Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h238
1 files changed, 238 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h
new file mode 100644
index 00000000000..065e145df08
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h
@@ -0,0 +1,238 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
+#define LEMON_NEAREST_NEIGHBOUR_TSP_H
+
+/// \ingroup tsp
+/// \file
+/// \brief Nearest neighbor algorithm for symmetric TSP
+
+#include <deque>
+#include <vector>
+#include <limits>
+#include <lemon/full_graph.h>
+#include <lemon/maps.h>
+
+namespace lemon {
+
+ /// \ingroup tsp
+ ///
+ /// \brief Nearest neighbor algorithm for symmetric TSP.
+ ///
+ /// NearestNeighborTsp implements the nearest neighbor heuristic for solving
+ /// symmetric \ref tsp "TSP".
+ ///
+ /// This is probably the simplest TSP heuristic.
+ /// It starts with a minimum cost edge and at each step, it connects the
+ /// nearest unvisited node to the current path.
+ /// Finally, it connects the two end points of the path to form a tour.
+ ///
+ /// This method runs in O(n<sup>2</sup>) time.
+ /// It quickly finds a relatively short tour for most TSP instances,
+ /// but it could also yield a really bad (or even the worst) solution
+ /// in special cases.
+ ///
+ /// \tparam CM Type of the cost map.
+ template <typename CM>
+ class NearestNeighborTsp
+ {
+ public:
+
+ /// Type of the cost map
+ typedef CM CostMap;
+ /// Type of the edge costs
+ typedef typename CM::Value Cost;
+
+ private:
+
+ GRAPH_TYPEDEFS(FullGraph);
+
+ const FullGraph &_gr;
+ const CostMap &_cost;
+ Cost _sum;
+ std::vector<Node> _path;
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
+ /// \param cost The cost map.
+ NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
+ : _gr(gr), _cost(cost) {}
+
+ /// \name Execution Control
+ /// @{
+
+ /// \brief Runs the algorithm.
+ ///
+ /// This function runs the algorithm.
+ ///
+ /// \return The total cost of the found tour.
+ Cost run() {
+ _path.clear();
+ if (_gr.nodeNum() == 0) {
+ return _sum = 0;
+ }
+ else if (_gr.nodeNum() == 1) {
+ _path.push_back(_gr(0));
+ return _sum = 0;
+ }
+
+ std::deque<Node> path_dq;
+ Edge min_edge1 = INVALID,
+ min_edge2 = INVALID;
+
+ min_edge1 = mapMin(_gr, _cost);
+ Node n1 = _gr.u(min_edge1),
+ n2 = _gr.v(min_edge1);
+ path_dq.push_back(n1);
+ path_dq.push_back(n2);
+
+ FullGraph::NodeMap<bool> used(_gr, false);
+ used[n1] = true;
+ used[n2] = true;
+
+ min_edge1 = INVALID;
+ while (int(path_dq.size()) != _gr.nodeNum()) {
+ if (min_edge1 == INVALID) {
+ for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
+ if (!used[_gr.runningNode(e)] &&
+ (min_edge1 == INVALID || _cost[e] < _cost[min_edge1])) {
+ min_edge1 = e;
+ }
+ }
+ }
+
+ if (min_edge2 == INVALID) {
+ for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
+ if (!used[_gr.runningNode(e)] &&
+ (min_edge2 == INVALID||_cost[e] < _cost[min_edge2])) {
+ min_edge2 = e;
+ }
+ }
+ }
+
+ if (_cost[min_edge1] < _cost[min_edge2]) {
+ n1 = _gr.oppositeNode(n1, min_edge1);
+ path_dq.push_front(n1);
+
+ used[n1] = true;
+ min_edge1 = INVALID;
+
+ if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
+ min_edge2 = INVALID;
+ } else {
+ n2 = _gr.oppositeNode(n2, min_edge2);
+ path_dq.push_back(n2);
+
+ used[n2] = true;
+ min_edge2 = INVALID;
+
+ if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
+ min_edge1 = INVALID;
+ }
+ }
+
+ n1 = path_dq.back();
+ n2 = path_dq.front();
+ _path.push_back(n2);
+ _sum = _cost[_gr.edge(n1, n2)];
+ for (int i = 1; i < int(path_dq.size()); ++i) {
+ n1 = n2;
+ n2 = path_dq[i];
+ _path.push_back(n2);
+ _sum += _cost[_gr.edge(n1, n2)];
+ }
+
+ return _sum;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// @{
+
+ /// \brief The total cost of the found tour.
+ ///
+ /// This function returns the total cost of the found tour.
+ ///
+ /// \pre run() must be called before using this function.
+ Cost tourCost() const {
+ return _sum;
+ }
+
+ /// \brief Returns a const reference to the node sequence of the
+ /// found tour.
+ ///
+ /// This function returns a const reference to a vector
+ /// that stores the node sequence of the found tour.
+ ///
+ /// \pre run() must be called before using this function.
+ const std::vector<Node>& tourNodes() const {
+ return _path;
+ }
+
+ /// \brief Gives back the node sequence of the found tour.
+ ///
+ /// This function copies the node sequence of the found tour into
+ /// an STL container through the given output iterator. The
+ /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
+ /// For example,
+ /// \code
+ /// std::vector<FullGraph::Node> nodes(countNodes(graph));
+ /// tsp.tourNodes(nodes.begin());
+ /// \endcode
+ /// or
+ /// \code
+ /// std::list<FullGraph::Node> nodes;
+ /// tsp.tourNodes(std::back_inserter(nodes));
+ /// \endcode
+ ///
+ /// \pre run() must be called before using this function.
+ template <typename Iterator>
+ void tourNodes(Iterator out) const {
+ std::copy(_path.begin(), _path.end(), out);
+ }
+
+ /// \brief Gives back the found tour as a path.
+ ///
+ /// This function copies the found tour as a list of arcs/edges into
+ /// the given \ref lemon::concepts::Path "path structure".
+ ///
+ /// \pre run() must be called before using this function.
+ template <typename Path>
+ void tour(Path &path) const {
+ path.clear();
+ for (int i = 0; i < int(_path.size()) - 1; ++i) {
+ path.addBack(_gr.arc(_path[i], _path[i+1]));
+ }
+ if (int(_path.size()) >= 2) {
+ path.addBack(_gr.arc(_path.back(), _path.front()));
+ }
+ }
+
+ /// @}
+
+ };
+
+}; // namespace lemon
+
+#endif