Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/nagamochi_ibaraki.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/nagamochi_ibaraki.h702
1 files changed, 702 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/nagamochi_ibaraki.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/nagamochi_ibaraki.h
new file mode 100644
index 00000000000..57a6ba64d2b
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/nagamochi_ibaraki.h
@@ -0,0 +1,702 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_NAGAMOCHI_IBARAKI_H
+#define LEMON_NAGAMOCHI_IBARAKI_H
+
+
+/// \ingroup min_cut
+/// \file
+/// \brief Implementation of the Nagamochi-Ibaraki algorithm.
+
+#include <lemon/core.h>
+#include <lemon/bin_heap.h>
+#include <lemon/bucket_heap.h>
+#include <lemon/maps.h>
+#include <lemon/radix_sort.h>
+#include <lemon/unionfind.h>
+
+#include <cassert>
+
+namespace lemon {
+
+ /// \brief Default traits class for NagamochiIbaraki class.
+ ///
+ /// Default traits class for NagamochiIbaraki class.
+ /// \param GR The undirected graph type.
+ /// \param CM Type of capacity map.
+ template <typename GR, typename CM>
+ struct NagamochiIbarakiDefaultTraits {
+ /// The type of the capacity map.
+ typedef typename CM::Value Value;
+
+ /// The undirected graph type the algorithm runs on.
+ typedef GR Graph;
+
+ /// \brief The type of the map that stores the edge capacities.
+ ///
+ /// The type of the map that stores the edge capacities.
+ /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
+ typedef CM CapacityMap;
+
+ /// \brief Instantiates a CapacityMap.
+ ///
+ /// This function instantiates a \ref CapacityMap.
+#ifdef DOXYGEN
+ static CapacityMap *createCapacityMap(const Graph& graph)
+#else
+ static CapacityMap *createCapacityMap(const Graph&)
+#endif
+ {
+ LEMON_ASSERT(false, "CapacityMap is not initialized");
+ return 0; // ignore warnings
+ }
+
+ /// \brief The cross reference type used by heap.
+ ///
+ /// The cross reference type used by heap.
+ /// Usually \c Graph::NodeMap<int>.
+ typedef typename Graph::template NodeMap<int> HeapCrossRef;
+
+ /// \brief Instantiates a HeapCrossRef.
+ ///
+ /// This function instantiates a \ref HeapCrossRef.
+ /// \param g is the graph, to which we would like to define the
+ /// \ref HeapCrossRef.
+ static HeapCrossRef *createHeapCrossRef(const Graph& g) {
+ return new HeapCrossRef(g);
+ }
+
+ /// \brief The heap type used by NagamochiIbaraki algorithm.
+ ///
+ /// The heap type used by NagamochiIbaraki algorithm. It has to
+ /// maximize the priorities.
+ ///
+ /// \sa BinHeap
+ /// \sa NagamochiIbaraki
+ typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap;
+
+ /// \brief Instantiates a Heap.
+ ///
+ /// This function instantiates a \ref Heap.
+ /// \param r is the cross reference of the heap.
+ static Heap *createHeap(HeapCrossRef& r) {
+ return new Heap(r);
+ }
+ };
+
+ /// \ingroup min_cut
+ ///
+ /// \brief Calculates the minimum cut in an undirected graph.
+ ///
+ /// Calculates the minimum cut in an undirected graph with the
+ /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
+ /// nodes into two partitions with the minimum sum of edge capacities
+ /// between the two partitions. The algorithm can be used to test
+ /// the network reliability, especially to test how many links have
+ /// to be destroyed in the network to split it to at least two
+ /// distinict subnetworks.
+ ///
+ /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with
+ /// \ref FibHeap "Fibonacci heap" it can be decreased to
+ /// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities,
+ /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time
+ /// complexity.
+ ///
+ /// \warning The value type of the capacity map should be able to
+ /// hold any cut value of the graph, otherwise the result can
+ /// overflow.
+ /// \note This capacity is supposed to be integer type.
+#ifdef DOXYGEN
+ template <typename GR, typename CM, typename TR>
+#else
+ template <typename GR,
+ typename CM = typename GR::template EdgeMap<int>,
+ typename TR = NagamochiIbarakiDefaultTraits<GR, CM> >
+#endif
+ class NagamochiIbaraki {
+ public:
+
+ typedef TR Traits;
+ /// The type of the underlying graph.
+ typedef typename Traits::Graph Graph;
+
+ /// The type of the capacity map.
+ typedef typename Traits::CapacityMap CapacityMap;
+ /// The value type of the capacity map.
+ typedef typename Traits::CapacityMap::Value Value;
+
+ /// The heap type used by the algorithm.
+ typedef typename Traits::Heap Heap;
+ /// The cross reference type used for the heap.
+ typedef typename Traits::HeapCrossRef HeapCrossRef;
+
+ ///\name Named template parameters
+
+ ///@{
+
+ struct SetUnitCapacityTraits : public Traits {
+ typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap;
+ static CapacityMap *createCapacityMap(const Graph&) {
+ return new CapacityMap();
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// the capacity map to a constMap<Edge, int, 1>() instance
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// the capacity map to a constMap<Edge, int, 1>() instance
+ struct SetUnitCapacity
+ : public NagamochiIbaraki<Graph, CapacityMap,
+ SetUnitCapacityTraits> {
+ typedef NagamochiIbaraki<Graph, CapacityMap,
+ SetUnitCapacityTraits> Create;
+ };
+
+
+ template <class H, class CR>
+ struct SetHeapTraits : public Traits {
+ typedef CR HeapCrossRef;
+ typedef H Heap;
+ static HeapCrossRef *createHeapCrossRef(int num) {
+ LEMON_ASSERT(false, "HeapCrossRef is not initialized");
+ return 0; // ignore warnings
+ }
+ static Heap *createHeap(HeapCrossRef &) {
+ LEMON_ASSERT(false, "Heap is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// heap and cross reference type
+ ///
+ /// \ref named-templ-param "Named parameter" for setting heap and
+ /// cross reference type. The heap has to maximize the priorities.
+ template <class H, class CR = RangeMap<int> >
+ struct SetHeap
+ : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
+ typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> >
+ Create;
+ };
+
+ template <class H, class CR>
+ struct SetStandardHeapTraits : public Traits {
+ typedef CR HeapCrossRef;
+ typedef H Heap;
+ static HeapCrossRef *createHeapCrossRef(int size) {
+ return new HeapCrossRef(size);
+ }
+ static Heap *createHeap(HeapCrossRef &crossref) {
+ return new Heap(crossref);
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// heap and cross reference type with automatic allocation
+ ///
+ /// \ref named-templ-param "Named parameter" for setting heap and
+ /// cross reference type with automatic allocation. They should
+ /// have standard constructor interfaces to be able to
+ /// automatically created by the algorithm (i.e. the graph should
+ /// be passed to the constructor of the cross reference and the
+ /// cross reference should be passed to the constructor of the
+ /// heap). However, external heap and cross reference objects
+ /// could also be passed to the algorithm using the \ref heap()
+ /// function before calling \ref run() or \ref init(). The heap
+ /// has to maximize the priorities.
+ /// \sa SetHeap
+ template <class H, class CR = RangeMap<int> >
+ struct SetStandardHeap
+ : public NagamochiIbaraki<Graph, CapacityMap,
+ SetStandardHeapTraits<H, CR> > {
+ typedef NagamochiIbaraki<Graph, CapacityMap,
+ SetStandardHeapTraits<H, CR> > Create;
+ };
+
+ ///@}
+
+
+ private:
+
+ const Graph &_graph;
+ const CapacityMap *_capacity;
+ bool _local_capacity; // unit capacity
+
+ struct ArcData {
+ typename Graph::Node target;
+ int prev, next;
+ };
+ struct EdgeData {
+ Value capacity;
+ Value cut;
+ };
+
+ struct NodeData {
+ int first_arc;
+ typename Graph::Node prev, next;
+ int curr_arc;
+ typename Graph::Node last_rep;
+ Value sum;
+ };
+
+ typename Graph::template NodeMap<NodeData> *_nodes;
+ std::vector<ArcData> _arcs;
+ std::vector<EdgeData> _edges;
+
+ typename Graph::Node _first_node;
+ int _node_num;
+
+ Value _min_cut;
+
+ HeapCrossRef *_heap_cross_ref;
+ bool _local_heap_cross_ref;
+ Heap *_heap;
+ bool _local_heap;
+
+ typedef typename Graph::template NodeMap<typename Graph::Node> NodeList;
+ NodeList *_next_rep;
+
+ typedef typename Graph::template NodeMap<bool> MinCutMap;
+ MinCutMap *_cut_map;
+
+ void createStructures() {
+ if (!_nodes) {
+ _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph);
+ }
+ if (!_capacity) {
+ _local_capacity = true;
+ _capacity = Traits::createCapacityMap(_graph);
+ }
+ if (!_heap_cross_ref) {
+ _local_heap_cross_ref = true;
+ _heap_cross_ref = Traits::createHeapCrossRef(_graph);
+ }
+ if (!_heap) {
+ _local_heap = true;
+ _heap = Traits::createHeap(*_heap_cross_ref);
+ }
+ if (!_next_rep) {
+ _next_rep = new NodeList(_graph);
+ }
+ if (!_cut_map) {
+ _cut_map = new MinCutMap(_graph);
+ }
+ }
+
+ protected:
+ //This is here to avoid a gcc-3.3 compilation error.
+ //It should never be called.
+ NagamochiIbaraki() {}
+
+ public:
+
+ typedef NagamochiIbaraki Create;
+
+
+ /// \brief Constructor.
+ ///
+ /// \param graph The graph the algorithm runs on.
+ /// \param capacity The capacity map used by the algorithm.
+ NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity)
+ : _graph(graph), _capacity(&capacity), _local_capacity(false),
+ _nodes(0), _arcs(), _edges(), _min_cut(),
+ _heap_cross_ref(0), _local_heap_cross_ref(false),
+ _heap(0), _local_heap(false),
+ _next_rep(0), _cut_map(0) {}
+
+ /// \brief Constructor.
+ ///
+ /// This constructor can be used only when the Traits class
+ /// defines how can the local capacity map be instantiated.
+ /// If the SetUnitCapacity used the algorithm automatically
+ /// constructs the capacity map.
+ ///
+ ///\param graph The graph the algorithm runs on.
+ NagamochiIbaraki(const Graph& graph)
+ : _graph(graph), _capacity(0), _local_capacity(false),
+ _nodes(0), _arcs(), _edges(), _min_cut(),
+ _heap_cross_ref(0), _local_heap_cross_ref(false),
+ _heap(0), _local_heap(false),
+ _next_rep(0), _cut_map(0) {}
+
+ /// \brief Destructor.
+ ///
+ /// Destructor.
+ ~NagamochiIbaraki() {
+ if (_local_capacity) delete _capacity;
+ if (_nodes) delete _nodes;
+ if (_local_heap) delete _heap;
+ if (_local_heap_cross_ref) delete _heap_cross_ref;
+ if (_next_rep) delete _next_rep;
+ if (_cut_map) delete _cut_map;
+ }
+
+ /// \brief Sets the heap and the cross reference used by algorithm.
+ ///
+ /// Sets the heap and the cross reference used by algorithm.
+ /// If you don't use this function before calling \ref run(),
+ /// it will allocate one. The destuctor deallocates this
+ /// automatically allocated heap and cross reference, of course.
+ /// \return <tt> (*this) </tt>
+ NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr)
+ {
+ if (_local_heap_cross_ref) {
+ delete _heap_cross_ref;
+ _local_heap_cross_ref = false;
+ }
+ _heap_cross_ref = &cr;
+ if (_local_heap) {
+ delete _heap;
+ _local_heap = false;
+ }
+ _heap = &hp;
+ return *this;
+ }
+
+ /// \name Execution control
+ /// The simplest way to execute the algorithm is to use
+ /// one of the member functions called \c run().
+ /// \n
+ /// If you need more control on the execution,
+ /// first you must call \ref init() and then call the start()
+ /// or proper times the processNextPhase() member functions.
+
+ ///@{
+
+ /// \brief Initializes the internal data structures.
+ ///
+ /// Initializes the internal data structures.
+ void init() {
+ createStructures();
+
+ int edge_num = countEdges(_graph);
+ _edges.resize(edge_num);
+ _arcs.resize(2 * edge_num);
+
+ typename Graph::Node prev = INVALID;
+ _node_num = 0;
+ for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
+ (*_cut_map)[n] = false;
+ (*_next_rep)[n] = INVALID;
+ (*_nodes)[n].last_rep = n;
+ (*_nodes)[n].first_arc = -1;
+ (*_nodes)[n].curr_arc = -1;
+ (*_nodes)[n].prev = prev;
+ if (prev != INVALID) {
+ (*_nodes)[prev].next = n;
+ }
+ (*_nodes)[n].next = INVALID;
+ (*_nodes)[n].sum = 0;
+ prev = n;
+ ++_node_num;
+ }
+
+ _first_node = typename Graph::NodeIt(_graph);
+
+ int index = 0;
+ for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
+ for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
+ typename Graph::Node m = _graph.target(a);
+
+ if (!(n < m)) continue;
+
+ (*_nodes)[n].sum += (*_capacity)[a];
+ (*_nodes)[m].sum += (*_capacity)[a];
+
+ int c = (*_nodes)[m].curr_arc;
+ if (c != -1 && _arcs[c ^ 1].target == n) {
+ _edges[c >> 1].capacity += (*_capacity)[a];
+ } else {
+ _edges[index].capacity = (*_capacity)[a];
+
+ _arcs[index << 1].prev = -1;
+ if ((*_nodes)[n].first_arc != -1) {
+ _arcs[(*_nodes)[n].first_arc].prev = (index << 1);
+ }
+ _arcs[index << 1].next = (*_nodes)[n].first_arc;
+ (*_nodes)[n].first_arc = (index << 1);
+ _arcs[index << 1].target = m;
+
+ (*_nodes)[m].curr_arc = (index << 1);
+
+ _arcs[(index << 1) | 1].prev = -1;
+ if ((*_nodes)[m].first_arc != -1) {
+ _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1);
+ }
+ _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc;
+ (*_nodes)[m].first_arc = ((index << 1) | 1);
+ _arcs[(index << 1) | 1].target = n;
+
+ ++index;
+ }
+ }
+ }
+
+ typename Graph::Node cut_node = INVALID;
+ _min_cut = std::numeric_limits<Value>::max();
+
+ for (typename Graph::Node n = _first_node;
+ n != INVALID; n = (*_nodes)[n].next) {
+ if ((*_nodes)[n].sum < _min_cut) {
+ cut_node = n;
+ _min_cut = (*_nodes)[n].sum;
+ }
+ }
+ (*_cut_map)[cut_node] = true;
+ if (_min_cut == 0) {
+ _first_node = INVALID;
+ }
+ }
+
+ public:
+
+ /// \brief Processes the next phase
+ ///
+ /// Processes the next phase in the algorithm. It must be called
+ /// at most one less the number of the nodes in the graph.
+ ///
+ ///\return %True when the algorithm finished.
+ bool processNextPhase() {
+ if (_first_node == INVALID) return true;
+
+ _heap->clear();
+ for (typename Graph::Node n = _first_node;
+ n != INVALID; n = (*_nodes)[n].next) {
+ (*_heap_cross_ref)[n] = Heap::PRE_HEAP;
+ }
+
+ std::vector<typename Graph::Node> order;
+ order.reserve(_node_num);
+ int sep = 0;
+
+ Value alpha = 0;
+ Value pmc = std::numeric_limits<Value>::max();
+
+ _heap->push(_first_node, static_cast<Value>(0));
+ while (!_heap->empty()) {
+ typename Graph::Node n = _heap->top();
+ Value v = _heap->prio();
+
+ _heap->pop();
+ for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
+ switch (_heap->state(_arcs[a].target)) {
+ case Heap::PRE_HEAP:
+ {
+ Value nv = _edges[a >> 1].capacity;
+ _heap->push(_arcs[a].target, nv);
+ _edges[a >> 1].cut = nv;
+ } break;
+ case Heap::IN_HEAP:
+ {
+ Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target];
+ _heap->decrease(_arcs[a].target, nv);
+ _edges[a >> 1].cut = nv;
+ } break;
+ case Heap::POST_HEAP:
+ break;
+ }
+ }
+
+ alpha += (*_nodes)[n].sum;
+ alpha -= 2 * v;
+
+ order.push_back(n);
+ if (!_heap->empty()) {
+ if (alpha < pmc) {
+ pmc = alpha;
+ sep = order.size();
+ }
+ }
+ }
+
+ if (static_cast<int>(order.size()) < _node_num) {
+ _first_node = INVALID;
+ for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
+ (*_cut_map)[n] = false;
+ }
+ for (int i = 0; i < static_cast<int>(order.size()); ++i) {
+ typename Graph::Node n = order[i];
+ while (n != INVALID) {
+ (*_cut_map)[n] = true;
+ n = (*_next_rep)[n];
+ }
+ }
+ _min_cut = 0;
+ return true;
+ }
+
+ if (pmc < _min_cut) {
+ for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
+ (*_cut_map)[n] = false;
+ }
+ for (int i = 0; i < sep; ++i) {
+ typename Graph::Node n = order[i];
+ while (n != INVALID) {
+ (*_cut_map)[n] = true;
+ n = (*_next_rep)[n];
+ }
+ }
+ _min_cut = pmc;
+ }
+
+ for (typename Graph::Node n = _first_node;
+ n != INVALID; n = (*_nodes)[n].next) {
+ bool merged = false;
+ for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
+ if (!(_edges[a >> 1].cut < pmc)) {
+ if (!merged) {
+ for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) {
+ (*_nodes)[_arcs[b].target].curr_arc = b;
+ }
+ merged = true;
+ }
+ typename Graph::Node m = _arcs[a].target;
+ int nb = 0;
+ for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) {
+ nb = _arcs[b].next;
+ if ((b ^ a) == 1) continue;
+ typename Graph::Node o = _arcs[b].target;
+ int c = (*_nodes)[o].curr_arc;
+ if (c != -1 && _arcs[c ^ 1].target == n) {
+ _edges[c >> 1].capacity += _edges[b >> 1].capacity;
+ (*_nodes)[n].sum += _edges[b >> 1].capacity;
+ if (_edges[b >> 1].cut < _edges[c >> 1].cut) {
+ _edges[b >> 1].cut = _edges[c >> 1].cut;
+ }
+ if (_arcs[b ^ 1].prev != -1) {
+ _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next;
+ } else {
+ (*_nodes)[o].first_arc = _arcs[b ^ 1].next;
+ }
+ if (_arcs[b ^ 1].next != -1) {
+ _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev;
+ }
+ } else {
+ if (_arcs[a].next != -1) {
+ _arcs[_arcs[a].next].prev = b;
+ }
+ _arcs[b].next = _arcs[a].next;
+ _arcs[b].prev = a;
+ _arcs[a].next = b;
+ _arcs[b ^ 1].target = n;
+
+ (*_nodes)[n].sum += _edges[b >> 1].capacity;
+ (*_nodes)[o].curr_arc = b;
+ }
+ }
+
+ if (_arcs[a].prev != -1) {
+ _arcs[_arcs[a].prev].next = _arcs[a].next;
+ } else {
+ (*_nodes)[n].first_arc = _arcs[a].next;
+ }
+ if (_arcs[a].next != -1) {
+ _arcs[_arcs[a].next].prev = _arcs[a].prev;
+ }
+
+ (*_nodes)[n].sum -= _edges[a >> 1].capacity;
+ (*_next_rep)[(*_nodes)[n].last_rep] = m;
+ (*_nodes)[n].last_rep = (*_nodes)[m].last_rep;
+
+ if ((*_nodes)[m].prev != INVALID) {
+ (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next;
+ } else{
+ _first_node = (*_nodes)[m].next;
+ }
+ if ((*_nodes)[m].next != INVALID) {
+ (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev;
+ }
+ --_node_num;
+ }
+ }
+ }
+
+ if (_node_num == 1) {
+ _first_node = INVALID;
+ return true;
+ }
+
+ return false;
+ }
+
+ /// \brief Executes the algorithm.
+ ///
+ /// Executes the algorithm.
+ ///
+ /// \pre init() must be called
+ void start() {
+ while (!processNextPhase()) {}
+ }
+
+
+ /// \brief Runs %NagamochiIbaraki algorithm.
+ ///
+ /// This method runs the %Min cut algorithm
+ ///
+ /// \note mc.run(s) is just a shortcut of the following code.
+ ///\code
+ /// mc.init();
+ /// mc.start();
+ ///\endcode
+ void run() {
+ init();
+ start();
+ }
+
+ ///@}
+
+ /// \name Query Functions
+ ///
+ /// The result of the %NagamochiIbaraki
+ /// algorithm can be obtained using these functions.\n
+ /// Before the use of these functions, either run() or start()
+ /// must be called.
+
+ ///@{
+
+ /// \brief Returns the min cut value.
+ ///
+ /// Returns the min cut value if the algorithm finished.
+ /// After the first processNextPhase() it is a value of a
+ /// valid cut in the graph.
+ Value minCutValue() const {
+ return _min_cut;
+ }
+
+ /// \brief Returns a min cut in a NodeMap.
+ ///
+ /// It sets the nodes of one of the two partitions to true and
+ /// the other partition to false.
+ /// \param cutMap A \ref concepts::WriteMap "writable" node map with
+ /// \c bool (or convertible) value type.
+ template <typename CutMap>
+ Value minCutMap(CutMap& cutMap) const {
+ for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
+ cutMap.set(n, (*_cut_map)[n]);
+ }
+ return minCutValue();
+ }
+
+ ///@}
+
+ };
+}
+
+#endif