Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/preflow.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/preflow.h985
1 files changed, 985 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/preflow.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/preflow.h
new file mode 100644
index 00000000000..28ccd67dcf1
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/preflow.h
@@ -0,0 +1,985 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_PREFLOW_H
+#define LEMON_PREFLOW_H
+
+#include <lemon/tolerance.h>
+#include <lemon/elevator.h>
+
+/// \file
+/// \ingroup max_flow
+/// \brief Implementation of the preflow algorithm.
+
+namespace lemon {
+
+ /// \brief Default traits class of Preflow class.
+ ///
+ /// Default traits class of Preflow class.
+ /// \tparam GR Digraph type.
+ /// \tparam CAP Capacity map type.
+ template <typename GR, typename CAP>
+ struct PreflowDefaultTraits {
+
+ /// \brief The type of the digraph the algorithm runs on.
+ typedef GR Digraph;
+
+ /// \brief The type of the map that stores the arc capacities.
+ ///
+ /// The type of the map that stores the arc capacities.
+ /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
+ typedef CAP CapacityMap;
+
+ /// \brief The type of the flow values.
+ typedef typename CapacityMap::Value Value;
+
+ /// \brief The type of the map that stores the flow values.
+ ///
+ /// The type of the map that stores the flow values.
+ /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
+#ifdef DOXYGEN
+ typedef GR::ArcMap<Value> FlowMap;
+#else
+ typedef typename Digraph::template ArcMap<Value> FlowMap;
+#endif
+
+ /// \brief Instantiates a FlowMap.
+ ///
+ /// This function instantiates a \ref FlowMap.
+ /// \param digraph The digraph for which we would like to define
+ /// the flow map.
+ static FlowMap* createFlowMap(const Digraph& digraph) {
+ return new FlowMap(digraph);
+ }
+
+ /// \brief The elevator type used by Preflow algorithm.
+ ///
+ /// The elevator type used by Preflow algorithm.
+ ///
+ /// \sa Elevator, LinkedElevator
+#ifdef DOXYGEN
+ typedef lemon::Elevator<GR, GR::Node> Elevator;
+#else
+ typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
+#endif
+
+ /// \brief Instantiates an Elevator.
+ ///
+ /// This function instantiates an \ref Elevator.
+ /// \param digraph The digraph for which we would like to define
+ /// the elevator.
+ /// \param max_level The maximum level of the elevator.
+ static Elevator* createElevator(const Digraph& digraph, int max_level) {
+ return new Elevator(digraph, max_level);
+ }
+
+ /// \brief The tolerance used by the algorithm
+ ///
+ /// The tolerance used by the algorithm to handle inexact computation.
+ typedef lemon::Tolerance<Value> Tolerance;
+
+ };
+
+
+ /// \ingroup max_flow
+ ///
+ /// \brief %Preflow algorithm class.
+ ///
+ /// This class provides an implementation of Goldberg-Tarjan's \e preflow
+ /// \e push-relabel algorithm producing a \ref max_flow
+ /// "flow of maximum value" in a digraph \cite clrs01algorithms,
+ /// \cite amo93networkflows, \cite goldberg88newapproach.
+ /// The preflow algorithms are the fastest known maximum
+ /// flow algorithms. The current implementation uses a mixture of the
+ /// \e "highest label" and the \e "bound decrease" heuristics.
+ /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{m})\f$.
+ ///
+ /// The algorithm consists of two phases. After the first phase
+ /// the maximum flow value and the minimum cut is obtained. The
+ /// second phase constructs a feasible maximum flow on each arc.
+ ///
+ /// \warning This implementation cannot handle infinite or very large
+ /// capacities (e.g. the maximum value of \c CAP::Value).
+ ///
+ /// \tparam GR The type of the digraph the algorithm runs on.
+ /// \tparam CAP The type of the capacity map. The default map
+ /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm. By default, it is \ref PreflowDefaultTraits
+ /// "PreflowDefaultTraits<GR, CAP>".
+ /// In most cases, this parameter should not be set directly,
+ /// consider to use the named template parameters instead.
+#ifdef DOXYGEN
+ template <typename GR, typename CAP, typename TR>
+#else
+ template <typename GR,
+ typename CAP = typename GR::template ArcMap<int>,
+ typename TR = PreflowDefaultTraits<GR, CAP> >
+#endif
+ class Preflow {
+ public:
+
+ ///The \ref lemon::PreflowDefaultTraits "traits class" of the algorithm.
+ typedef TR Traits;
+ ///The type of the digraph the algorithm runs on.
+ typedef typename Traits::Digraph Digraph;
+ ///The type of the capacity map.
+ typedef typename Traits::CapacityMap CapacityMap;
+ ///The type of the flow values.
+ typedef typename Traits::Value Value;
+
+ ///The type of the flow map.
+ typedef typename Traits::FlowMap FlowMap;
+ ///The type of the elevator.
+ typedef typename Traits::Elevator Elevator;
+ ///The type of the tolerance.
+ typedef typename Traits::Tolerance Tolerance;
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
+
+ const Digraph& _graph;
+ const CapacityMap* _capacity;
+
+ int _node_num;
+
+ Node _source, _target;
+
+ FlowMap* _flow;
+ bool _local_flow;
+
+ Elevator* _level;
+ bool _local_level;
+
+ typedef typename Digraph::template NodeMap<Value> ExcessMap;
+ ExcessMap* _excess;
+
+ Tolerance _tolerance;
+
+ bool _phase;
+
+
+ void createStructures() {
+ _node_num = countNodes(_graph);
+
+ if (!_flow) {
+ _flow = Traits::createFlowMap(_graph);
+ _local_flow = true;
+ }
+ if (!_level) {
+ _level = Traits::createElevator(_graph, _node_num);
+ _local_level = true;
+ }
+ if (!_excess) {
+ _excess = new ExcessMap(_graph);
+ }
+ }
+
+ void destroyStructures() {
+ if (_local_flow) {
+ delete _flow;
+ }
+ if (_local_level) {
+ delete _level;
+ }
+ if (_excess) {
+ delete _excess;
+ }
+ }
+
+ public:
+
+ typedef Preflow Create;
+
+ ///\name Named Template Parameters
+
+ ///@{
+
+ template <typename T>
+ struct SetFlowMapTraits : public Traits {
+ typedef T FlowMap;
+ static FlowMap *createFlowMap(const Digraph&) {
+ LEMON_ASSERT(false, "FlowMap is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// FlowMap type
+ ///
+ /// \ref named-templ-param "Named parameter" for setting FlowMap
+ /// type.
+ template <typename T>
+ struct SetFlowMap
+ : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
+ typedef Preflow<Digraph, CapacityMap,
+ SetFlowMapTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetElevatorTraits : public Traits {
+ typedef T Elevator;
+ static Elevator *createElevator(const Digraph&, int) {
+ LEMON_ASSERT(false, "Elevator is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// Elevator type
+ ///
+ /// \ref named-templ-param "Named parameter" for setting Elevator
+ /// type. If this named parameter is used, then an external
+ /// elevator object must be passed to the algorithm using the
+ /// \ref elevator(Elevator&) "elevator()" function before calling
+ /// \ref run() or \ref init().
+ /// \sa SetStandardElevator
+ template <typename T>
+ struct SetElevator
+ : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
+ typedef Preflow<Digraph, CapacityMap,
+ SetElevatorTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetStandardElevatorTraits : public Traits {
+ typedef T Elevator;
+ static Elevator *createElevator(const Digraph& digraph, int max_level) {
+ return new Elevator(digraph, max_level);
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// Elevator type with automatic allocation
+ ///
+ /// \ref named-templ-param "Named parameter" for setting Elevator
+ /// type with automatic allocation.
+ /// The Elevator should have standard constructor interface to be
+ /// able to automatically created by the algorithm (i.e. the
+ /// digraph and the maximum level should be passed to it).
+ /// However, an external elevator object could also be passed to the
+ /// algorithm with the \ref elevator(Elevator&) "elevator()" function
+ /// before calling \ref run() or \ref init().
+ /// \sa SetElevator
+ template <typename T>
+ struct SetStandardElevator
+ : public Preflow<Digraph, CapacityMap,
+ SetStandardElevatorTraits<T> > {
+ typedef Preflow<Digraph, CapacityMap,
+ SetStandardElevatorTraits<T> > Create;
+ };
+
+ /// @}
+
+ protected:
+
+ Preflow() {}
+
+ public:
+
+
+ /// \brief The constructor of the class.
+ ///
+ /// The constructor of the class.
+ /// \param digraph The digraph the algorithm runs on.
+ /// \param capacity The capacity of the arcs.
+ /// \param source The source node.
+ /// \param target The target node.
+ Preflow(const Digraph& digraph, const CapacityMap& capacity,
+ Node source, Node target)
+ : _graph(digraph), _capacity(&capacity),
+ _node_num(0), _source(source), _target(target),
+ _flow(0), _local_flow(false),
+ _level(0), _local_level(false),
+ _excess(0), _tolerance(), _phase() {}
+
+ /// \brief Destructor.
+ ///
+ /// Destructor.
+ ~Preflow() {
+ destroyStructures();
+ }
+
+ /// \brief Sets the capacity map.
+ ///
+ /// Sets the capacity map.
+ /// \return <tt>(*this)</tt>
+ Preflow& capacityMap(const CapacityMap& map) {
+ _capacity = &map;
+ return *this;
+ }
+
+ /// \brief Sets the flow map.
+ ///
+ /// Sets the flow map.
+ /// If you don't use this function before calling \ref run() or
+ /// \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated map,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ Preflow& flowMap(FlowMap& map) {
+ if (_local_flow) {
+ delete _flow;
+ _local_flow = false;
+ }
+ _flow = &map;
+ return *this;
+ }
+
+ /// \brief Sets the source node.
+ ///
+ /// Sets the source node.
+ /// \return <tt>(*this)</tt>
+ Preflow& source(const Node& node) {
+ _source = node;
+ return *this;
+ }
+
+ /// \brief Sets the target node.
+ ///
+ /// Sets the target node.
+ /// \return <tt>(*this)</tt>
+ Preflow& target(const Node& node) {
+ _target = node;
+ return *this;
+ }
+
+ /// \brief Sets the elevator used by algorithm.
+ ///
+ /// Sets the elevator used by algorithm.
+ /// If you don't use this function before calling \ref run() or
+ /// \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated elevator,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ Preflow& elevator(Elevator& elevator) {
+ if (_local_level) {
+ delete _level;
+ _local_level = false;
+ }
+ _level = &elevator;
+ return *this;
+ }
+
+ /// \brief Returns a const reference to the elevator.
+ ///
+ /// Returns a const reference to the elevator.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const Elevator& elevator() const {
+ return *_level;
+ }
+
+ /// \brief Sets the tolerance used by the algorithm.
+ ///
+ /// Sets the tolerance object used by the algorithm.
+ /// \return <tt>(*this)</tt>
+ Preflow& tolerance(const Tolerance& tolerance) {
+ _tolerance = tolerance;
+ return *this;
+ }
+
+ /// \brief Returns a const reference to the tolerance.
+ ///
+ /// Returns a const reference to the tolerance object used by
+ /// the algorithm.
+ const Tolerance& tolerance() const {
+ return _tolerance;
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the preflow algorithm is to use
+ /// \ref run() or \ref runMinCut().\n
+ /// If you need better control on the initial solution or the execution,
+ /// you have to call one of the \ref init() functions first, then
+ /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
+
+ ///@{
+
+ /// \brief Initializes the internal data structures.
+ ///
+ /// Initializes the internal data structures and sets the initial
+ /// flow to zero on each arc.
+ void init() {
+ createStructures();
+
+ _phase = true;
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_excess)[n] = 0;
+ }
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ _flow->set(e, 0);
+ }
+
+ typename Digraph::template NodeMap<bool> reached(_graph, false);
+
+ _level->initStart();
+ _level->initAddItem(_target);
+
+ std::vector<Node> queue;
+ reached[_source] = true;
+
+ queue.push_back(_target);
+ reached[_target] = true;
+ while (!queue.empty()) {
+ _level->initNewLevel();
+ std::vector<Node> nqueue;
+ for (int i = 0; i < int(queue.size()); ++i) {
+ Node n = queue[i];
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node u = _graph.source(e);
+ if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
+ reached[u] = true;
+ _level->initAddItem(u);
+ nqueue.push_back(u);
+ }
+ }
+ }
+ queue.swap(nqueue);
+ }
+ _level->initFinish();
+
+ for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
+ if (_tolerance.positive((*_capacity)[e])) {
+ Node u = _graph.target(e);
+ if ((*_level)[u] == _level->maxLevel()) continue;
+ _flow->set(e, (*_capacity)[e]);
+ (*_excess)[u] += (*_capacity)[e];
+ if (u != _target && !_level->active(u)) {
+ _level->activate(u);
+ }
+ }
+ }
+ }
+
+ /// \brief Initializes the internal data structures using the
+ /// given flow map.
+ ///
+ /// Initializes the internal data structures and sets the initial
+ /// flow to the given \c flowMap. The \c flowMap should contain a
+ /// flow or at least a preflow, i.e. at each node excluding the
+ /// source node the incoming flow should greater or equal to the
+ /// outgoing flow.
+ /// \return \c false if the given \c flowMap is not a preflow.
+ template <typename FlowMap>
+ bool init(const FlowMap& flowMap) {
+ createStructures();
+
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ _flow->set(e, flowMap[e]);
+ }
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Value excess = 0;
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ excess += (*_flow)[e];
+ }
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ excess -= (*_flow)[e];
+ }
+ if (excess < 0 && n != _source) return false;
+ (*_excess)[n] = excess;
+ }
+
+ typename Digraph::template NodeMap<bool> reached(_graph, false);
+
+ _level->initStart();
+ _level->initAddItem(_target);
+
+ std::vector<Node> queue;
+ reached[_source] = true;
+
+ queue.push_back(_target);
+ reached[_target] = true;
+ while (!queue.empty()) {
+ _level->initNewLevel();
+ std::vector<Node> nqueue;
+ for (int i = 0; i < int(queue.size()); ++i) {
+ Node n = queue[i];
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node u = _graph.source(e);
+ if (!reached[u] &&
+ _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
+ reached[u] = true;
+ _level->initAddItem(u);
+ nqueue.push_back(u);
+ }
+ }
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.target(e);
+ if (!reached[v] && _tolerance.positive((*_flow)[e])) {
+ reached[v] = true;
+ _level->initAddItem(v);
+ nqueue.push_back(v);
+ }
+ }
+ }
+ queue.swap(nqueue);
+ }
+ _level->initFinish();
+
+ for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
+ Value rem = (*_capacity)[e] - (*_flow)[e];
+ if (_tolerance.positive(rem)) {
+ Node u = _graph.target(e);
+ if ((*_level)[u] == _level->maxLevel()) continue;
+ _flow->set(e, (*_capacity)[e]);
+ (*_excess)[u] += rem;
+ }
+ }
+ for (InArcIt e(_graph, _source); e != INVALID; ++e) {
+ Value rem = (*_flow)[e];
+ if (_tolerance.positive(rem)) {
+ Node v = _graph.source(e);
+ if ((*_level)[v] == _level->maxLevel()) continue;
+ _flow->set(e, 0);
+ (*_excess)[v] += rem;
+ }
+ }
+ for (NodeIt n(_graph); n != INVALID; ++n)
+ if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n]))
+ _level->activate(n);
+
+ return true;
+ }
+
+ /// \brief Starts the first phase of the preflow algorithm.
+ ///
+ /// The preflow algorithm consists of two phases, this method runs
+ /// the first phase. After the first phase the maximum flow value
+ /// and a minimum value cut can already be computed, although a
+ /// maximum flow is not yet obtained. So after calling this method
+ /// \ref flowValue() returns the value of a maximum flow and \ref
+ /// minCut() returns a minimum cut.
+ /// \pre One of the \ref init() functions must be called before
+ /// using this function.
+ void startFirstPhase() {
+ _phase = true;
+
+ while (true) {
+ int num = _node_num;
+
+ Node n = INVALID;
+ int level = -1;
+
+ while (num > 0) {
+ n = _level->highestActive();
+ if (n == INVALID) goto first_phase_done;
+ level = _level->highestActiveLevel();
+ --num;
+
+ Value excess = (*_excess)[n];
+ int new_level = _level->maxLevel();
+
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_capacity)[e] - (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.target(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _target) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] + excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push_1;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, (*_capacity)[e]);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.source(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _target) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] - excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push_1;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, 0);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ no_more_push_1:
+
+ (*_excess)[n] = excess;
+
+ if (excess != 0) {
+ if (new_level + 1 < _level->maxLevel()) {
+ _level->liftHighestActive(new_level + 1);
+ } else {
+ _level->liftHighestActiveToTop();
+ }
+ if (_level->emptyLevel(level)) {
+ _level->liftToTop(level);
+ }
+ } else {
+ _level->deactivate(n);
+ }
+ }
+
+ num = _node_num * 20;
+ while (num > 0) {
+ while (level >= 0 && _level->activeFree(level)) {
+ --level;
+ }
+ if (level == -1) {
+ n = _level->highestActive();
+ level = _level->highestActiveLevel();
+ if (n == INVALID) goto first_phase_done;
+ } else {
+ n = _level->activeOn(level);
+ }
+ --num;
+
+ Value excess = (*_excess)[n];
+ int new_level = _level->maxLevel();
+
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_capacity)[e] - (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.target(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _target) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] + excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push_2;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, (*_capacity)[e]);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.source(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _target) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] - excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push_2;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, 0);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ no_more_push_2:
+
+ (*_excess)[n] = excess;
+
+ if (excess != 0) {
+ if (new_level + 1 < _level->maxLevel()) {
+ _level->liftActiveOn(level, new_level + 1);
+ } else {
+ _level->liftActiveToTop(level);
+ }
+ if (_level->emptyLevel(level)) {
+ _level->liftToTop(level);
+ }
+ } else {
+ _level->deactivate(n);
+ }
+ }
+ }
+ first_phase_done:;
+ }
+
+ /// \brief Starts the second phase of the preflow algorithm.
+ ///
+ /// The preflow algorithm consists of two phases, this method runs
+ /// the second phase. After calling one of the \ref init() functions
+ /// and \ref startFirstPhase() and then \ref startSecondPhase(),
+ /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
+ /// value of a maximum flow, \ref minCut() returns a minimum cut
+ /// \pre One of the \ref init() functions and \ref startFirstPhase()
+ /// must be called before using this function.
+ void startSecondPhase() {
+ _phase = false;
+
+ typename Digraph::template NodeMap<bool> reached(_graph);
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ reached[n] = (*_level)[n] < _level->maxLevel();
+ }
+
+ _level->initStart();
+ _level->initAddItem(_source);
+
+ std::vector<Node> queue;
+ queue.push_back(_source);
+ reached[_source] = true;
+
+ while (!queue.empty()) {
+ _level->initNewLevel();
+ std::vector<Node> nqueue;
+ for (int i = 0; i < int(queue.size()); ++i) {
+ Node n = queue[i];
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node v = _graph.target(e);
+ if (!reached[v] && _tolerance.positive((*_flow)[e])) {
+ reached[v] = true;
+ _level->initAddItem(v);
+ nqueue.push_back(v);
+ }
+ }
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Node u = _graph.source(e);
+ if (!reached[u] &&
+ _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
+ reached[u] = true;
+ _level->initAddItem(u);
+ nqueue.push_back(u);
+ }
+ }
+ }
+ queue.swap(nqueue);
+ }
+ _level->initFinish();
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ if (!reached[n]) {
+ _level->dirtyTopButOne(n);
+ } else if ((*_excess)[n] > 0 && _target != n) {
+ _level->activate(n);
+ }
+ }
+
+ Node n;
+ while ((n = _level->highestActive()) != INVALID) {
+ Value excess = (*_excess)[n];
+ int level = _level->highestActiveLevel();
+ int new_level = _level->maxLevel();
+
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_capacity)[e] - (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.target(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _source) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] + excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, (*_capacity)[e]);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ for (InArcIt e(_graph, n); e != INVALID; ++e) {
+ Value rem = (*_flow)[e];
+ if (!_tolerance.positive(rem)) continue;
+ Node v = _graph.source(e);
+ if ((*_level)[v] < level) {
+ if (!_level->active(v) && v != _source) {
+ _level->activate(v);
+ }
+ if (!_tolerance.less(rem, excess)) {
+ _flow->set(e, (*_flow)[e] - excess);
+ (*_excess)[v] += excess;
+ excess = 0;
+ goto no_more_push;
+ } else {
+ excess -= rem;
+ (*_excess)[v] += rem;
+ _flow->set(e, 0);
+ }
+ } else if (new_level > (*_level)[v]) {
+ new_level = (*_level)[v];
+ }
+ }
+
+ no_more_push:
+
+ (*_excess)[n] = excess;
+
+ if (excess != 0) {
+ if (new_level + 1 < _level->maxLevel()) {
+ _level->liftHighestActive(new_level + 1);
+ } else {
+ // Calculation error
+ _level->liftHighestActiveToTop();
+ }
+ if (_level->emptyLevel(level)) {
+ // Calculation error
+ _level->liftToTop(level);
+ }
+ } else {
+ _level->deactivate(n);
+ }
+
+ }
+ }
+
+ /// \brief Runs the preflow algorithm.
+ ///
+ /// Runs the preflow algorithm.
+ /// \note pf.run() is just a shortcut of the following code.
+ /// \code
+ /// pf.init();
+ /// pf.startFirstPhase();
+ /// pf.startSecondPhase();
+ /// \endcode
+ void run() {
+ init();
+ startFirstPhase();
+ startSecondPhase();
+ }
+
+ /// \brief Runs the preflow algorithm to compute the minimum cut.
+ ///
+ /// Runs the preflow algorithm to compute the minimum cut.
+ /// \note pf.runMinCut() is just a shortcut of the following code.
+ /// \code
+ /// pf.init();
+ /// pf.startFirstPhase();
+ /// \endcode
+ void runMinCut() {
+ init();
+ startFirstPhase();
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the preflow algorithm can be obtained using these
+ /// functions.\n
+ /// Either one of the \ref run() "run*()" functions or one of the
+ /// \ref startFirstPhase() "start*()" functions should be called
+ /// before using them.
+
+ ///@{
+
+ /// \brief Returns the value of the maximum flow.
+ ///
+ /// Returns the value of the maximum flow by returning the excess
+ /// of the target node. This value equals to the value of
+ /// the maximum flow already after the first phase of the algorithm.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Value flowValue() const {
+ return (*_excess)[_target];
+ }
+
+ /// \brief Returns the flow value on the given arc.
+ ///
+ /// Returns the flow value on the given arc. This method can
+ /// be called after the second phase of the algorithm.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Value flow(const Arc& arc) const {
+ return (*_flow)[arc];
+ }
+
+ /// \brief Returns a const reference to the flow map.
+ ///
+ /// Returns a const reference to the arc map storing the found flow.
+ /// This method can be called after the second phase of the algorithm.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const FlowMap& flowMap() const {
+ return *_flow;
+ }
+
+ /// \brief Returns \c true when the node is on the source side of the
+ /// minimum cut.
+ ///
+ /// Returns true when the node is on the source side of the found
+ /// minimum cut. This method can be called both after running \ref
+ /// startFirstPhase() and \ref startSecondPhase().
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ bool minCut(const Node& node) const {
+ return ((*_level)[node] == _level->maxLevel()) == _phase;
+ }
+
+ /// \brief Gives back a minimum value cut.
+ ///
+ /// Sets \c cutMap to the characteristic vector of a minimum value
+ /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
+ /// node map with \c bool (or convertible) value type.
+ ///
+ /// This method can be called both after running \ref startFirstPhase()
+ /// and \ref startSecondPhase(). The result after the second phase
+ /// could be slightly different if inexact computation is used.
+ ///
+ /// \note This function calls \ref minCut() for each node, so it runs in
+ /// O(n) time.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ template <typename CutMap>
+ void minCutMap(CutMap& cutMap) const {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ cutMap.set(n, minCut(n));
+ }
+ }
+
+ /// @}
+ };
+}
+
+#endif