendOnArc(e);
+ }
+ break;
+ case D3:
+ {
+ Edge e = _delta3->top();
+
+ int left_blossom = _blossom_set->find(_graph.u(e));
+ int right_blossom = _blossom_set->find(_graph.v(e));
+
+ if (left_blossom == right_blossom) {
+ _delta3->pop();
+ } else {
+ int left_tree = _tree_set->find(left_blossom);
+ int right_tree = _tree_set->find(right_blossom);
+
+ if (left_tree == right_tree) {
+ shrinkOnEdge(e, left_tree);
+ } else {
+ augmentOnEdge(e);
+ _unmatched -= 2;
+ }
+ }
+ } break;
+ case D4:
+ splitBlossom(_delta4->top());
+ break;
+ }
+ }
+ extractMatching();
+ return true;
+ }
+
+ /// \brief Run the algorithm.
+ ///
+ /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
+ ///
+ /// \note mwpm.run() is just a shortcut of the following code.
+ /// \code
+ /// mwpm.fractionalInit();
+ /// mwpm.start();
+ /// \endcode
+ bool run() {
+ fractionalInit();
+ return start();
+ }
+
+ /// @}
+
+ /// \name Primal Solution
+ /// Functions to get the primal solution, i.e. the maximum weighted
+ /// perfect matching.\n
+ /// Either \ref run() or \ref start() function should be called before
+ /// using them.
+
+ /// @{
+
+ /// \brief Return the weight of the matching.
+ ///
+ /// This function returns the weight of the found matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value matchingWeight() const {
+ Value sum = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if ((*_matching)[n] != INVALID) {
+ sum += _weight[(*_matching)[n]];
+ }
+ }
+ return sum / 2;
+ }
+
+ /// \brief Return \c true if the given edge is in the matching.
+ ///
+ /// This function returns \c true if the given edge is in the found
+ /// matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ bool matching(const Edge& edge) const {
+ return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
+ }
+
+ /// \brief Return the matching arc (or edge) incident to the given node.
+ ///
+ /// This function returns the matching arc (or edge) incident to the
+ /// given node in the found matching or \c INVALID if the node is
+ /// not covered by the matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Arc matching(const Node& node) const {
+ return (*_matching)[node];
+ }
+
+ /// \brief Return a const reference to the matching map.
+ ///
+ /// This function returns a const reference to a node map that stores
+ /// the matching arc (or edge) incident to each node.
+ const MatchingMap& matchingMap() const {
+ return *_matching;
+ }
+
+ /// \brief Return the mate of the given node.
+ ///
+ /// This function returns the mate of the given node in the found
+ /// matching or \c INVALID if the node is not covered by the matching.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Node mate(const Node& node) const {
+ return _graph.target((*_matching)[node]);
+ }
+
+ /// @}
+
+ /// \name Dual Solution
+ /// Functions to get the dual solution.\n
+ /// Either \ref run() or \ref start() function should be called before
+ /// using them.
+
+ /// @{
+
+ /// \brief Return the value of the dual solution.
+ ///
+ /// This function returns the value of the dual solution.
+ /// It should be equal to the primal value scaled by \ref dualScale
+ /// "dual scale".
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value dualValue() const {
+ Value sum = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ sum += nodeValue(n);
+ }
+ for (int i = 0; i < blossomNum(); ++i) {
+ sum += blossomValue(i) * (blossomSize(i) / 2);
+ }
+ return sum;
+ }
+
+ /// \brief Return the dual value (potential) of the given node.
+ ///
+ /// This function returns the dual value (potential) of the given node.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value nodeValue(const Node& n) const {
+ return (*_node_potential)[n];
+ }
+
+ /// \brief Return the number of the blossoms in the basis.
+ ///
+ /// This function returns the number of the blossoms in the basis.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ /// \see BlossomIt
+ int blossomNum() const {
+ return _blossom_potential.size();
+ }
+
+ /// \brief Return the number of the nodes in the given blossom.
+ ///
+ /// This function returns the number of the nodes in the given blossom.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ /// \see BlossomIt
+ int blossomSize(int k) const {
+ return _blossom_potential[k].end - _blossom_potential[k].begin;
+ }
+
+ /// \brief Return the dual value (ptential) of the given blossom.
+ ///
+ /// This function returns the dual value (ptential) of the given blossom.
+ ///
+ /// \pre Either run() or start() must be called before using this function.
+ Value blossomValue(int k) const {
+ return _blossom_potential[k].value;
+ }
+
+ /// \brief Iterator for obtaining the nodes of a blossom.
+ ///
+ /// This class provides an iterator for obtaining the nodes of the
+ /// given blossom. It lists a subset of the nodes.
+ /// Before using this iterator, you must allocate a
+ /// MaxWeightedPerfectMatching class and execute it.
+ class BlossomIt {
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor to get the nodes of the given variable.
+ ///
+ /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
+ /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
+ /// must be called before initializing this iterator.
+ BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
+ : _algorithm(&algorithm)
+ {
+ _index = _algorithm->_blossom_potential[variable].begin;
+ _last = _algorithm->_blossom_potential[variable].end;
+ }
+
+ /// \brief Conversion to \c Node.
+ ///
+ /// Conversion to \c Node.
+ operator Node() const {
+ return _algorithm->_blossom_node_list[_index];
+ }
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ BlossomIt& operator++() {
+ ++_index;
+ return *this;
+ }
+
+ /// \brief Validity checking
+ ///
+ /// This function checks whether the iterator is invalid.
+ bool operator==(Invalid) const { return _index == _last; }
+
+ /// \brief Validity checking
+ ///
+ /// This function checks whether the iterator is valid.
+ bool operator!=(Invalid) const { return _index != _last; }
+
+ private:
+ const MaxWeightedPerfectMatching* _algorithm;
+ int _last;
+ int _index;
+ };
+
+ /// @}
+
+ };
+
+} //END OF NAMESPACE LEMON
+
+#endif //LEMON_MATCHING_H