Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/network_simplex.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/network_simplex.h1659
1 files changed, 1659 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/network_simplex.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/network_simplex.h
new file mode 100644
index 00000000000..6ccad33e68e
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/network_simplex.h
@@ -0,0 +1,1659 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_NETWORK_SIMPLEX_H
+#define LEMON_NETWORK_SIMPLEX_H
+
+/// \ingroup min_cost_flow_algs
+///
+/// \file
+/// \brief Network Simplex algorithm for finding a minimum cost flow.
+
+#include <vector>
+#include <limits>
+#include <algorithm>
+
+#include <lemon/core.h>
+#include <lemon/math.h>
+
+namespace lemon {
+
+ /// \addtogroup min_cost_flow_algs
+ /// @{
+
+ /// \brief Implementation of the primal Network Simplex algorithm
+ /// for finding a \ref min_cost_flow "minimum cost flow".
+ ///
+ /// \ref NetworkSimplex implements the primal Network Simplex algorithm
+ /// for finding a \ref min_cost_flow "minimum cost flow"
+ /// \cite amo93networkflows, \cite dantzig63linearprog,
+ /// \cite kellyoneill91netsimplex.
+ /// This algorithm is a highly efficient specialized version of the
+ /// linear programming simplex method directly for the minimum cost
+ /// flow problem.
+ ///
+ /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
+ /// implementations available in LEMON for solving this problem.
+ /// (For more information, see \ref min_cost_flow_algs "the module page".)
+ /// Furthermore, this class supports both directions of the supply/demand
+ /// inequality constraints. For more information, see \ref SupplyType.
+ ///
+ /// Most of the parameters of the problem (except for the digraph)
+ /// can be given using separate functions, and the algorithm can be
+ /// executed using the \ref run() function. If some parameters are not
+ /// specified, then default values will be used.
+ ///
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam V The number type used for flow amounts, capacity bounds
+ /// and supply values in the algorithm. By default, it is \c int.
+ /// \tparam C The number type used for costs and potentials in the
+ /// algorithm. By default, it is the same as \c V.
+ ///
+ /// \warning Both \c V and \c C must be signed number types.
+ /// \warning All input data (capacities, supply values, and costs) must
+ /// be integer.
+ ///
+ /// \note %NetworkSimplex provides five different pivot rule
+ /// implementations, from which the most efficient one is used
+ /// by default. For more information, see \ref PivotRule.
+ template <typename GR, typename V = int, typename C = V>
+ class NetworkSimplex
+ {
+ public:
+
+ /// The type of the flow amounts, capacity bounds and supply values
+ typedef V Value;
+ /// The type of the arc costs
+ typedef C Cost;
+
+ public:
+
+ /// \brief Problem type constants for the \c run() function.
+ ///
+ /// Enum type containing the problem type constants that can be
+ /// returned by the \ref run() function of the algorithm.
+ enum ProblemType {
+ /// The problem has no feasible solution (flow).
+ INFEASIBLE,
+ /// The problem has optimal solution (i.e. it is feasible and
+ /// bounded), and the algorithm has found optimal flow and node
+ /// potentials (primal and dual solutions).
+ OPTIMAL,
+ /// The objective function of the problem is unbounded, i.e.
+ /// there is a directed cycle having negative total cost and
+ /// infinite upper bound.
+ UNBOUNDED
+ };
+
+ /// \brief Constants for selecting the type of the supply constraints.
+ ///
+ /// Enum type containing constants for selecting the supply type,
+ /// i.e. the direction of the inequalities in the supply/demand
+ /// constraints of the \ref min_cost_flow "minimum cost flow problem".
+ ///
+ /// The default supply type is \c GEQ, the \c LEQ type can be
+ /// selected using \ref supplyType().
+ /// The equality form is a special case of both supply types.
+ enum SupplyType {
+ /// This option means that there are <em>"greater or equal"</em>
+ /// supply/demand constraints in the definition of the problem.
+ GEQ,
+ /// This option means that there are <em>"less or equal"</em>
+ /// supply/demand constraints in the definition of the problem.
+ LEQ
+ };
+
+ /// \brief Constants for selecting the pivot rule.
+ ///
+ /// Enum type containing constants for selecting the pivot rule for
+ /// the \ref run() function.
+ ///
+ /// \ref NetworkSimplex provides five different implementations for
+ /// the pivot strategy that significantly affects the running time
+ /// of the algorithm.
+ /// According to experimental tests conducted on various problem
+ /// instances, \ref BLOCK_SEARCH "Block Search" and
+ /// \ref ALTERING_LIST "Altering Candidate List" rules turned out
+ /// to be the most efficient.
+ /// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that
+ /// seemed to be slightly more robust, it is used by default.
+ /// However, another pivot rule can easily be selected using the
+ /// \ref run() function with the proper parameter.
+ enum PivotRule {
+
+ /// The \e First \e Eligible pivot rule.
+ /// The next eligible arc is selected in a wraparound fashion
+ /// in every iteration.
+ FIRST_ELIGIBLE,
+
+ /// The \e Best \e Eligible pivot rule.
+ /// The best eligible arc is selected in every iteration.
+ BEST_ELIGIBLE,
+
+ /// The \e Block \e Search pivot rule.
+ /// A specified number of arcs are examined in every iteration
+ /// in a wraparound fashion and the best eligible arc is selected
+ /// from this block.
+ BLOCK_SEARCH,
+
+ /// The \e Candidate \e List pivot rule.
+ /// In a major iteration a candidate list is built from eligible arcs
+ /// in a wraparound fashion and in the following minor iterations
+ /// the best eligible arc is selected from this list.
+ CANDIDATE_LIST,
+
+ /// The \e Altering \e Candidate \e List pivot rule.
+ /// It is a modified version of the Candidate List method.
+ /// It keeps only a few of the best eligible arcs from the former
+ /// candidate list and extends this list in every iteration.
+ ALTERING_LIST
+ };
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typedef std::vector<int> IntVector;
+ typedef std::vector<Value> ValueVector;
+ typedef std::vector<Cost> CostVector;
+ typedef std::vector<signed char> CharVector;
+ // Note: vector<signed char> is used instead of vector<ArcState> and
+ // vector<ArcDirection> for efficiency reasons
+
+ // State constants for arcs
+ enum ArcState {
+ STATE_UPPER = -1,
+ STATE_TREE = 0,
+ STATE_LOWER = 1
+ };
+
+ // Direction constants for tree arcs
+ enum ArcDirection {
+ DIR_DOWN = -1,
+ DIR_UP = 1
+ };
+
+ private:
+
+ // Data related to the underlying digraph
+ const GR &_graph;
+ int _node_num;
+ int _arc_num;
+ int _all_arc_num;
+ int _search_arc_num;
+
+ // Parameters of the problem
+ bool _has_lower;
+ SupplyType _stype;
+ Value _sum_supply;
+
+ // Data structures for storing the digraph
+ IntNodeMap _node_id;
+ IntArcMap _arc_id;
+ IntVector _source;
+ IntVector _target;
+ bool _arc_mixing;
+
+ // Node and arc data
+ ValueVector _lower;
+ ValueVector _upper;
+ ValueVector _cap;
+ CostVector _cost;
+ ValueVector _supply;
+ ValueVector _flow;
+ CostVector _pi;
+
+ // Data for storing the spanning tree structure
+ IntVector _parent;
+ IntVector _pred;
+ IntVector _thread;
+ IntVector _rev_thread;
+ IntVector _succ_num;
+ IntVector _last_succ;
+ CharVector _pred_dir;
+ CharVector _state;
+ IntVector _dirty_revs;
+ int _root;
+
+ // Temporary data used in the current pivot iteration
+ int in_arc, join, u_in, v_in, u_out, v_out;
+ Value delta;
+
+ const Value MAX;
+
+ public:
+
+ /// \brief Constant for infinite upper bounds (capacities).
+ ///
+ /// Constant for infinite upper bounds (capacities).
+ /// It is \c std::numeric_limits<Value>::infinity() if available,
+ /// \c std::numeric_limits<Value>::max() otherwise.
+ const Value INF;
+
+ private:
+
+ // Implementation of the First Eligible pivot rule
+ class FirstEligiblePivotRule
+ {
+ private:
+
+ // References to the NetworkSimplex class
+ const IntVector &_source;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const CharVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ // Pivot rule data
+ int _next_arc;
+
+ public:
+
+ // Constructor
+ FirstEligiblePivotRule(NetworkSimplex &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
+ _next_arc(0)
+ {}
+
+ // Find next entering arc
+ bool findEnteringArc() {
+ Cost c;
+ for (int e = _next_arc; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _in_arc = e;
+ _next_arc = e + 1;
+ return true;
+ }
+ }
+ for (int e = 0; e != _next_arc; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _in_arc = e;
+ _next_arc = e + 1;
+ return true;
+ }
+ }
+ return false;
+ }
+
+ }; //class FirstEligiblePivotRule
+
+
+ // Implementation of the Best Eligible pivot rule
+ class BestEligiblePivotRule
+ {
+ private:
+
+ // References to the NetworkSimplex class
+ const IntVector &_source;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const CharVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ public:
+
+ // Constructor
+ BestEligiblePivotRule(NetworkSimplex &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
+ {}
+
+ // Find next entering arc
+ bool findEnteringArc() {
+ Cost c, min = 0;
+ for (int e = 0; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ }
+ return min < 0;
+ }
+
+ }; //class BestEligiblePivotRule
+
+
+ // Implementation of the Block Search pivot rule
+ class BlockSearchPivotRule
+ {
+ private:
+
+ // References to the NetworkSimplex class
+ const IntVector &_source;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const CharVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ // Pivot rule data
+ int _block_size;
+ int _next_arc;
+
+ public:
+
+ // Constructor
+ BlockSearchPivotRule(NetworkSimplex &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
+ _next_arc(0)
+ {
+ // The main parameters of the pivot rule
+ const double BLOCK_SIZE_FACTOR = 1.0;
+ const int MIN_BLOCK_SIZE = 10;
+
+ _block_size = std::max( int(BLOCK_SIZE_FACTOR *
+ std::sqrt(double(_search_arc_num))),
+ MIN_BLOCK_SIZE );
+ }
+
+ // Find next entering arc
+ bool findEnteringArc() {
+ Cost c, min = 0;
+ int cnt = _block_size;
+ int e;
+ for (e = _next_arc; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (--cnt == 0) {
+ if (min < 0) goto search_end;
+ cnt = _block_size;
+ }
+ }
+ for (e = 0; e != _next_arc; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (--cnt == 0) {
+ if (min < 0) goto search_end;
+ cnt = _block_size;
+ }
+ }
+ if (min >= 0) return false;
+
+ search_end:
+ _next_arc = e;
+ return true;
+ }
+
+ }; //class BlockSearchPivotRule
+
+
+ // Implementation of the Candidate List pivot rule
+ class CandidateListPivotRule
+ {
+ private:
+
+ // References to the NetworkSimplex class
+ const IntVector &_source;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const CharVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ // Pivot rule data
+ IntVector _candidates;
+ int _list_length, _minor_limit;
+ int _curr_length, _minor_count;
+ int _next_arc;
+
+ public:
+
+ /// Constructor
+ CandidateListPivotRule(NetworkSimplex &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
+ _next_arc(0)
+ {
+ // The main parameters of the pivot rule
+ const double LIST_LENGTH_FACTOR = 0.25;
+ const int MIN_LIST_LENGTH = 10;
+ const double MINOR_LIMIT_FACTOR = 0.1;
+ const int MIN_MINOR_LIMIT = 3;
+
+ _list_length = std::max( int(LIST_LENGTH_FACTOR *
+ std::sqrt(double(_search_arc_num))),
+ MIN_LIST_LENGTH );
+ _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
+ MIN_MINOR_LIMIT );
+ _curr_length = _minor_count = 0;
+ _candidates.resize(_list_length);
+ }
+
+ /// Find next entering arc
+ bool findEnteringArc() {
+ Cost min, c;
+ int e;
+ if (_curr_length > 0 && _minor_count < _minor_limit) {
+ // Minor iteration: select the best eligible arc from the
+ // current candidate list
+ ++_minor_count;
+ min = 0;
+ for (int i = 0; i < _curr_length; ++i) {
+ e = _candidates[i];
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ else if (c >= 0) {
+ _candidates[i--] = _candidates[--_curr_length];
+ }
+ }
+ if (min < 0) return true;
+ }
+
+ // Major iteration: build a new candidate list
+ min = 0;
+ _curr_length = 0;
+ for (e = _next_arc; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _candidates[_curr_length++] = e;
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (_curr_length == _list_length) goto search_end;
+ }
+ }
+ for (e = 0; e != _next_arc; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _candidates[_curr_length++] = e;
+ if (c < min) {
+ min = c;
+ _in_arc = e;
+ }
+ if (_curr_length == _list_length) goto search_end;
+ }
+ }
+ if (_curr_length == 0) return false;
+
+ search_end:
+ _minor_count = 1;
+ _next_arc = e;
+ return true;
+ }
+
+ }; //class CandidateListPivotRule
+
+
+ // Implementation of the Altering Candidate List pivot rule
+ class AlteringListPivotRule
+ {
+ private:
+
+ // References to the NetworkSimplex class
+ const IntVector &_source;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const CharVector &_state;
+ const CostVector &_pi;
+ int &_in_arc;
+ int _search_arc_num;
+
+ // Pivot rule data
+ int _block_size, _head_length, _curr_length;
+ int _next_arc;
+ IntVector _candidates;
+ CostVector _cand_cost;
+
+ // Functor class to compare arcs during sort of the candidate list
+ class SortFunc
+ {
+ private:
+ const CostVector &_map;
+ public:
+ SortFunc(const CostVector &map) : _map(map) {}
+ bool operator()(int left, int right) {
+ return _map[left] < _map[right];
+ }
+ };
+
+ SortFunc _sort_func;
+
+ public:
+
+ // Constructor
+ AlteringListPivotRule(NetworkSimplex &ns) :
+ _source(ns._source), _target(ns._target),
+ _cost(ns._cost), _state(ns._state), _pi(ns._pi),
+ _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
+ _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
+ {
+ // The main parameters of the pivot rule
+ const double BLOCK_SIZE_FACTOR = 1.0;
+ const int MIN_BLOCK_SIZE = 10;
+ const double HEAD_LENGTH_FACTOR = 0.01;
+ const int MIN_HEAD_LENGTH = 3;
+
+ _block_size = std::max( int(BLOCK_SIZE_FACTOR *
+ std::sqrt(double(_search_arc_num))),
+ MIN_BLOCK_SIZE );
+ _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
+ MIN_HEAD_LENGTH );
+ _candidates.resize(_head_length + _block_size);
+ _curr_length = 0;
+ }
+
+ // Find next entering arc
+ bool findEnteringArc() {
+ // Check the current candidate list
+ int e;
+ Cost c;
+ for (int i = 0; i != _curr_length; ++i) {
+ e = _candidates[i];
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _cand_cost[e] = c;
+ } else {
+ _candidates[i--] = _candidates[--_curr_length];
+ }
+ }
+
+ // Extend the list
+ int cnt = _block_size;
+ int limit = _head_length;
+
+ for (e = _next_arc; e != _search_arc_num; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _cand_cost[e] = c;
+ _candidates[_curr_length++] = e;
+ }
+ if (--cnt == 0) {
+ if (_curr_length > limit) goto search_end;
+ limit = 0;
+ cnt = _block_size;
+ }
+ }
+ for (e = 0; e != _next_arc; ++e) {
+ c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
+ if (c < 0) {
+ _cand_cost[e] = c;
+ _candidates[_curr_length++] = e;
+ }
+ if (--cnt == 0) {
+ if (_curr_length > limit) goto search_end;
+ limit = 0;
+ cnt = _block_size;
+ }
+ }
+ if (_curr_length == 0) return false;
+
+ search_end:
+
+ // Perform partial sort operation on the candidate list
+ int new_length = std::min(_head_length + 1, _curr_length);
+ std::partial_sort(_candidates.begin(), _candidates.begin() + new_length,
+ _candidates.begin() + _curr_length, _sort_func);
+
+ // Select the entering arc and remove it from the list
+ _in_arc = _candidates[0];
+ _next_arc = e;
+ _candidates[0] = _candidates[new_length - 1];
+ _curr_length = new_length - 1;
+ return true;
+ }
+
+ }; //class AlteringListPivotRule
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ /// \param arc_mixing Indicate if the arcs will be stored in a
+ /// mixed order in the internal data structure.
+ /// In general, it leads to similar performance as using the original
+ /// arc order, but it makes the algorithm more robust and in special
+ /// cases, even significantly faster. Therefore, it is enabled by default.
+ NetworkSimplex(const GR& graph, bool arc_mixing = true) :
+ _graph(graph), _node_id(graph), _arc_id(graph),
+ _arc_mixing(arc_mixing),
+ MAX(std::numeric_limits<Value>::max()),
+ INF(std::numeric_limits<Value>::has_infinity ?
+ std::numeric_limits<Value>::infinity() : MAX)
+ {
+ // Check the number types
+ LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
+ "The flow type of NetworkSimplex must be signed");
+ LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
+ "The cost type of NetworkSimplex must be signed");
+
+ // Reset data structures
+ reset();
+ }
+
+ /// \name Parameters
+ /// The parameters of the algorithm can be specified using these
+ /// functions.
+
+ /// @{
+
+ /// \brief Set the lower bounds on the arcs.
+ ///
+ /// This function sets the lower bounds on the arcs.
+ /// If it is not used before calling \ref run(), the lower bounds
+ /// will be set to zero on all arcs.
+ ///
+ /// \param map An arc map storing the lower bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template <typename LowerMap>
+ NetworkSimplex& lowerMap(const LowerMap& map) {
+ _has_lower = true;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _lower[_arc_id[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the upper bounds (capacities) on the arcs.
+ ///
+ /// This function sets the upper bounds (capacities) on the arcs.
+ /// If it is not used before calling \ref run(), the upper bounds
+ /// will be set to \ref INF on all arcs (i.e. the flow value will be
+ /// unbounded from above).
+ ///
+ /// \param map An arc map storing the upper bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename UpperMap>
+ NetworkSimplex& upperMap(const UpperMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _upper[_arc_id[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the costs of the arcs.
+ ///
+ /// This function sets the costs of the arcs.
+ /// If it is not used before calling \ref run(), the costs
+ /// will be set to \c 1 on all arcs.
+ ///
+ /// \param map An arc map storing the costs.
+ /// Its \c Value type must be convertible to the \c Cost type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename CostMap>
+ NetworkSimplex& costMap(const CostMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _cost[_arc_id[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the supply values of the nodes.
+ ///
+ /// This function sets the supply values of the nodes.
+ /// If neither this function nor \ref stSupply() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// \param map A node map storing the supply values.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \sa supplyType()
+ template<typename SupplyMap>
+ NetworkSimplex& supplyMap(const SupplyMap& map) {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ _supply[_node_id[n]] = map[n];
+ }
+ return *this;
+ }
+
+ /// \brief Set single source and target nodes and a supply value.
+ ///
+ /// This function sets a single source node and a single target node
+ /// and the required flow value.
+ /// If neither this function nor \ref supplyMap() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// Using this function has the same effect as using \ref supplyMap()
+ /// with a map in which \c k is assigned to \c s, \c -k is
+ /// assigned to \c t and all other nodes have zero supply value.
+ ///
+ /// \param s The source node.
+ /// \param t The target node.
+ /// \param k The required amount of flow from node \c s to node \c t
+ /// (i.e. the supply of \c s and the demand of \c t).
+ ///
+ /// \return <tt>(*this)</tt>
+ NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ _supply[_node_id[s]] = k;
+ _supply[_node_id[t]] = -k;
+ return *this;
+ }
+
+ /// \brief Set the type of the supply constraints.
+ ///
+ /// This function sets the type of the supply/demand constraints.
+ /// If it is not used before calling \ref run(), the \ref GEQ supply
+ /// type will be used.
+ ///
+ /// For more information, see \ref SupplyType.
+ ///
+ /// \return <tt>(*this)</tt>
+ NetworkSimplex& supplyType(SupplyType supply_type) {
+ _stype = supply_type;
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Execution Control
+ /// The algorithm can be executed using \ref run().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// The paramters can be specified using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
+ /// \ref supplyType().
+ /// For example,
+ /// \code
+ /// NetworkSimplex<ListDigraph> ns(graph);
+ /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// This function can be called more than once. All the given parameters
+ /// are kept for the next call, unless \ref resetParams() or \ref reset()
+ /// is used, thus only the modified parameters have to be set again.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class (or the last \ref reset() call), then the \ref reset()
+ /// function must be called.
+ ///
+ /// \param pivot_rule The pivot rule that will be used during the
+ /// algorithm. For more information, see \ref PivotRule.
+ ///
+ /// \return \c INFEASIBLE if no feasible flow exists,
+ /// \n \c OPTIMAL if the problem has optimal solution
+ /// (i.e. it is feasible and bounded), and the algorithm has found
+ /// optimal flow and node potentials (primal and dual solutions),
+ /// \n \c UNBOUNDED if the objective function of the problem is
+ /// unbounded, i.e. there is a directed cycle having negative total
+ /// cost and infinite upper bound.
+ ///
+ /// \see ProblemType, PivotRule
+ /// \see resetParams(), reset()
+ ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
+ if (!init()) return INFEASIBLE;
+ return start(pivot_rule);
+ }
+
+ /// \brief Reset all the parameters that have been given before.
+ ///
+ /// This function resets all the paramaters that have been given
+ /// before using functions \ref lowerMap(), \ref upperMap(),
+ /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// For example,
+ /// \code
+ /// NetworkSimplex<ListDigraph> ns(graph);
+ ///
+ /// // First run
+ /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ ///
+ /// // Run again with modified cost map (resetParams() is not called,
+ /// // so only the cost map have to be set again)
+ /// cost[e] += 100;
+ /// ns.costMap(cost).run();
+ ///
+ /// // Run again from scratch using resetParams()
+ /// // (the lower bounds will be set to zero on all arcs)
+ /// ns.resetParams();
+ /// ns.upperMap(capacity).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see reset(), run()
+ NetworkSimplex& resetParams() {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ for (int i = 0; i != _arc_num; ++i) {
+ _lower[i] = 0;
+ _upper[i] = INF;
+ _cost[i] = 1;
+ }
+ _has_lower = false;
+ _stype = GEQ;
+ return *this;
+ }
+
+ /// \brief Reset the internal data structures and all the parameters
+ /// that have been given before.
+ ///
+ /// This function resets the internal data structures and all the
+ /// paramaters that have been given before using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
+ /// \ref supplyType().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// See \ref resetParams() for examples.
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see resetParams(), run()
+ NetworkSimplex& reset() {
+ // Resize vectors
+ _node_num = countNodes(_graph);
+ _arc_num = countArcs(_graph);
+ int all_node_num = _node_num + 1;
+ int max_arc_num = _arc_num + 2 * _node_num;
+
+ _source.resize(max_arc_num);
+ _target.resize(max_arc_num);
+
+ _lower.resize(_arc_num);
+ _upper.resize(_arc_num);
+ _cap.resize(max_arc_num);
+ _cost.resize(max_arc_num);
+ _supply.resize(all_node_num);
+ _flow.resize(max_arc_num);
+ _pi.resize(all_node_num);
+
+ _parent.resize(all_node_num);
+ _pred.resize(all_node_num);
+ _pred_dir.resize(all_node_num);
+ _thread.resize(all_node_num);
+ _rev_thread.resize(all_node_num);
+ _succ_num.resize(all_node_num);
+ _last_succ.resize(all_node_num);
+ _state.resize(max_arc_num);
+
+ // Copy the graph
+ int i = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
+ _node_id[n] = i;
+ }
+ if (_arc_mixing && _node_num > 1) {
+ // Store the arcs in a mixed order
+ const int skip = std::max(_arc_num / _node_num, 3);
+ int i = 0, j = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _arc_id[a] = i;
+ _source[i] = _node_id[_graph.source(a)];
+ _target[i] = _node_id[_graph.target(a)];
+ if ((i += skip) >= _arc_num) i = ++j;
+ }
+ } else {
+ // Store the arcs in the original order
+ int i = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
+ _arc_id[a] = i;
+ _source[i] = _node_id[_graph.source(a)];
+ _target[i] = _node_id[_graph.target(a)];
+ }
+ }
+
+ // Reset parameters
+ resetParams();
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The \ref run() function must be called before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found flow.
+ ///
+ /// This function returns the total cost of the found flow.
+ /// Its complexity is O(m).
+ ///
+ /// \note The return type of the function can be specified as a
+ /// template parameter. For example,
+ /// \code
+ /// ns.totalCost<double>();
+ /// \endcode
+ /// It is useful if the total cost cannot be stored in the \c Cost
+ /// type of the algorithm, which is the default return type of the
+ /// function.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename Number>
+ Number totalCost() const {
+ Number c = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int i = _arc_id[a];
+ c += Number(_flow[i]) * Number(_cost[i]);
+ }
+ return c;
+ }
+
+#ifndef DOXYGEN
+ Cost totalCost() const {
+ return totalCost<Cost>();
+ }
+#endif
+
+ /// \brief Return the flow on the given arc.
+ ///
+ /// This function returns the flow on the given arc.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value flow(const Arc& a) const {
+ return _flow[_arc_id[a]];
+ }
+
+ /// \brief Copy the flow values (the primal solution) into the
+ /// given map.
+ ///
+ /// This function copies the flow value on each arc into the given
+ /// map. The \c Value type of the algorithm must be convertible to
+ /// the \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename FlowMap>
+ void flowMap(FlowMap &map) const {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ map.set(a, _flow[_arc_id[a]]);
+ }
+ }
+
+ /// \brief Return the potential (dual value) of the given node.
+ ///
+ /// This function returns the potential (dual value) of the
+ /// given node.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Cost potential(const Node& n) const {
+ return _pi[_node_id[n]];
+ }
+
+ /// \brief Copy the potential values (the dual solution) into the
+ /// given map.
+ ///
+ /// This function copies the potential (dual value) of each node
+ /// into the given map.
+ /// The \c Cost type of the algorithm must be convertible to the
+ /// \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename PotentialMap>
+ void potentialMap(PotentialMap &map) const {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ map.set(n, _pi[_node_id[n]]);
+ }
+ }
+
+ /// @}
+
+ private:
+
+ // Initialize internal data structures
+ bool init() {
+ if (_node_num == 0) return false;
+
+ // Check the sum of supply values
+ _sum_supply = 0;
+ for (int i = 0; i != _node_num; ++i) {
+ _sum_supply += _supply[i];
+ }
+ if ( !((_stype == GEQ && _sum_supply <= 0) ||
+ (_stype == LEQ && _sum_supply >= 0)) ) return false;
+
+ // Check lower and upper bounds
+ LEMON_DEBUG(checkBoundMaps(),
+ "Upper bounds must be greater or equal to the lower bounds");
+
+ // Remove non-zero lower bounds
+ if (_has_lower) {
+ for (int i = 0; i != _arc_num; ++i) {
+ Value c = _lower[i];
+ if (c >= 0) {
+ _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
+ } else {
+ _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
+ }
+ _supply[_source[i]] -= c;
+ _supply[_target[i]] += c;
+ }
+ } else {
+ for (int i = 0; i != _arc_num; ++i) {
+ _cap[i] = _upper[i];
+ }
+ }
+
+ // Initialize artifical cost
+ Cost ART_COST;
+ if (std::numeric_limits<Cost>::is_exact) {
+ ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
+ } else {
+ ART_COST = 0;
+ for (int i = 0; i != _arc_num; ++i) {
+ if (_cost[i] > ART_COST) ART_COST = _cost[i];
+ }
+ ART_COST = (ART_COST + 1) * _node_num;
+ }
+
+ // Initialize arc maps
+ for (int i = 0; i != _arc_num; ++i) {
+ _flow[i] = 0;
+ _state[i] = STATE_LOWER;
+ }
+
+ // Set data for the artificial root node
+ _root = _node_num;
+ _parent[_root] = -1;
+ _pred[_root] = -1;
+ _thread[_root] = 0;
+ _rev_thread[0] = _root;
+ _succ_num[_root] = _node_num + 1;
+ _last_succ[_root] = _root - 1;
+ _supply[_root] = -_sum_supply;
+ _pi[_root] = 0;
+
+ // Add artificial arcs and initialize the spanning tree data structure
+ if (_sum_supply == 0) {
+ // EQ supply constraints
+ _search_arc_num = _arc_num;
+ _all_arc_num = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _pred[u] = e;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ _cap[e] = INF;
+ _state[e] = STATE_TREE;
+ if (_supply[u] >= 0) {
+ _pred_dir[u] = DIR_UP;
+ _pi[u] = 0;
+ _source[e] = u;
+ _target[e] = _root;
+ _flow[e] = _supply[u];
+ _cost[e] = 0;
+ } else {
+ _pred_dir[u] = DIR_DOWN;
+ _pi[u] = ART_COST;
+ _source[e] = _root;
+ _target[e] = u;
+ _flow[e] = -_supply[u];
+ _cost[e] = ART_COST;
+ }
+ }
+ }
+ else if (_sum_supply > 0) {
+ // LEQ supply constraints
+ _search_arc_num = _arc_num + _node_num;
+ int f = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ if (_supply[u] >= 0) {
+ _pred_dir[u] = DIR_UP;
+ _pi[u] = 0;
+ _pred[u] = e;
+ _source[e] = u;
+ _target[e] = _root;
+ _cap[e] = INF;
+ _flow[e] = _supply[u];
+ _cost[e] = 0;
+ _state[e] = STATE_TREE;
+ } else {
+ _pred_dir[u] = DIR_DOWN;
+ _pi[u] = ART_COST;
+ _pred[u] = f;
+ _source[f] = _root;
+ _target[f] = u;
+ _cap[f] = INF;
+ _flow[f] = -_supply[u];
+ _cost[f] = ART_COST;
+ _state[f] = STATE_TREE;
+ _source[e] = u;
+ _target[e] = _root;
+ _cap[e] = INF;
+ _flow[e] = 0;
+ _cost[e] = 0;
+ _state[e] = STATE_LOWER;
+ ++f;
+ }
+ }
+ _all_arc_num = f;
+ }
+ else {
+ // GEQ supply constraints
+ _search_arc_num = _arc_num + _node_num;
+ int f = _arc_num + _node_num;
+ for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
+ _parent[u] = _root;
+ _thread[u] = u + 1;
+ _rev_thread[u + 1] = u;
+ _succ_num[u] = 1;
+ _last_succ[u] = u;
+ if (_supply[u] <= 0) {
+ _pred_dir[u] = DIR_DOWN;
+ _pi[u] = 0;
+ _pred[u] = e;
+ _source[e] = _root;
+ _target[e] = u;
+ _cap[e] = INF;
+ _flow[e] = -_supply[u];
+ _cost[e] = 0;
+ _state[e] = STATE_TREE;
+ } else {
+ _pred_dir[u] = DIR_UP;
+ _pi[u] = -ART_COST;
+ _pred[u] = f;
+ _source[f] = u;
+ _target[f] = _root;
+ _cap[f] = INF;
+ _flow[f] = _supply[u];
+ _state[f] = STATE_TREE;
+ _cost[f] = ART_COST;
+ _source[e] = _root;
+ _target[e] = u;
+ _cap[e] = INF;
+ _flow[e] = 0;
+ _cost[e] = 0;
+ _state[e] = STATE_LOWER;
+ ++f;
+ }
+ }
+ _all_arc_num = f;
+ }
+
+ return true;
+ }
+
+ // Check if the upper bound is greater than or equal to the lower bound
+ // on each arc.
+ bool checkBoundMaps() {
+ for (int j = 0; j != _arc_num; ++j) {
+ if (_upper[j] < _lower[j]) return false;
+ }
+ return true;
+ }
+
+ // Find the join node
+ void findJoinNode() {
+ int u = _source[in_arc];
+ int v = _target[in_arc];
+ while (u != v) {
+ if (_succ_num[u] < _succ_num[v]) {
+ u = _parent[u];
+ } else {
+ v = _parent[v];
+ }
+ }
+ join = u;
+ }
+
+ // Find the leaving arc of the cycle and returns true if the
+ // leaving arc is not the same as the entering arc
+ bool findLeavingArc() {
+ // Initialize first and second nodes according to the direction
+ // of the cycle
+ int first, second;
+ if (_state[in_arc] == STATE_LOWER) {
+ first = _source[in_arc];
+ second = _target[in_arc];
+ } else {
+ first = _target[in_arc];
+ second = _source[in_arc];
+ }
+ delta = _cap[in_arc];
+ int result = 0;
+ Value c, d;
+ int e;
+
+ // Search the cycle form the first node to the join node
+ for (int u = first; u != join; u = _parent[u]) {
+ e = _pred[u];
+ d = _flow[e];
+ if (_pred_dir[u] == DIR_DOWN) {
+ c = _cap[e];
+ d = c >= MAX ? INF : c - d;
+ }
+ if (d < delta) {
+ delta = d;
+ u_out = u;
+ result = 1;
+ }
+ }
+
+ // Search the cycle form the second node to the join node
+ for (int u = second; u != join; u = _parent[u]) {
+ e = _pred[u];
+ d = _flow[e];
+ if (_pred_dir[u] == DIR_UP) {
+ c = _cap[e];
+ d = c >= MAX ? INF : c - d;
+ }
+ if (d <= delta) {
+ delta = d;
+ u_out = u;
+ result = 2;
+ }
+ }
+
+ if (result == 1) {
+ u_in = first;
+ v_in = second;
+ } else {
+ u_in = second;
+ v_in = first;
+ }
+ return result != 0;
+ }
+
+ // Change _flow and _state vectors
+ void changeFlow(bool change) {
+ // Augment along the cycle
+ if (delta > 0) {
+ Value val = _state[in_arc] * delta;
+ _flow[in_arc] += val;
+ for (int u = _source[in_arc]; u != join; u = _parent[u]) {
+ _flow[_pred[u]] -= _pred_dir[u] * val;
+ }
+ for (int u = _target[in_arc]; u != join; u = _parent[u]) {
+ _flow[_pred[u]] += _pred_dir[u] * val;
+ }
+ }
+ // Update the state of the entering and leaving arcs
+ if (change) {
+ _state[in_arc] = STATE_TREE;
+ _state[_pred[u_out]] =
+ (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
+ } else {
+ _state[in_arc] = -_state[in_arc];
+ }
+ }
+
+ // Update the tree structure
+ void updateTreeStructure() {
+ int old_rev_thread = _rev_thread[u_out];
+ int old_succ_num = _succ_num[u_out];
+ int old_last_succ = _last_succ[u_out];
+ v_out = _parent[u_out];
+
+ // Check if u_in and u_out coincide
+ if (u_in == u_out) {
+ // Update _parent, _pred, _pred_dir
+ _parent[u_in] = v_in;
+ _pred[u_in] = in_arc;
+ _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
+
+ // Update _thread and _rev_thread
+ if (_thread[v_in] != u_out) {
+ int after = _thread[old_last_succ];
+ _thread[old_rev_thread] = after;
+ _rev_thread[after] = old_rev_thread;
+ after = _thread[v_in];
+ _thread[v_in] = u_out;
+ _rev_thread[u_out] = v_in;
+ _thread[old_last_succ] = after;
+ _rev_thread[after] = old_last_succ;
+ }
+ } else {
+ // Handle the case when old_rev_thread equals to v_in
+ // (it also means that join and v_out coincide)
+ int thread_continue = old_rev_thread == v_in ?
+ _thread[old_last_succ] : _thread[v_in];
+
+ // Update _thread and _parent along the stem nodes (i.e. the nodes
+ // between u_in and u_out, whose parent have to be changed)
+ int stem = u_in; // the current stem node
+ int par_stem = v_in; // the new parent of stem
+ int next_stem; // the next stem node
+ int last = _last_succ[u_in]; // the last successor of stem
+ int before, after = _thread[last];
+ _thread[v_in] = u_in;
+ _dirty_revs.clear();
+ _dirty_revs.push_back(v_in);
+ while (stem != u_out) {
+ // Insert the next stem node into the thread list
+ next_stem = _parent[stem];
+ _thread[last] = next_stem;
+ _dirty_revs.push_back(last);
+
+ // Remove the subtree of stem from the thread list
+ before = _rev_thread[stem];
+ _thread[before] = after;
+ _rev_thread[after] = before;
+
+ // Change the parent node and shift stem nodes
+ _parent[stem] = par_stem;
+ par_stem = stem;
+ stem = next_stem;
+
+ // Update last and after
+ last = _last_succ[stem] == _last_succ[par_stem] ?
+ _rev_thread[par_stem] : _last_succ[stem];
+ after = _thread[last];
+ }
+ _parent[u_out] = par_stem;
+ _thread[last] = thread_continue;
+ _rev_thread[thread_continue] = last;
+ _last_succ[u_out] = last;
+
+ // Remove the subtree of u_out from the thread list except for
+ // the case when old_rev_thread equals to v_in
+ if (old_rev_thread != v_in) {
+ _thread[old_rev_thread] = after;
+ _rev_thread[after] = old_rev_thread;
+ }
+
+ // Update _rev_thread using the new _thread values
+ for (int i = 0; i != int(_dirty_revs.size()); ++i) {
+ int u = _dirty_revs[i];
+ _rev_thread[_thread[u]] = u;
+ }
+
+ // Update _pred, _pred_dir, _last_succ and _succ_num for the
+ // stem nodes from u_out to u_in
+ int tmp_sc = 0, tmp_ls = _last_succ[u_out];
+ for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
+ _pred[u] = _pred[p];
+ _pred_dir[u] = -_pred_dir[p];
+ tmp_sc += _succ_num[u] - _succ_num[p];
+ _succ_num[u] = tmp_sc;
+ _last_succ[p] = tmp_ls;
+ }
+ _pred[u_in] = in_arc;
+ _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
+ _succ_num[u_in] = old_succ_num;
+ }
+
+ // Update _last_succ from v_in towards the root
+ int up_limit_out = _last_succ[join] == v_in ? join : -1;
+ int last_succ_out = _last_succ[u_out];
+ for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
+ _last_succ[u] = last_succ_out;
+ }
+
+ // Update _last_succ from v_out towards the root
+ if (join != old_rev_thread && v_in != old_rev_thread) {
+ for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
+ u = _parent[u]) {
+ _last_succ[u] = old_rev_thread;
+ }
+ }
+ else if (last_succ_out != old_last_succ) {
+ for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
+ u = _parent[u]) {
+ _last_succ[u] = last_succ_out;
+ }
+ }
+
+ // Update _succ_num from v_in to join
+ for (int u = v_in; u != join; u = _parent[u]) {
+ _succ_num[u] += old_succ_num;
+ }
+ // Update _succ_num from v_out to join
+ for (int u = v_out; u != join; u = _parent[u]) {
+ _succ_num[u] -= old_succ_num;
+ }
+ }
+
+ // Update potentials in the subtree that has been moved
+ void updatePotential() {
+ Cost sigma = _pi[v_in] - _pi[u_in] -
+ _pred_dir[u_in] * _cost[in_arc];
+ int end = _thread[_last_succ[u_in]];
+ for (int u = u_in; u != end; u = _thread[u]) {
+ _pi[u] += sigma;
+ }
+ }
+
+ // Heuristic initial pivots
+ bool initialPivots() {
+ Value curr, total = 0;
+ std::vector<Node> supply_nodes, demand_nodes;
+ for (NodeIt u(_graph); u != INVALID; ++u) {
+ curr = _supply[_node_id[u]];
+ if (curr > 0) {
+ total += curr;
+ supply_nodes.push_back(u);
+ }
+ else if (curr < 0) {
+ demand_nodes.push_back(u);
+ }
+ }
+ if (_sum_supply > 0) total -= _sum_supply;
+ if (total <= 0) return true;
+
+ IntVector arc_vector;
+ if (_sum_supply >= 0) {
+ if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
+ // Perform a reverse graph search from the sink to the source
+ typename GR::template NodeMap<bool> reached(_graph, false);
+ Node s = supply_nodes[0], t = demand_nodes[0];
+ std::vector<Node> stack;
+ reached[t] = true;
+ stack.push_back(t);
+ while (!stack.empty()) {
+ Node u, v = stack.back();
+ stack.pop_back();
+ if (v == s) break;
+ for (InArcIt a(_graph, v); a != INVALID; ++a) {
+ if (reached[u = _graph.source(a)]) continue;
+ int j = _arc_id[a];
+ if (_cap[j] >= total) {
+ arc_vector.push_back(j);
+ reached[u] = true;
+ stack.push_back(u);
+ }
+ }
+ }
+ } else {
+ // Find the min. cost incoming arc for each demand node
+ for (int i = 0; i != int(demand_nodes.size()); ++i) {
+ Node v = demand_nodes[i];
+ Cost c, min_cost = std::numeric_limits<Cost>::max();
+ Arc min_arc = INVALID;
+ for (InArcIt a(_graph, v); a != INVALID; ++a) {
+ c = _cost[_arc_id[a]];
+ if (c < min_cost) {
+ min_cost = c;
+ min_arc = a;
+ }
+ }
+ if (min_arc != INVALID) {
+ arc_vector.push_back(_arc_id[min_arc]);
+ }
+ }
+ }
+ } else {
+ // Find the min. cost outgoing arc for each supply node
+ for (int i = 0; i != int(supply_nodes.size()); ++i) {
+ Node u = supply_nodes[i];
+ Cost c, min_cost = std::numeric_limits<Cost>::max();
+ Arc min_arc = INVALID;
+ for (OutArcIt a(_graph, u); a != INVALID; ++a) {
+ c = _cost[_arc_id[a]];
+ if (c < min_cost) {
+ min_cost = c;
+ min_arc = a;
+ }
+ }
+ if (min_arc != INVALID) {
+ arc_vector.push_back(_arc_id[min_arc]);
+ }
+ }
+ }
+
+ // Perform heuristic initial pivots
+ for (int i = 0; i != int(arc_vector.size()); ++i) {
+ in_arc = arc_vector[i];
+ if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
+ _pi[_target[in_arc]]) >= 0) continue;
+ findJoinNode();
+ bool change = findLeavingArc();
+ if (delta >= MAX) return false;
+ changeFlow(change);
+ if (change) {
+ updateTreeStructure();
+ updatePotential();
+ }
+ }
+ return true;
+ }
+
+ // Execute the algorithm
+ ProblemType start(PivotRule pivot_rule) {
+ // Select the pivot rule implementation
+ switch (pivot_rule) {
+ case FIRST_ELIGIBLE:
+ return start<FirstEligiblePivotRule>();
+ case BEST_ELIGIBLE:
+ return start<BestEligiblePivotRule>();
+ case BLOCK_SEARCH:
+ return start<BlockSearchPivotRule>();
+ case CANDIDATE_LIST:
+ return start<CandidateListPivotRule>();
+ case ALTERING_LIST:
+ return start<AlteringListPivotRule>();
+ }
+ return INFEASIBLE; // avoid warning
+ }
+
+ template <typename PivotRuleImpl>
+ ProblemType start() {
+ PivotRuleImpl pivot(*this);
+
+ // Perform heuristic initial pivots
+ if (!initialPivots()) return UNBOUNDED;
+
+ // Execute the Network Simplex algorithm
+ while (pivot.findEnteringArc()) {
+ findJoinNode();
+ bool change = findLeavingArc();
+ if (delta >= MAX) return UNBOUNDED;
+ changeFlow(change);
+ if (change) {
+ updateTreeStructure();
+ updatePotential();
+ }
+ }
+
+ // Check feasibility
+ for (int e = _search_arc_num; e != _all_arc_num; ++e) {
+ if (_flow[e] != 0) return INFEASIBLE;
+ }
+
+ // Transform the solution and the supply map to the original form
+ if (_has_lower) {
+ for (int i = 0; i != _arc_num; ++i) {
+ Value c = _lower[i];
+ if (c != 0) {
+ _flow[i] += c;
+ _supply[_source[i]] += c;
+ _supply[_target[i]] -= c;
+ }
+ }
+ }
+
+ // Shift potentials to meet the requirements of the GEQ/LEQ type
+ // optimality conditions
+ if (_sum_supply == 0) {
+ if (_stype == GEQ) {
+ Cost max_pot = -std::numeric_limits<Cost>::max();
+ for (int i = 0; i != _node_num; ++i) {
+ if (_pi[i] > max_pot) max_pot = _pi[i];
+ }
+ if (max_pot > 0) {
+ for (int i = 0; i != _node_num; ++i)
+ _pi[i] -= max_pot;
+ }
+ } else {
+ Cost min_pot = std::numeric_limits<Cost>::max();
+ for (int i = 0; i != _node_num; ++i) {
+ if (_pi[i] < min_pot) min_pot = _pi[i];
+ }
+ if (min_pot < 0) {
+ for (int i = 0; i != _node_num; ++i)
+ _pi[i] -= min_pot;
+ }
+ }
+ }
+
+ return OPTIMAL;
+ }
+
+ }; //class NetworkSimplex
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_NETWORK_SIMPLEX_H