Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/pairing_heap.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/pairing_heap.h474
1 files changed, 474 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/pairing_heap.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/pairing_heap.h
new file mode 100644
index 00000000000..da6ebcb1552
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/pairing_heap.h
@@ -0,0 +1,474 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_PAIRING_HEAP_H
+#define LEMON_PAIRING_HEAP_H
+
+///\file
+///\ingroup heaps
+///\brief Pairing heap implementation.
+
+#include <vector>
+#include <utility>
+#include <functional>
+#include <lemon/math.h>
+
+namespace lemon {
+
+ /// \ingroup heaps
+ ///
+ ///\brief Pairing Heap.
+ ///
+ /// This class implements the \e pairing \e heap data structure.
+ /// It fully conforms to the \ref concepts::Heap "heap concept".
+ ///
+ /// The methods \ref increase() and \ref erase() are not efficient
+ /// in a pairing heap. In case of many calls of these operations,
+ /// it is better to use other heap structure, e.g. \ref BinHeap
+ /// "binary heap".
+ ///
+ /// \tparam PR Type of the priorities of the items.
+ /// \tparam IM A read-writable item map with \c int values, used
+ /// internally to handle the cross references.
+ /// \tparam CMP A functor class for comparing the priorities.
+ /// The default is \c std::less<PR>.
+#ifdef DOXYGEN
+ template <typename PR, typename IM, typename CMP>
+#else
+ template <typename PR, typename IM, typename CMP = std::less<PR> >
+#endif
+ class PairingHeap {
+ public:
+ /// Type of the item-int map.
+ typedef IM ItemIntMap;
+ /// Type of the priorities.
+ typedef PR Prio;
+ /// Type of the items stored in the heap.
+ typedef typename ItemIntMap::Key Item;
+ /// Functor type for comparing the priorities.
+ typedef CMP Compare;
+
+ /// \brief Type to represent the states of the items.
+ ///
+ /// Each item has a state associated to it. It can be "in heap",
+ /// "pre-heap" or "post-heap". The latter two are indifferent from the
+ /// heap's point of view, but may be useful to the user.
+ ///
+ /// The item-int map must be initialized in such way that it assigns
+ /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
+ enum State {
+ IN_HEAP = 0, ///< = 0.
+ PRE_HEAP = -1, ///< = -1.
+ POST_HEAP = -2 ///< = -2.
+ };
+
+ private:
+ class store;
+
+ std::vector<store> _data;
+ int _min;
+ ItemIntMap &_iim;
+ Compare _comp;
+ int _num_items;
+
+ public:
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ explicit PairingHeap(ItemIntMap &map)
+ : _min(0), _iim(map), _num_items(0) {}
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ /// \param comp The function object used for comparing the priorities.
+ PairingHeap(ItemIntMap &map, const Compare &comp)
+ : _min(0), _iim(map), _comp(comp), _num_items(0) {}
+
+ /// \brief The number of items stored in the heap.
+ ///
+ /// This function returns the number of items stored in the heap.
+ int size() const { return _num_items; }
+
+ /// \brief Check if the heap is empty.
+ ///
+ /// This function returns \c true if the heap is empty.
+ bool empty() const { return _num_items==0; }
+
+ /// \brief Make the heap empty.
+ ///
+ /// This functon makes the heap empty.
+ /// It does not change the cross reference map. If you want to reuse
+ /// a heap that is not surely empty, you should first clear it and
+ /// then you should set the cross reference map to \c PRE_HEAP
+ /// for each item.
+ void clear() {
+ _data.clear();
+ _min = 0;
+ _num_items = 0;
+ }
+
+ /// \brief Set the priority of an item or insert it, if it is
+ /// not stored in the heap.
+ ///
+ /// This method sets the priority of the given item if it is
+ /// already stored in the heap. Otherwise it inserts the given
+ /// item into the heap with the given priority.
+ /// \param item The item.
+ /// \param value The priority.
+ void set (const Item& item, const Prio& value) {
+ int i=_iim[item];
+ if ( i>=0 && _data[i].in ) {
+ if ( _comp(value, _data[i].prio) ) decrease(item, value);
+ if ( _comp(_data[i].prio, value) ) increase(item, value);
+ } else push(item, value);
+ }
+
+ /// \brief Insert an item into the heap with the given priority.
+ ///
+ /// This function inserts the given item into the heap with the
+ /// given priority.
+ /// \param item The item to insert.
+ /// \param value The priority of the item.
+ /// \pre \e item must not be stored in the heap.
+ void push (const Item& item, const Prio& value) {
+ int i=_iim[item];
+ if( i<0 ) {
+ int s=_data.size();
+ _iim.set(item, s);
+ store st;
+ st.name=item;
+ _data.push_back(st);
+ i=s;
+ } else {
+ _data[i].parent=_data[i].child=-1;
+ _data[i].left_child=false;
+ _data[i].degree=0;
+ _data[i].in=true;
+ }
+
+ _data[i].prio=value;
+
+ if ( _num_items!=0 ) {
+ if ( _comp( value, _data[_min].prio) ) {
+ fuse(i,_min);
+ _min=i;
+ }
+ else fuse(_min,i);
+ }
+ else _min=i;
+
+ ++_num_items;
+ }
+
+ /// \brief Return the item having minimum priority.
+ ///
+ /// This function returns the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ Item top() const { return _data[_min].name; }
+
+ /// \brief The minimum priority.
+ ///
+ /// This function returns the minimum priority.
+ /// \pre The heap must be non-empty.
+ const Prio& prio() const { return _data[_min].prio; }
+
+ /// \brief The priority of the given item.
+ ///
+ /// This function returns the priority of the given item.
+ /// \param item The item.
+ /// \pre \e item must be in the heap.
+ const Prio& operator[](const Item& item) const {
+ return _data[_iim[item]].prio;
+ }
+
+ /// \brief Remove the item having minimum priority.
+ ///
+ /// This function removes the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ void pop() {
+ std::vector<int> trees;
+ int i=0, child_right = 0;
+ _data[_min].in=false;
+
+ if( -1!=_data[_min].child ) {
+ i=_data[_min].child;
+ trees.push_back(i);
+ _data[i].parent = -1;
+ _data[_min].child = -1;
+
+ int ch=-1;
+ while( _data[i].child!=-1 ) {
+ ch=_data[i].child;
+ if( _data[ch].left_child && i==_data[ch].parent ) {
+ break;
+ } else {
+ if( _data[ch].left_child ) {
+ child_right=_data[ch].parent;
+ _data[ch].parent = i;
+ --_data[i].degree;
+ }
+ else {
+ child_right=ch;
+ _data[i].child=-1;
+ _data[i].degree=0;
+ }
+ _data[child_right].parent = -1;
+ trees.push_back(child_right);
+ i = child_right;
+ }
+ }
+
+ int num_child = trees.size();
+ int other;
+ for( i=0; i<num_child-1; i+=2 ) {
+ if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
+ other=trees[i];
+ trees[i]=trees[i+1];
+ trees[i+1]=other;
+ }
+ fuse( trees[i], trees[i+1] );
+ }
+
+ i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
+ while(i>=2) {
+ if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
+ other=trees[i];
+ trees[i]=trees[i-2];
+ trees[i-2]=other;
+ }
+ fuse( trees[i-2], trees[i] );
+ i-=2;
+ }
+ _min = trees[0];
+ }
+ else {
+ _min = _data[_min].child;
+ }
+
+ if (_min >= 0) _data[_min].left_child = false;
+ --_num_items;
+ }
+
+ /// \brief Remove the given item from the heap.
+ ///
+ /// This function removes the given item from the heap if it is
+ /// already stored.
+ /// \param item The item to delete.
+ /// \pre \e item must be in the heap.
+ void erase (const Item& item) {
+ int i=_iim[item];
+ if ( i>=0 && _data[i].in ) {
+ decrease( item, _data[_min].prio-1 );
+ pop();
+ }
+ }
+
+ /// \brief Decrease the priority of an item to the given value.
+ ///
+ /// This function decreases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param value The priority.
+ /// \pre \e item must be stored in the heap with priority at least \e value.
+ void decrease (Item item, const Prio& value) {
+ int i=_iim[item];
+ _data[i].prio=value;
+ int p=_data[i].parent;
+
+ if( _data[i].left_child && i!=_data[p].child ) {
+ p=_data[p].parent;
+ }
+
+ if ( p!=-1 && _comp(value,_data[p].prio) ) {
+ cut(i,p);
+ if ( _comp(_data[_min].prio,value) ) {
+ fuse(_min,i);
+ } else {
+ fuse(i,_min);
+ _min=i;
+ }
+ }
+ }
+
+ /// \brief Increase the priority of an item to the given value.
+ ///
+ /// This function increases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param value The priority.
+ /// \pre \e item must be stored in the heap with priority at most \e value.
+ void increase (Item item, const Prio& value) {
+ erase(item);
+ push(item,value);
+ }
+
+ /// \brief Return the state of an item.
+ ///
+ /// This method returns \c PRE_HEAP if the given item has never
+ /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
+ /// and \c POST_HEAP otherwise.
+ /// In the latter case it is possible that the item will get back
+ /// to the heap again.
+ /// \param item The item.
+ State state(const Item &item) const {
+ int i=_iim[item];
+ if( i>=0 ) {
+ if( _data[i].in ) i=0;
+ else i=-2;
+ }
+ return State(i);
+ }
+
+ /// \brief Set the state of an item in the heap.
+ ///
+ /// This function sets the state of the given item in the heap.
+ /// It can be used to manually clear the heap when it is important
+ /// to achive better time complexity.
+ /// \param i The item.
+ /// \param st The state. It should not be \c IN_HEAP.
+ void state(const Item& i, State st) {
+ switch (st) {
+ case POST_HEAP:
+ case PRE_HEAP:
+ if (state(i) == IN_HEAP) erase(i);
+ _iim[i]=st;
+ break;
+ case IN_HEAP:
+ break;
+ }
+ }
+
+ private:
+
+ void cut(int a, int b) {
+ int child_a;
+ switch (_data[a].degree) {
+ case 2:
+ child_a = _data[_data[a].child].parent;
+ if( _data[a].left_child ) {
+ _data[child_a].left_child=true;
+ _data[b].child=child_a;
+ _data[child_a].parent=_data[a].parent;
+ }
+ else {
+ _data[child_a].left_child=false;
+ _data[child_a].parent=b;
+ if( a!=_data[b].child )
+ _data[_data[b].child].parent=child_a;
+ else
+ _data[b].child=child_a;
+ }
+ --_data[a].degree;
+ _data[_data[a].child].parent=a;
+ break;
+
+ case 1:
+ child_a = _data[a].child;
+ if( !_data[child_a].left_child ) {
+ --_data[a].degree;
+ if( _data[a].left_child ) {
+ _data[child_a].left_child=true;
+ _data[child_a].parent=_data[a].parent;
+ _data[b].child=child_a;
+ }
+ else {
+ _data[child_a].left_child=false;
+ _data[child_a].parent=b;
+ if( a!=_data[b].child )
+ _data[_data[b].child].parent=child_a;
+ else
+ _data[b].child=child_a;
+ }
+ _data[a].child=-1;
+ }
+ else {
+ --_data[b].degree;
+ if( _data[a].left_child ) {
+ _data[b].child =
+ (1==_data[b].degree) ? _data[a].parent : -1;
+ } else {
+ if (1==_data[b].degree)
+ _data[_data[b].child].parent=b;
+ else
+ _data[b].child=-1;
+ }
+ }
+ break;
+
+ case 0:
+ --_data[b].degree;
+ if( _data[a].left_child ) {
+ _data[b].child =
+ (0!=_data[b].degree) ? _data[a].parent : -1;
+ } else {
+ if( 0!=_data[b].degree )
+ _data[_data[b].child].parent=b;
+ else
+ _data[b].child=-1;
+ }
+ break;
+ }
+ _data[a].parent=-1;
+ _data[a].left_child=false;
+ }
+
+ void fuse(int a, int b) {
+ int child_a = _data[a].child;
+ int child_b = _data[b].child;
+ _data[a].child=b;
+ _data[b].parent=a;
+ _data[b].left_child=true;
+
+ if( -1!=child_a ) {
+ _data[b].child=child_a;
+ _data[child_a].parent=b;
+ _data[child_a].left_child=false;
+ ++_data[b].degree;
+
+ if( -1!=child_b ) {
+ _data[b].child=child_b;
+ _data[child_b].parent=child_a;
+ }
+ }
+ else { ++_data[a].degree; }
+ }
+
+ class store {
+ friend class PairingHeap;
+
+ Item name;
+ int parent;
+ int child;
+ bool left_child;
+ int degree;
+ bool in;
+ Prio prio;
+
+ store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
+ };
+ };
+
+} //namespace lemon
+
+#endif //LEMON_PAIRING_HEAP_H
+