Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp')
-rw-r--r--extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp876
1 files changed, 876 insertions, 0 deletions
diff --git a/extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp b/extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp
new file mode 100644
index 00000000000..bf59cd89dda
--- /dev/null
+++ b/extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp
@@ -0,0 +1,876 @@
+//
+// Copyright (c) 2009 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <math.h>
+#include <float.h>
+#include <string.h>
+#include <stdio.h>
+#include "DetourStatNavMesh.h"
+#include "DetourNode.h"
+#include "DetourCommon.h"
+
+
+//////////////////////////////////////////////////////////////////////////////////////////
+dtStatNavMesh::dtStatNavMesh() :
+ m_data(0),
+ m_dataSize(0),
+ m_header(0),
+ m_nodePool(0),
+ m_openList(0)
+{
+}
+
+dtStatNavMesh::~dtStatNavMesh()
+{
+ delete m_nodePool;
+ delete m_openList;
+ if (m_data)
+ delete [] m_data;
+}
+
+bool dtStatNavMesh::init(unsigned char* data, int dataSize, bool ownsData)
+{
+ dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)data;
+
+ if (header->magic != DT_STAT_NAVMESH_MAGIC)
+ return false;
+ if (header->version != DT_STAT_NAVMESH_VERSION)
+ return false;
+
+ const int headerSize = sizeof(dtStatNavMeshHeader);
+ const int vertsSize = sizeof(float)*3*header->nverts;
+ const int polysSize = sizeof(dtStatPoly)*header->npolys;
+ const int nodesSize = sizeof(dtStatBVNode)*header->npolys*2;
+ const int detailMeshesSize = sizeof(dtStatPolyDetail)*header->ndmeshes;
+ const int detailVertsSize = sizeof(float)*3*header->ndverts;
+ const int detailTrisSize = sizeof(unsigned char)*4*header->ndtris;
+
+
+ unsigned char* d = data + headerSize;
+ header->verts = (float*)d; d += vertsSize;
+ header->polys = (dtStatPoly*)d; d += polysSize;
+ header->bvtree = (dtStatBVNode*)d; d += nodesSize;
+ header->dmeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
+ header->dverts = (float*)d; d += detailVertsSize;
+ header->dtris = (unsigned char*)d; d += detailTrisSize;
+
+ m_nodePool = new dtNodePool(2048, 256);
+ if (!m_nodePool)
+ return false;
+
+ m_openList = new dtNodeQueue(2048);
+ if (!m_openList)
+ return false;
+
+ if (ownsData)
+ {
+ m_data = data;
+ m_dataSize = dataSize;
+ }
+
+ m_header = header;
+
+ return true;
+}
+
+const dtStatPoly* dtStatNavMesh::getPolyByRef(dtStatPolyRef ref) const
+{
+ if (!m_header || ref == 0 || (int)ref > m_header->npolys) return 0;
+ return &m_header->polys[ref-1];
+}
+
+int dtStatNavMesh::getPolyIndexByRef(dtStatPolyRef ref) const
+{
+ if (!m_header || ref == 0 || (int)ref > m_header->npolys) return -1;
+ return (int)ref-1;
+}
+
+int dtStatNavMesh::findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
+ const float* startPos, const float* endPos,
+ dtStatPolyRef* path, const int maxPathSize)
+{
+ if (!m_header) return 0;
+
+ if (!startRef || !endRef)
+ return 0;
+
+ if (!maxPathSize)
+ return 0;
+
+ if (startRef == endRef)
+ {
+ path[0] = startRef;
+ return 1;
+ }
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ static const float H_SCALE = 1.1f; // Heuristic scale.
+
+ dtNode* startNode = m_nodePool->getNode(startRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = vdist(startPos, endPos) * H_SCALE;
+ startNode->id = startRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ dtNode* lastBestNode = startNode;
+ float lastBestNodeCost = startNode->total;
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+
+ if (bestNode->id == endRef)
+ {
+ lastBestNode = bestNode;
+ break;
+ }
+
+ const dtStatPoly* poly = getPoly(bestNode->id-1);
+ for (int i = 0; i < (int)poly->nv; ++i)
+ {
+ dtStatPolyRef neighbour = poly->n[i];
+ if (neighbour)
+ {
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ // Calculate cost.
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, startPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.cost = parent->cost + vdist(p0,p1);
+ // Special case for last node.
+ if (newNode.id == endRef)
+ newNode.cost += vdist(p1, endPos);
+
+ // Heuristic
+ const float h = vdist(p1,endPos)*H_SCALE;
+ newNode.total = newNode.cost + h;
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= ~DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->cost = newNode.cost;
+ actualNode->total = newNode.total;
+
+ if (h < lastBestNodeCost)
+ {
+ lastBestNodeCost = h;
+ lastBestNode = actualNode;
+ }
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ actualNode->flags |= DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ }
+ bestNode->flags |= DT_NODE_CLOSED;
+ }
+
+ // Reverse the path.
+ dtNode* prev = 0;
+ dtNode* node = lastBestNode;
+ do
+ {
+ dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
+ node->pidx = m_nodePool->getNodeIdx(prev);
+ prev = node;
+ node = next;
+ }
+ while (node);
+
+ // Store path
+ node = prev;
+ int n = 0;
+ do
+ {
+ path[n++] = node->id;
+ node = m_nodePool->getNodeAtIdx(node->pidx);
+ }
+ while (node && n < maxPathSize);
+
+ return n;
+}
+
+bool dtStatNavMesh::closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const
+{
+ int idx = getPolyIndexByRef(ref);
+ if (idx == -1)
+ return false;
+
+ float closestDistSqr = FLT_MAX;
+ const dtStatPoly* p = getPoly(idx);
+ const dtStatPolyDetail* pd = getPolyDetail(idx);
+
+ for (int j = 0; j < pd->ntris; ++j)
+ {
+ const unsigned char* t = getDetailTri(pd->tbase+j);
+ const float* v[3];
+ for (int k = 0; k < 3; ++k)
+ {
+ if (t[k] < p->nv)
+ v[k] = getVertex(p->v[t[k]]);
+ else
+ v[k] = getDetailVertex(pd->vbase+(t[k]-p->nv));
+ }
+ float pt[3];
+ closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
+ float d = vdistSqr(pos, pt);
+ if (d < closestDistSqr)
+ {
+ vcopy(closest, pt);
+ closestDistSqr = d;
+ }
+ }
+
+ return true;
+}
+
+bool dtStatNavMesh::getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const
+{
+ int idx = getPolyIndexByRef(ref);
+ if (idx == -1)
+ return false;
+
+ const dtStatPoly* p = getPoly(idx);
+ const dtStatPolyDetail* pd = getPolyDetail(idx);
+
+ for (int i = 0; i < pd->ntris; ++i)
+ {
+ const unsigned char* t = getDetailTri(pd->tbase+i);
+ const float* v[3];
+ for (int j = 0; j < 3; ++j)
+ {
+ if (t[j] < p->nv)
+ v[j] = getVertex(p->v[t[j]]);
+ else
+ v[j] = getDetailVertex(pd->vbase+(t[j]-p->nv));
+ }
+ float h;
+ if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
+ {
+ if (height)
+ *height = h;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+int dtStatNavMesh::findStraightPath(const float* startPos, const float* endPos,
+ const dtStatPolyRef* path, const int pathSize,
+ float* straightPath, const int maxStraightPathSize)
+{
+ if (!m_header) return 0;
+
+ if (!maxStraightPathSize)
+ return 0;
+
+ if (!path[0])
+ return 0;
+
+ int straightPathSize = 0;
+
+ float closestStartPos[3];
+ if (!closestPointToPoly(path[0], startPos, closestStartPos))
+ return 0;
+
+ // Add start point.
+ vcopy(&straightPath[straightPathSize*3], closestStartPos);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+
+ float closestEndPos[3];
+ if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
+ return 0;
+
+ float portalApex[3], portalLeft[3], portalRight[3];
+
+ if (pathSize > 1)
+ {
+ vcopy(portalApex, closestStartPos);
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ int apexIndex = 0;
+ int leftIndex = 0;
+ int rightIndex = 0;
+
+ for (int i = 0; i < pathSize; ++i)
+ {
+ float left[3], right[3];
+ if (i < pathSize-1)
+ {
+ // Next portal.
+ getPortalPoints(path[i], path[i+1], left, right);
+ }
+ else
+ {
+ // End of the path.
+ vcopy(left, closestEndPos);
+ vcopy(right, closestEndPos);
+ }
+
+ // Right vertex.
+ if (vequal(portalApex, portalRight))
+ {
+ vcopy(portalRight, right);
+ rightIndex = i;
+ }
+ else
+ {
+ if (triArea2D(portalApex, portalRight, right) <= 0.0f)
+ {
+ if (triArea2D(portalApex, portalLeft, right) > 0.0f)
+ {
+ vcopy(portalRight, right);
+ rightIndex = i;
+ }
+ else
+ {
+ vcopy(portalApex, portalLeft);
+ apexIndex = leftIndex;
+
+ if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
+ {
+ vcopy(&straightPath[straightPathSize*3], portalApex);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+ }
+
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ leftIndex = apexIndex;
+ rightIndex = apexIndex;
+
+ // Restart
+ i = apexIndex;
+
+ continue;
+ }
+ }
+ }
+
+ // Left vertex.
+ if (vequal(portalApex, portalLeft))
+ {
+ vcopy(portalLeft, left);
+ leftIndex = i;
+ }
+ else
+ {
+ if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
+ {
+ if (triArea2D(portalApex, portalRight, left) < 0.0f)
+ {
+ vcopy(portalLeft, left);
+ leftIndex = i;
+ }
+ else
+ {
+ vcopy(portalApex, portalRight);
+ apexIndex = rightIndex;
+
+ if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
+ {
+ vcopy(&straightPath[straightPathSize*3], portalApex);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+ }
+
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ leftIndex = apexIndex;
+ rightIndex = apexIndex;
+
+ // Restart
+ i = apexIndex;
+
+ continue;
+ }
+ }
+ }
+ }
+ }
+
+ // Add end point.
+ vcopy(&straightPath[straightPathSize*3], closestEndPos);
+ straightPathSize++;
+
+ return straightPathSize;
+}
+
+int dtStatNavMesh::getPolyVerts(dtStatPolyRef ref, float* verts) const
+{
+ if (!m_header) return 0;
+ const dtStatPoly* poly = getPolyByRef(ref);
+ if (!poly) return 0;
+ float* v = verts;
+ for (int i = 0; i < (int)poly->nv; ++i)
+ {
+ const float* cv = &m_header->verts[poly->v[i]*3];
+ *v++ = cv[0];
+ *v++ = cv[1];
+ *v++ = cv[2];
+ }
+ return (int)poly->nv;
+}
+
+int dtStatNavMesh::raycast(dtStatPolyRef centerRef, const float* startPos, const float* endPos,
+ float& t, dtStatPolyRef* path, const int pathSize)
+{
+ if (!m_header) return 0;
+ if (!centerRef) return 0;
+
+ dtStatPolyRef prevRef = centerRef;
+ dtStatPolyRef curRef = centerRef;
+ t = 0;
+
+ float verts[DT_STAT_VERTS_PER_POLYGON*3];
+ int n = 0;
+
+ while (curRef)
+ {
+ // Cast ray against current polygon.
+ int nv = getPolyVerts(curRef, verts);
+ if (nv < 3)
+ {
+ // Hit bad polygon, report hit.
+ return n;
+ }
+
+ float tmin, tmax;
+ int segMin, segMax;
+ if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
+ {
+ // Could not a polygon, keep the old t and report hit.
+ return n;
+ }
+ // Keep track of furthest t so far.
+ if (tmax > t)
+ t = tmax;
+
+ if (n < pathSize)
+ path[n++] = curRef;
+
+ // Check the neighbour of this polygon.
+ const dtStatPoly* poly = getPolyByRef(curRef);
+ dtStatPolyRef nextRef = poly->n[segMax];
+ if (!nextRef)
+ {
+ // No neighbour, we hit a wall.
+ return n;
+ }
+
+ // No hit, advance to neighbour polygon.
+ prevRef = curRef;
+ curRef = nextRef;
+ }
+
+ return n;
+}
+
+
+float dtStatNavMesh::findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
+ float* hitPos, float* hitNormal)
+{
+ if (!m_header) return 0;
+ if (!centerRef) return 0;
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ dtNode* startNode = m_nodePool->getNode(centerRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = 0;
+ startNode->id = centerRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ float radiusSqr = sqr(maxRadius);
+
+ hitNormal[0] = 1;
+ hitNormal[1] = 0;
+ hitNormal[2] = 0;
+
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+ const dtStatPoly* poly = getPoly(bestNode->id-1);
+
+ // Hit test walls.
+ for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
+ {
+ // Skip non-solid edges.
+ if (poly->n[j]) continue;
+
+ // Calc distance to the edge.
+ const float* vj = getVertex(poly->v[j]);
+ const float* vi = getVertex(poly->v[i]);
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
+
+ // Edge is too far, skip.
+ if (distSqr > radiusSqr)
+ continue;
+
+ // Hit wall, update radius.
+ radiusSqr = distSqr;
+ // Calculate hit pos.
+ hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
+ hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
+ hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
+ }
+
+ // Check to see if teh circle expands to one of the neighbours and expand.
+ for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
+ {
+ // Skip solid edges.
+ if (!poly->n[j]) continue;
+
+ // Expand to neighbour if not visited yet.
+ dtStatPolyRef neighbour = poly->n[j];
+
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ // Calc distance to the edge.
+ const float* vj = getVertex(poly->v[j]);
+ const float* vi = getVertex(poly->v[i]);
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
+
+ // Edge is too far, skip.
+ if (distSqr > radiusSqr)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ // Cost
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, centerPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.total = parent->total + vdist(p0,p1);
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= ~DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->total = newNode.total;
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ actualNode->flags |= DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ bestNode->flags |= DT_NODE_CLOSED;
+ }
+
+ // Calc hit normal.
+ vsub(hitNormal, centerPos, hitPos);
+ vnormalize(hitNormal);
+
+ return sqrtf(radiusSqr);
+}
+
+int dtStatNavMesh::findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
+ dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
+ const int maxResult)
+{
+ if (!m_header) return 0;
+ if (!centerRef) return 0;
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ dtNode* startNode = m_nodePool->getNode(centerRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = 0;
+ startNode->id = centerRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ int n = 0;
+ if (n < maxResult)
+ {
+ if (resultRef)
+ resultRef[n] = startNode->id;
+ if (resultParent)
+ resultParent[n] = 0;
+ if (resultCost)
+ resultCost[n] = 0;
+ ++n;
+ }
+
+ const float radiusSqr = sqr(radius);
+
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+ const dtStatPoly* poly = getPoly(bestNode->id-1);
+ for (unsigned i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j=i++)
+ {
+ dtStatPolyRef neighbour = poly->n[j];
+
+ if (neighbour)
+ {
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ // Calc distance to the edge.
+ const float* vj = getVertex(poly->v[j]);
+ const float* vi = getVertex(poly->v[i]);
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
+
+ // If the circle is not touching the next polygon, skip it.
+ if (distSqr > radiusSqr)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ // Cost
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, centerPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.total = parent->total + vdist(p0,p1);
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= ~DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->total = newNode.total;
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ if (n < maxResult)
+ {
+ if (resultRef)
+ resultRef[n] = actualNode->id;
+ if (resultParent)
+ resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
+ if (resultCost)
+ resultCost[n] = actualNode->total;
+ ++n;
+ }
+ actualNode->flags |= DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ }
+ bestNode->flags |= DT_NODE_CLOSED;
+
+ }
+
+ return n;
+}
+
+// Returns polygons which are withing certain radius from the query location.
+int dtStatNavMesh::queryPolygons(const float* center, const float* extents,
+ dtStatPolyRef* polys, const int maxIds)
+{
+ if (!m_header) return 0;
+
+ const dtStatBVNode* node = &m_header->bvtree[0];
+ const dtStatBVNode* end = &m_header->bvtree[m_header->nnodes];
+
+ // Calculate quantized box
+ const float ics = 1.0f / m_header->cs;
+ unsigned short bmin[3], bmax[3];
+ // Clamp query box to world box.
+ float minx = clamp(center[0] - extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
+ float miny = clamp(center[1] - extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
+ float minz = clamp(center[2] - extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
+ float maxx = clamp(center[0] + extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
+ float maxy = clamp(center[1] + extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
+ float maxz = clamp(center[2] + extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
+ // Quantize
+ bmin[0] = (unsigned short)(ics * minx) & 0xfffe;
+ bmin[1] = (unsigned short)(ics * miny) & 0xfffe;
+ bmin[2] = (unsigned short)(ics * minz) & 0xfffe;
+ bmax[0] = (unsigned short)(ics * maxx + 1) | 1;
+ bmax[1] = (unsigned short)(ics * maxy + 1) | 1;
+ bmax[2] = (unsigned short)(ics * maxz + 1) | 1;
+
+ // Traverse tree
+ int n = 0;
+ while (node < end)
+ {
+ bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
+ bool isLeafNode = node->i >= 0;
+
+ if (isLeafNode && overlap)
+ {
+ if (n < maxIds)
+ {
+ polys[n] = (dtStatPolyRef)node->i;
+ n++;
+ }
+ }
+
+ if (overlap || isLeafNode)
+ node++;
+ else
+ {
+ const int escapeIndex = -node->i;
+ node += escapeIndex;
+ }
+ }
+
+ return n;
+}
+
+dtStatPolyRef dtStatNavMesh::findNearestPoly(const float* center, const float* extents)
+{
+ if (!m_header) return 0;
+
+ // Get nearby polygons from proximity grid.
+ dtStatPolyRef polys[128];
+ int npolys = queryPolygons(center, extents, polys, 128);
+
+ // Find nearest polygon amongst the nearby polygons.
+ dtStatPolyRef nearest = 0;
+ float nearestDistanceSqr = FLT_MAX;
+ for (int i = 0; i < npolys; ++i)
+ {
+ dtStatPolyRef ref = polys[i];
+ float closest[3];
+ if (!closestPointToPoly(ref, center, closest))
+ continue;
+ float d = vdistSqr(center, closest);
+ if (d < nearestDistanceSqr)
+ {
+ nearestDistanceSqr = d;
+ nearest = ref;
+ }
+ }
+
+ return nearest;
+}
+
+bool dtStatNavMesh::getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const
+{
+ const dtStatPoly* fromPoly = getPolyByRef(from);
+ if (!fromPoly)
+ return false;
+
+ // Find common edge between the polygons and returns the segment end points.
+ for (unsigned i = 0, j = (int)fromPoly->nv - 1; i < (int)fromPoly->nv; j = i++)
+ {
+ unsigned short neighbour = fromPoly->n[j];
+ if (neighbour == to)
+ {
+ vcopy(left, getVertex(fromPoly->v[j]));
+ vcopy(right, getVertex(fromPoly->v[i]));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool dtStatNavMesh::getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const
+{
+ float left[3], right[3];
+ if (!getPortalPoints(from, to, left,right)) return false;
+ mid[0] = (left[0]+right[0])*0.5f;
+ mid[1] = (left[1]+right[1])*0.5f;
+ mid[2] = (left[2]+right[2])*0.5f;
+ return true;
+}
+
+bool dtStatNavMesh::isInClosedList(dtStatPolyRef ref) const
+{
+ if (!m_nodePool) return false;
+ const dtNode* node = m_nodePool->findNode(ref);
+ return node && node->flags & DT_NODE_CLOSED;
+}
+
+int dtStatNavMesh::getMemUsed() const
+{
+ if (!m_nodePool || ! m_openList)
+ return 0;
+ return sizeof(*this) + m_dataSize +
+ m_nodePool->getMemUsed() +
+ m_openList->getMemUsed();
+}