Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/suurballe.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/suurballe.h776
1 files changed, 776 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/suurballe.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/suurballe.h
new file mode 100644
index 00000000000..f1338a2948f
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/suurballe.h
@@ -0,0 +1,776 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_SUURBALLE_H
+#define LEMON_SUURBALLE_H
+
+///\ingroup shortest_path
+///\file
+///\brief An algorithm for finding arc-disjoint paths between two
+/// nodes having minimum total length.
+
+#include <vector>
+#include <limits>
+#include <lemon/bin_heap.h>
+#include <lemon/path.h>
+#include <lemon/list_graph.h>
+#include <lemon/dijkstra.h>
+#include <lemon/maps.h>
+
+namespace lemon {
+
+ /// \brief Default traits class of Suurballe algorithm.
+ ///
+ /// Default traits class of Suurballe algorithm.
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam LEN The type of the length map.
+ /// The default value is <tt>GR::ArcMap<int></tt>.
+#ifdef DOXYGEN
+ template <typename GR, typename LEN>
+#else
+ template < typename GR,
+ typename LEN = typename GR::template ArcMap<int> >
+#endif
+ struct SuurballeDefaultTraits
+ {
+ /// The type of the digraph.
+ typedef GR Digraph;
+ /// The type of the length map.
+ typedef LEN LengthMap;
+ /// The type of the lengths.
+ typedef typename LEN::Value Length;
+ /// The type of the flow map.
+ typedef typename GR::template ArcMap<int> FlowMap;
+ /// The type of the potential map.
+ typedef typename GR::template NodeMap<Length> PotentialMap;
+
+ /// \brief The path type
+ ///
+ /// The type used for storing the found arc-disjoint paths.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addBack() function.
+ typedef lemon::Path<Digraph> Path;
+
+ /// The cross reference type used for the heap.
+ typedef typename GR::template NodeMap<int> HeapCrossRef;
+
+ /// \brief The heap type used for internal Dijkstra computations.
+ ///
+ /// The type of the heap used for internal Dijkstra computations.
+ /// It must conform to the \ref lemon::concepts::Heap "Heap" concept
+ /// and its priority type must be \c Length.
+ typedef BinHeap<Length, HeapCrossRef> Heap;
+ };
+
+ /// \addtogroup shortest_path
+ /// @{
+
+ /// \brief Algorithm for finding arc-disjoint paths between two nodes
+ /// having minimum total length.
+ ///
+ /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
+ /// finding arc-disjoint paths having minimum total length (cost)
+ /// from a given source node to a given target node in a digraph.
+ ///
+ /// Note that this problem is a special case of the \ref min_cost_flow
+ /// "minimum cost flow problem". This implementation is actually an
+ /// efficient specialized version of the \ref CapacityScaling
+ /// "successive shortest path" algorithm directly for this problem.
+ /// Therefore this class provides query functions for flow values and
+ /// node potentials (the dual solution) just like the minimum cost flow
+ /// algorithms.
+ ///
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam LEN The type of the length map.
+ /// The default value is <tt>GR::ArcMap<int></tt>.
+ ///
+ /// \warning Length values should be \e non-negative.
+ ///
+ /// \note For finding \e node-disjoint paths, this algorithm can be used
+ /// along with the \ref SplitNodes adaptor.
+#ifdef DOXYGEN
+ template <typename GR, typename LEN, typename TR>
+#else
+ template < typename GR,
+ typename LEN = typename GR::template ArcMap<int>,
+ typename TR = SuurballeDefaultTraits<GR, LEN> >
+#endif
+ class Suurballe
+ {
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typedef ConstMap<Arc, int> ConstArcMap;
+ typedef typename GR::template NodeMap<Arc> PredMap;
+
+ public:
+
+ /// The type of the digraph.
+ typedef typename TR::Digraph Digraph;
+ /// The type of the length map.
+ typedef typename TR::LengthMap LengthMap;
+ /// The type of the lengths.
+ typedef typename TR::Length Length;
+
+ /// The type of the flow map.
+ typedef typename TR::FlowMap FlowMap;
+ /// The type of the potential map.
+ typedef typename TR::PotentialMap PotentialMap;
+ /// The type of the path structures.
+ typedef typename TR::Path Path;
+ /// The cross reference type used for the heap.
+ typedef typename TR::HeapCrossRef HeapCrossRef;
+ /// The heap type used for internal Dijkstra computations.
+ typedef typename TR::Heap Heap;
+
+ /// The \ref lemon::SuurballeDefaultTraits "traits class" of the algorithm.
+ typedef TR Traits;
+
+ private:
+
+ // ResidualDijkstra is a special implementation of the
+ // Dijkstra algorithm for finding shortest paths in the
+ // residual network with respect to the reduced arc lengths
+ // and modifying the node potentials according to the
+ // distance of the nodes.
+ class ResidualDijkstra
+ {
+ private:
+
+ const Digraph &_graph;
+ const LengthMap &_length;
+ const FlowMap &_flow;
+ PotentialMap &_pi;
+ PredMap &_pred;
+ Node _s;
+ Node _t;
+
+ PotentialMap _dist;
+ std::vector<Node> _proc_nodes;
+
+ public:
+
+ // Constructor
+ ResidualDijkstra(Suurballe &srb) :
+ _graph(srb._graph), _length(srb._length),
+ _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
+ _s(srb._s), _t(srb._t), _dist(_graph) {}
+
+ // Run the algorithm and return true if a path is found
+ // from the source node to the target node.
+ bool run(int cnt) {
+ return cnt == 0 ? startFirst() : start();
+ }
+
+ private:
+
+ // Execute the algorithm for the first time (the flow and potential
+ // functions have to be identically zero).
+ bool startFirst() {
+ HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
+ Heap heap(heap_cross_ref);
+ heap.push(_s, 0);
+ _pred[_s] = INVALID;
+ _proc_nodes.clear();
+
+ // Process nodes
+ while (!heap.empty() && heap.top() != _t) {
+ Node u = heap.top(), v;
+ Length d = heap.prio(), dn;
+ _dist[u] = heap.prio();
+ _proc_nodes.push_back(u);
+ heap.pop();
+
+ // Traverse outgoing arcs
+ for (OutArcIt e(_graph, u); e != INVALID; ++e) {
+ v = _graph.target(e);
+ switch(heap.state(v)) {
+ case Heap::PRE_HEAP:
+ heap.push(v, d + _length[e]);
+ _pred[v] = e;
+ break;
+ case Heap::IN_HEAP:
+ dn = d + _length[e];
+ if (dn < heap[v]) {
+ heap.decrease(v, dn);
+ _pred[v] = e;
+ }
+ break;
+ case Heap::POST_HEAP:
+ break;
+ }
+ }
+ }
+ if (heap.empty()) return false;
+
+ // Update potentials of processed nodes
+ Length t_dist = heap.prio();
+ for (int i = 0; i < int(_proc_nodes.size()); ++i)
+ _pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
+ return true;
+ }
+
+ // Execute the algorithm.
+ bool start() {
+ HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
+ Heap heap(heap_cross_ref);
+ heap.push(_s, 0);
+ _pred[_s] = INVALID;
+ _proc_nodes.clear();
+
+ // Process nodes
+ while (!heap.empty() && heap.top() != _t) {
+ Node u = heap.top(), v;
+ Length d = heap.prio() + _pi[u], dn;
+ _dist[u] = heap.prio();
+ _proc_nodes.push_back(u);
+ heap.pop();
+
+ // Traverse outgoing arcs
+ for (OutArcIt e(_graph, u); e != INVALID; ++e) {
+ if (_flow[e] == 0) {
+ v = _graph.target(e);
+ switch(heap.state(v)) {
+ case Heap::PRE_HEAP:
+ heap.push(v, d + _length[e] - _pi[v]);
+ _pred[v] = e;
+ break;
+ case Heap::IN_HEAP:
+ dn = d + _length[e] - _pi[v];
+ if (dn < heap[v]) {
+ heap.decrease(v, dn);
+ _pred[v] = e;
+ }
+ break;
+ case Heap::POST_HEAP:
+ break;
+ }
+ }
+ }
+
+ // Traverse incoming arcs
+ for (InArcIt e(_graph, u); e != INVALID; ++e) {
+ if (_flow[e] == 1) {
+ v = _graph.source(e);
+ switch(heap.state(v)) {
+ case Heap::PRE_HEAP:
+ heap.push(v, d - _length[e] - _pi[v]);
+ _pred[v] = e;
+ break;
+ case Heap::IN_HEAP:
+ dn = d - _length[e] - _pi[v];
+ if (dn < heap[v]) {
+ heap.decrease(v, dn);
+ _pred[v] = e;
+ }
+ break;
+ case Heap::POST_HEAP:
+ break;
+ }
+ }
+ }
+ }
+ if (heap.empty()) return false;
+
+ // Update potentials of processed nodes
+ Length t_dist = heap.prio();
+ for (int i = 0; i < int(_proc_nodes.size()); ++i)
+ _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
+ return true;
+ }
+
+ }; //class ResidualDijkstra
+
+ public:
+
+ /// \name Named Template Parameters
+ /// @{
+
+ template <typename T>
+ struct SetFlowMapTraits : public Traits {
+ typedef T FlowMap;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c FlowMap type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// \c FlowMap type.
+ template <typename T>
+ struct SetFlowMap
+ : public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
+ typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetPotentialMapTraits : public Traits {
+ typedef T PotentialMap;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c PotentialMap type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// \c PotentialMap type.
+ template <typename T>
+ struct SetPotentialMap
+ : public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
+ typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetPathTraits : public Traits {
+ typedef T Path;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c %Path type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting \c %Path type.
+ /// It must conform to the \ref lemon::concepts::Path "Path" concept
+ /// and it must have an \c addBack() function.
+ template <typename T>
+ struct SetPath
+ : public Suurballe<GR, LEN, SetPathTraits<T> > {
+ typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
+ };
+
+ template <typename H, typename CR>
+ struct SetHeapTraits : public Traits {
+ typedef H Heap;
+ typedef CR HeapCrossRef;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c Heap and \c HeapCrossRef types.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting \c Heap
+ /// and \c HeapCrossRef types with automatic allocation.
+ /// They will be used for internal Dijkstra computations.
+ /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
+ /// concept and its priority type must be \c Length.
+ template <typename H,
+ typename CR = typename Digraph::template NodeMap<int> >
+ struct SetHeap
+ : public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
+ typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
+ };
+
+ /// @}
+
+ private:
+
+ // The digraph the algorithm runs on
+ const Digraph &_graph;
+ // The length map
+ const LengthMap &_length;
+
+ // Arc map of the current flow
+ FlowMap *_flow;
+ bool _local_flow;
+ // Node map of the current potentials
+ PotentialMap *_potential;
+ bool _local_potential;
+
+ // The source node
+ Node _s;
+ // The target node
+ Node _t;
+
+ // Container to store the found paths
+ std::vector<Path> _paths;
+ int _path_num;
+
+ // The pred arc map
+ PredMap _pred;
+
+ // Data for full init
+ PotentialMap *_init_dist;
+ PredMap *_init_pred;
+ bool _full_init;
+
+ protected:
+
+ Suurballe() {}
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ /// \param length The length (cost) values of the arcs.
+ Suurballe( const Digraph &graph,
+ const LengthMap &length ) :
+ _graph(graph), _length(length), _flow(0), _local_flow(false),
+ _potential(0), _local_potential(false), _pred(graph),
+ _init_dist(0), _init_pred(0)
+ {}
+
+ /// Destructor.
+ ~Suurballe() {
+ if (_local_flow) delete _flow;
+ if (_local_potential) delete _potential;
+ delete _init_dist;
+ delete _init_pred;
+ }
+
+ /// \brief Set the flow map.
+ ///
+ /// This function sets the flow map.
+ /// If it is not used before calling \ref run() or \ref init(),
+ /// an instance will be allocated automatically. The destructor
+ /// deallocates this automatically allocated map, of course.
+ ///
+ /// The found flow contains only 0 and 1 values, since it is the
+ /// union of the found arc-disjoint paths.
+ ///
+ /// \return <tt>(*this)</tt>
+ Suurballe& flowMap(FlowMap &map) {
+ if (_local_flow) {
+ delete _flow;
+ _local_flow = false;
+ }
+ _flow = &map;
+ return *this;
+ }
+
+ /// \brief Set the potential map.
+ ///
+ /// This function sets the potential map.
+ /// If it is not used before calling \ref run() or \ref init(),
+ /// an instance will be allocated automatically. The destructor
+ /// deallocates this automatically allocated map, of course.
+ ///
+ /// The node potentials provide the dual solution of the underlying
+ /// \ref min_cost_flow "minimum cost flow problem".
+ ///
+ /// \return <tt>(*this)</tt>
+ Suurballe& potentialMap(PotentialMap &map) {
+ if (_local_potential) {
+ delete _potential;
+ _local_potential = false;
+ }
+ _potential = &map;
+ return *this;
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to call the run()
+ /// function.\n
+ /// If you need to execute the algorithm many times using the same
+ /// source node, then you may call fullInit() once and start()
+ /// for each target node.\n
+ /// If you only need the flow that is the union of the found
+ /// arc-disjoint paths, then you may call findFlow() instead of
+ /// start().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ ///
+ /// \param s The source node.
+ /// \param t The target node.
+ /// \param k The number of paths to be found.
+ ///
+ /// \return \c k if there are at least \c k arc-disjoint paths from
+ /// \c s to \c t in the digraph. Otherwise it returns the number of
+ /// arc-disjoint paths found.
+ ///
+ /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
+ /// just a shortcut of the following code.
+ /// \code
+ /// s.init(s);
+ /// s.start(t, k);
+ /// \endcode
+ int run(const Node& s, const Node& t, int k = 2) {
+ init(s);
+ start(t, k);
+ return _path_num;
+ }
+
+ /// \brief Initialize the algorithm.
+ ///
+ /// This function initializes the algorithm with the given source node.
+ ///
+ /// \param s The source node.
+ void init(const Node& s) {
+ _s = s;
+
+ // Initialize maps
+ if (!_flow) {
+ _flow = new FlowMap(_graph);
+ _local_flow = true;
+ }
+ if (!_potential) {
+ _potential = new PotentialMap(_graph);
+ _local_potential = true;
+ }
+ _full_init = false;
+ }
+
+ /// \brief Initialize the algorithm and perform Dijkstra.
+ ///
+ /// This function initializes the algorithm and performs a full
+ /// Dijkstra search from the given source node. It makes consecutive
+ /// executions of \ref start() "start(t, k)" faster, since they
+ /// have to perform %Dijkstra only k-1 times.
+ ///
+ /// This initialization is usually worth using instead of \ref init()
+ /// if the algorithm is executed many times using the same source node.
+ ///
+ /// \param s The source node.
+ void fullInit(const Node& s) {
+ // Initialize maps
+ init(s);
+ if (!_init_dist) {
+ _init_dist = new PotentialMap(_graph);
+ }
+ if (!_init_pred) {
+ _init_pred = new PredMap(_graph);
+ }
+
+ // Run a full Dijkstra
+ typename Dijkstra<Digraph, LengthMap>
+ ::template SetStandardHeap<Heap>
+ ::template SetDistMap<PotentialMap>
+ ::template SetPredMap<PredMap>
+ ::Create dijk(_graph, _length);
+ dijk.distMap(*_init_dist).predMap(*_init_pred);
+ dijk.run(s);
+
+ _full_init = true;
+ }
+
+ /// \brief Execute the algorithm.
+ ///
+ /// This function executes the algorithm.
+ ///
+ /// \param t The target node.
+ /// \param k The number of paths to be found.
+ ///
+ /// \return \c k if there are at least \c k arc-disjoint paths from
+ /// \c s to \c t in the digraph. Otherwise it returns the number of
+ /// arc-disjoint paths found.
+ ///
+ /// \note Apart from the return value, <tt>s.start(t, k)</tt> is
+ /// just a shortcut of the following code.
+ /// \code
+ /// s.findFlow(t, k);
+ /// s.findPaths();
+ /// \endcode
+ int start(const Node& t, int k = 2) {
+ findFlow(t, k);
+ findPaths();
+ return _path_num;
+ }
+
+ /// \brief Execute the algorithm to find an optimal flow.
+ ///
+ /// This function executes the successive shortest path algorithm to
+ /// find a minimum cost flow, which is the union of \c k (or less)
+ /// arc-disjoint paths.
+ ///
+ /// \param t The target node.
+ /// \param k The number of paths to be found.
+ ///
+ /// \return \c k if there are at least \c k arc-disjoint paths from
+ /// the source node to the given node \c t in the digraph.
+ /// Otherwise it returns the number of arc-disjoint paths found.
+ ///
+ /// \pre \ref init() must be called before using this function.
+ int findFlow(const Node& t, int k = 2) {
+ _t = t;
+ ResidualDijkstra dijkstra(*this);
+
+ // Initialization
+ for (ArcIt e(_graph); e != INVALID; ++e) {
+ (*_flow)[e] = 0;
+ }
+ if (_full_init) {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_potential)[n] = (*_init_dist)[n];
+ }
+ Node u = _t;
+ Arc e;
+ while ((e = (*_init_pred)[u]) != INVALID) {
+ (*_flow)[e] = 1;
+ u = _graph.source(e);
+ }
+ _path_num = 1;
+ } else {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ (*_potential)[n] = 0;
+ }
+ _path_num = 0;
+ }
+
+ // Find shortest paths
+ while (_path_num < k) {
+ // Run Dijkstra
+ if (!dijkstra.run(_path_num)) break;
+ ++_path_num;
+
+ // Set the flow along the found shortest path
+ Node u = _t;
+ Arc e;
+ while ((e = _pred[u]) != INVALID) {
+ if (u == _graph.target(e)) {
+ (*_flow)[e] = 1;
+ u = _graph.source(e);
+ } else {
+ (*_flow)[e] = 0;
+ u = _graph.target(e);
+ }
+ }
+ }
+ return _path_num;
+ }
+
+ /// \brief Compute the paths from the flow.
+ ///
+ /// This function computes arc-disjoint paths from the found minimum
+ /// cost flow, which is the union of them.
+ ///
+ /// \pre \ref init() and \ref findFlow() must be called before using
+ /// this function.
+ void findPaths() {
+ FlowMap res_flow(_graph);
+ for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
+
+ _paths.clear();
+ _paths.resize(_path_num);
+ for (int i = 0; i < _path_num; ++i) {
+ Node n = _s;
+ while (n != _t) {
+ OutArcIt e(_graph, n);
+ for ( ; res_flow[e] == 0; ++e) ;
+ n = _graph.target(e);
+ _paths[i].addBack(e);
+ res_flow[e] = 0;
+ }
+ }
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.
+ /// \n The algorithm should be executed before using them.
+
+ /// @{
+
+ /// \brief Return the total length of the found paths.
+ ///
+ /// This function returns the total length of the found paths, i.e.
+ /// the total cost of the found flow.
+ /// The complexity of the function is O(m).
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ Length totalLength() const {
+ Length c = 0;
+ for (ArcIt e(_graph); e != INVALID; ++e)
+ c += (*_flow)[e] * _length[e];
+ return c;
+ }
+
+ /// \brief Return the flow value on the given arc.
+ ///
+ /// This function returns the flow value on the given arc.
+ /// It is \c 1 if the arc is involved in one of the found arc-disjoint
+ /// paths, otherwise it is \c 0.
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ int flow(const Arc& arc) const {
+ return (*_flow)[arc];
+ }
+
+ /// \brief Return a const reference to an arc map storing the
+ /// found flow.
+ ///
+ /// This function returns a const reference to an arc map storing
+ /// the flow that is the union of the found arc-disjoint paths.
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ const FlowMap& flowMap() const {
+ return *_flow;
+ }
+
+ /// \brief Return the potential of the given node.
+ ///
+ /// This function returns the potential of the given node.
+ /// The node potentials provide the dual solution of the
+ /// underlying \ref min_cost_flow "minimum cost flow problem".
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ Length potential(const Node& node) const {
+ return (*_potential)[node];
+ }
+
+ /// \brief Return a const reference to a node map storing the
+ /// found potentials (the dual solution).
+ ///
+ /// This function returns a const reference to a node map storing
+ /// the found potentials that provide the dual solution of the
+ /// underlying \ref min_cost_flow "minimum cost flow problem".
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ const PotentialMap& potentialMap() const {
+ return *_potential;
+ }
+
+ /// \brief Return the number of the found paths.
+ ///
+ /// This function returns the number of the found paths.
+ ///
+ /// \pre \ref run() or \ref findFlow() must be called before using
+ /// this function.
+ int pathNum() const {
+ return _path_num;
+ }
+
+ /// \brief Return a const reference to the specified path.
+ ///
+ /// This function returns a const reference to the specified path.
+ ///
+ /// \param i The function returns the <tt>i</tt>-th path.
+ /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
+ ///
+ /// \pre \ref run() or \ref findPaths() must be called before using
+ /// this function.
+ const Path& path(int i) const {
+ return _paths[i];
+ }
+
+ /// @}
+
+ }; //class Suurballe
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_SUURBALLE_H