Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Detour/Source/DetourTileNavMesh.cpp')
-rw-r--r--extern/recastnavigation/Detour/Source/DetourTileNavMesh.cpp1428
1 files changed, 1428 insertions, 0 deletions
diff --git a/extern/recastnavigation/Detour/Source/DetourTileNavMesh.cpp b/extern/recastnavigation/Detour/Source/DetourTileNavMesh.cpp
new file mode 100644
index 00000000000..0813c7755cc
--- /dev/null
+++ b/extern/recastnavigation/Detour/Source/DetourTileNavMesh.cpp
@@ -0,0 +1,1428 @@
+//
+// Copyright (c) 2009 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <math.h>
+#include <float.h>
+#include <string.h>
+#include <stdio.h>
+#include "DetourTileNavMesh.h"
+#include "DetourNode.h"
+#include "DetourCommon.h"
+
+
+inline int opposite(int side) { return (side+2) & 0x3; }
+
+inline bool overlapBoxes(const float* amin, const float* amax,
+ const float* bmin, const float* bmax)
+{
+ bool overlap = true;
+ overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
+ overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
+ overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
+ return overlap;
+}
+
+inline bool overlapRects(const float* amin, const float* amax,
+ const float* bmin, const float* bmax)
+{
+ bool overlap = true;
+ overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
+ overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
+ return overlap;
+}
+
+static void calcRect(const float* va, const float* vb,
+ float* bmin, float* bmax,
+ int side, float padx, float pady)
+{
+ if ((side&1) == 0)
+ {
+ bmin[0] = min(va[2],vb[2]) + padx;
+ bmin[1] = min(va[1],vb[1]) - pady;
+ bmax[0] = max(va[2],vb[2]) - padx;
+ bmax[1] = max(va[1],vb[1]) + pady;
+ }
+ else
+ {
+ bmin[0] = min(va[0],vb[0]) + padx;
+ bmin[1] = min(va[1],vb[1]) - pady;
+ bmax[0] = max(va[0],vb[0]) - padx;
+ bmax[1] = max(va[1],vb[1]) + pady;
+ }
+}
+
+inline int computeTileHash(int x, int y)
+{
+ const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
+ const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
+ unsigned int n = h1 * x + h2 * y;
+ return (int)(n & (DT_TILE_LOOKUP_SIZE-1));
+}
+
+//////////////////////////////////////////////////////////////////////////////////////////
+dtTiledNavMesh::dtTiledNavMesh() :
+ m_tileSize(0),
+ m_portalHeight(0),
+ m_nextFree(0),
+ m_tmpLinks(0),
+ m_ntmpLinks(0),
+ m_nodePool(0),
+ m_openList(0)
+{
+}
+
+dtTiledNavMesh::~dtTiledNavMesh()
+{
+ for (int i = 0; i < DT_MAX_TILES; ++i)
+ {
+ if (m_tiles[i].data && m_tiles[i].dataSize < 0)
+ {
+ delete [] m_tiles[i].data;
+ m_tiles[i].data = 0;
+ m_tiles[i].dataSize = 0;
+ }
+ }
+ delete [] m_tmpLinks;
+ delete m_nodePool;
+ delete m_openList;
+}
+
+bool dtTiledNavMesh::init(const float* orig, float tileSize, float portalHeight)
+{
+ vcopy(m_orig, orig);
+ m_tileSize = tileSize;
+ m_portalHeight = portalHeight;
+
+ // Init tiles
+ memset(m_tiles, 0, sizeof(dtTile)*DT_MAX_TILES);
+ memset(m_posLookup, 0, sizeof(dtTile*)*DT_TILE_LOOKUP_SIZE);
+ m_nextFree = 0;
+ for (int i = DT_MAX_TILES-1; i >= 0; --i)
+ {
+ m_tiles[i].next = m_nextFree;
+ m_nextFree = &m_tiles[i];
+ }
+
+ if (!m_nodePool)
+ {
+ m_nodePool = new dtNodePool(2048, 256);
+ if (!m_nodePool)
+ return false;
+ }
+
+ if (!m_openList)
+ {
+ m_openList = new dtNodeQueue(2048);
+ if (!m_openList)
+ return false;
+ }
+
+ return true;
+}
+
+//////////////////////////////////////////////////////////////////////////////////////////
+int dtTiledNavMesh::findConnectingPolys(const float* va, const float* vb,
+ dtTile* tile, int side,
+ dtTilePolyRef* con, float* conarea, int maxcon)
+{
+ if (!tile) return 0;
+ dtTileHeader* h = tile->header;
+
+ float amin[2], amax[2];
+ calcRect(va,vb, amin,amax, side, 0.01f, m_portalHeight);
+
+ // Remove links pointing to 'side' and compact the links array.
+ float bmin[2], bmax[2];
+ unsigned short m = 0x8000 | (unsigned short)side;
+ int n = 0;
+
+ dtTilePolyRef base = getTileId(tile);
+
+ for (int i = 0; i < h->npolys; ++i)
+ {
+ dtTilePoly* poly = &h->polys[i];
+ for (int j = 0; j < poly->nv; ++j)
+ {
+ // Skip edges which do not point to the right side.
+ if (poly->n[j] != m) continue;
+ // Check if the segments touch.
+ const float* vc = &h->verts[poly->v[j]*3];
+ const float* vd = &h->verts[poly->v[(j+1) % (int)poly->nv]*3];
+ calcRect(vc,vd, bmin,bmax, side, 0.01f, m_portalHeight);
+ if (!overlapRects(amin,amax, bmin,bmax)) continue;
+ // Add return value.
+ if (n < maxcon)
+ {
+ conarea[n*2+0] = max(amin[0], bmin[0]);
+ conarea[n*2+1] = min(amax[0], bmax[0]);
+ con[n] = base | (unsigned int)i;
+ n++;
+ }
+ break;
+ }
+ }
+ return n;
+}
+
+void dtTiledNavMesh::removeExtLinks(dtTile* tile, int side)
+{
+ if (!tile) return;
+ dtTileHeader* h = tile->header;
+
+ // Remove links pointing to 'side' and compact the links array.
+ dtTileLink* pool = m_tmpLinks;
+ int nlinks = 0;
+ for (int i = 0; i < h->npolys; ++i)
+ {
+ dtTilePoly* poly = &h->polys[i];
+ int plinks = nlinks;
+ int nplinks = 0;
+ for (int j = 0; j < poly->nlinks; ++j)
+ {
+ dtTileLink* link = &h->links[poly->links+j];
+ if ((int)link->side != side)
+ {
+ if (nlinks < h->maxlinks)
+ {
+ dtTileLink* dst = &pool[nlinks++];
+ memcpy(dst, link, sizeof(dtTileLink));
+ nplinks++;
+ }
+ }
+ }
+ poly->links = plinks;
+ poly->nlinks = nplinks;
+ }
+ h->nlinks = nlinks;
+ if (h->nlinks)
+ memcpy(h->links, m_tmpLinks, sizeof(dtTileLink)*nlinks);
+}
+
+void dtTiledNavMesh::buildExtLinks(dtTile* tile, dtTile* target, int side)
+{
+ if (!tile) return;
+ dtTileHeader* h = tile->header;
+
+ // Remove links pointing to 'side' and compact the links array.
+ dtTileLink* pool = m_tmpLinks;
+ int nlinks = 0;
+ for (int i = 0; i < h->npolys; ++i)
+ {
+ dtTilePoly* poly = &h->polys[i];
+ int plinks = nlinks;
+ int nplinks = 0;
+ // Copy internal and other external links.
+ for (int j = 0; j < poly->nlinks; ++j)
+ {
+ dtTileLink* link = &h->links[poly->links+j];
+ if ((int)link->side != side)
+ {
+ if (nlinks < h->maxlinks)
+ {
+ dtTileLink* dst = &pool[nlinks++];
+ memcpy(dst, link, sizeof(dtTileLink));
+ nplinks++;
+ }
+ }
+ }
+ // Create new links.
+ unsigned short m = 0x8000 | (unsigned short)side;
+ for (int j = 0; j < poly->nv; ++j)
+ {
+ // Skip edges which do not point to the right side.
+ if (poly->n[j] != m) continue;
+
+ // Create new links
+ const float* va = &h->verts[poly->v[j]*3];
+ const float* vb = &h->verts[poly->v[(j+1)%(int)poly->nv]*3];
+ dtTilePolyRef nei[4];
+ float neia[4*2];
+ int nnei = findConnectingPolys(va,vb, target, opposite(side), nei,neia,4);
+ for (int k = 0; k < nnei; ++k)
+ {
+ if (nlinks < h->maxlinks)
+ {
+ dtTileLink* link = &pool[nlinks++];
+ link->ref = nei[k];
+ link->p = (unsigned short)i;
+ link->e = (unsigned char)j;
+ link->side = (unsigned char)side;
+
+ // Compress portal limits to a byte value.
+ if (side == 0 || side == 2)
+ {
+ const float lmin = min(va[2], vb[2]);
+ const float lmax = max(va[2], vb[2]);
+ link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
+ link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
+ }
+ else
+ {
+ const float lmin = min(va[0], vb[0]);
+ const float lmax = max(va[0], vb[0]);
+ link->bmin = (unsigned char)(clamp((neia[k*2+0]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
+ link->bmax = (unsigned char)(clamp((neia[k*2+1]-lmin)/(lmax-lmin), 0.0f, 1.0f)*255.0f);
+ }
+ nplinks++;
+ }
+ }
+ }
+
+ poly->links = plinks;
+ poly->nlinks = nplinks;
+ }
+ h->nlinks = nlinks;
+ if (h->nlinks)
+ memcpy(h->links, m_tmpLinks, sizeof(dtTileLink)*nlinks);
+}
+
+void dtTiledNavMesh::buildIntLinks(dtTile* tile)
+{
+ if (!tile) return;
+ dtTileHeader* h = tile->header;
+
+ dtTilePolyRef base = getTileId(tile);
+ dtTileLink* pool = h->links;
+ int nlinks = 0;
+ for (int i = 0; i < h->npolys; ++i)
+ {
+ dtTilePoly* poly = &h->polys[i];
+ poly->links = nlinks;
+ poly->nlinks = 0;
+ for (int j = 0; j < poly->nv; ++j)
+ {
+ // Skip hard and non-internal edges.
+ if (poly->n[j] == 0 || (poly->n[j] & 0x8000)) continue;
+
+ if (nlinks < h->maxlinks)
+ {
+ dtTileLink* link = &pool[nlinks++];
+ link->ref = base | (unsigned int)(poly->n[j]-1);
+ link->p = (unsigned short)i;
+ link->e = (unsigned char)j;
+ link->side = 0xff;
+ link->bmin = link->bmax = 0;
+ poly->nlinks++;
+ }
+ }
+ }
+ h->nlinks = nlinks;
+}
+
+bool dtTiledNavMesh::addTileAt(int x, int y, unsigned char* data, int dataSize, bool ownsData)
+{
+ if (getTileAt(x,y))
+ return false;
+ // Make sure there is enough space for new tile.
+ if (!m_nextFree)
+ return false;
+ // Make sure the data is in right format.
+ dtTileHeader* header = (dtTileHeader*)data;
+ if (header->magic != DT_TILE_NAVMESH_MAGIC)
+ return false;
+ if (header->version != DT_TILE_NAVMESH_VERSION)
+ return false;
+
+ // Make sure the tmp link array is large enough.
+ if (header->maxlinks > m_ntmpLinks)
+ {
+ m_ntmpLinks = header->maxlinks;
+ delete [] m_tmpLinks;
+ m_tmpLinks = 0;
+ m_tmpLinks = new dtTileLink[m_ntmpLinks];
+ }
+ if (!m_tmpLinks)
+ return false;
+
+ // Allocate a tile.
+ dtTile* tile = m_nextFree;
+ m_nextFree = tile->next;
+ tile->next = 0;
+
+ // Insert tile into the position lut.
+ int h = computeTileHash(x,y);
+ tile->next = m_posLookup[h];
+ m_posLookup[h] = tile;
+
+ // Patch header pointers.
+ const int headerSize = sizeof(dtTileHeader);
+ const int vertsSize = sizeof(float)*3*header->nverts;
+ const int polysSize = sizeof(dtTilePoly)*header->npolys;
+ const int linksSize = sizeof(dtTileLink)*(header->maxlinks);
+ const int detailMeshesSize = sizeof(dtTilePolyDetail)*header->ndmeshes;
+ const int detailVertsSize = sizeof(float)*3*header->ndverts;
+ const int detailTrisSize = sizeof(unsigned char)*4*header->ndtris;
+
+ unsigned char* d = data + headerSize;
+ header->verts = (float*)d; d += vertsSize;
+ header->polys = (dtTilePoly*)d; d += polysSize;
+ header->links = (dtTileLink*)d; d += linksSize;
+ header->dmeshes = (dtTilePolyDetail*)d; d += detailMeshesSize;
+ header->dverts = (float*)d; d += detailVertsSize;
+ header->dtris = (unsigned char*)d; d += detailTrisSize;
+
+ // Init tile.
+ tile->header = header;
+ tile->x = x;
+ tile->y = y;
+ tile->data = data;
+ tile->dataSize = dataSize;
+ tile->ownsData = ownsData;
+
+ buildIntLinks(tile);
+
+ // Create connections connections.
+ for (int i = 0; i < 4; ++i)
+ {
+ dtTile* nei = getNeighbourTileAt(x,y,i);
+ if (nei)
+ {
+ buildExtLinks(tile, nei, i);
+ buildExtLinks(nei, tile, opposite(i));
+ }
+ }
+
+ return true;
+}
+
+dtTile* dtTiledNavMesh::getTileAt(int x, int y)
+{
+ // Find tile based on hash.
+ int h = computeTileHash(x,y);
+ dtTile* tile = m_posLookup[h];
+ while (tile)
+ {
+ if (tile->x == x && tile->y == y)
+ return tile;
+ tile = tile->next;
+ }
+ return 0;
+}
+
+dtTile* dtTiledNavMesh::getTile(int i)
+{
+ return &m_tiles[i];
+}
+
+const dtTile* dtTiledNavMesh::getTile(int i) const
+{
+ return &m_tiles[i];
+}
+
+dtTile* dtTiledNavMesh::getNeighbourTileAt(int x, int y, int side)
+{
+ switch (side)
+ {
+ case 0: x++; break;
+ case 1: y++; break;
+ case 2: x--; break;
+ case 3: y--; break;
+ };
+ return getTileAt(x,y);
+}
+
+bool dtTiledNavMesh::removeTileAt(int x, int y, unsigned char** data, int* dataSize)
+{
+ // Remove tile from hash lookup.
+ int h = computeTileHash(x,y);
+ dtTile* prev = 0;
+ dtTile* tile = m_posLookup[h];
+ while (tile)
+ {
+ if (tile->x == x && tile->y == y)
+ {
+ if (prev)
+ prev->next = tile->next;
+ else
+ m_posLookup[h] = tile->next;
+ break;
+ }
+ prev = tile;
+ tile = tile->next;
+ }
+ if (!tile)
+ return false;
+
+ // Remove connections to neighbour tiles.
+ for (int i = 0; i < 4; ++i)
+ {
+ dtTile* nei = getNeighbourTileAt(x,y,i);
+ if (!nei) continue;
+ removeExtLinks(nei, opposite(i));
+ }
+
+
+ // Reset tile.
+ if (tile->ownsData)
+ {
+ // Owns data
+ delete [] tile->data;
+ tile->data = 0;
+ tile->dataSize = 0;
+ if (data) *data = 0;
+ if (dataSize) *dataSize = 0;
+ }
+ else
+ {
+ if (data) *data = tile->data;
+ if (dataSize) *dataSize = tile->dataSize;
+ }
+ tile->header = 0;
+ tile->x = tile->y = 0;
+ tile->salt++;
+
+ // Add to free list.
+ tile->next = m_nextFree;
+ m_nextFree = tile;
+
+ return true;
+}
+
+
+
+bool dtTiledNavMesh::closestPointToPoly(dtTilePolyRef ref, const float* pos, float* closest) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(ref, salt, it, ip);
+ if (it >= DT_MAX_TILES) return false;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
+ const dtTileHeader* header = m_tiles[it].header;
+
+ if (ip >= (unsigned int)header->npolys) return false;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ float closestDistSqr = FLT_MAX;
+ const dtTilePolyDetail* pd = &header->dmeshes[ip];
+
+ for (int j = 0; j < pd->ntris; ++j)
+ {
+ const unsigned char* t = &header->dtris[(pd->tbase+j)*4];
+ const float* v[3];
+ for (int k = 0; k < 3; ++k)
+ {
+ if (t[k] < poly->nv)
+ v[k] = &header->verts[poly->v[t[k]]*3];
+ else
+ v[k] = &header->dverts[(pd->vbase+(t[k]-poly->nv))*3];
+ }
+ float pt[3];
+ closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
+ float d = vdistSqr(pos, pt);
+ if (d < closestDistSqr)
+ {
+ vcopy(closest, pt);
+ closestDistSqr = d;
+ }
+ }
+
+ return true;
+}
+
+bool dtTiledNavMesh::getPolyHeight(dtTilePolyRef ref, const float* pos, float* height) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(ref, salt, it, ip);
+ if (it >= DT_MAX_TILES) return false;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
+ const dtTileHeader* header = m_tiles[it].header;
+
+ if (ip >= (unsigned int)header->npolys) return false;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ const dtTilePolyDetail* pd = &header->dmeshes[ip];
+ for (int j = 0; j < pd->ntris; ++j)
+ {
+ const unsigned char* t = &header->dtris[(pd->tbase+j)*4];
+ const float* v[3];
+ for (int k = 0; k < 3; ++k)
+ {
+ if (t[k] < poly->nv)
+ v[k] = &header->verts[poly->v[t[k]]*3];
+ else
+ v[k] = &header->dverts[(pd->vbase+(t[k]-poly->nv))*3];
+ }
+ float h;
+ if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
+ {
+ if (height)
+ *height = h;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+dtTilePolyRef dtTiledNavMesh::findNearestPoly(const float* center, const float* extents)
+{
+ // Get nearby polygons from proximity grid.
+ dtTilePolyRef polys[128];
+ int npolys = queryPolygons(center, extents, polys, 128);
+
+ // Find nearest polygon amongst the nearby polygons.
+ dtTilePolyRef nearest = 0;
+ float nearestDistanceSqr = FLT_MAX;
+ for (int i = 0; i < npolys; ++i)
+ {
+ dtTilePolyRef ref = polys[i];
+ float closest[3];
+ if (!closestPointToPoly(ref, center, closest))
+ continue;
+ float d = vdistSqr(center, closest);
+ if (d < nearestDistanceSqr)
+ {
+ nearestDistanceSqr = d;
+ nearest = ref;
+ }
+ }
+
+ return nearest;
+}
+
+dtTilePolyRef dtTiledNavMesh::getTileId(dtTile* tile)
+{
+ if (!tile) return 0;
+ const unsigned int it = tile - m_tiles;
+ return dtEncodeTileId(tile->salt, it, 0);
+}
+
+int dtTiledNavMesh::queryTilePolygons(dtTile* tile,
+ const float* qmin, const float* qmax,
+ dtTilePolyRef* polys, const int maxPolys)
+{
+ float bmin[3], bmax[3];
+ const dtTileHeader* header = tile->header;
+ int n = 0;
+ dtTilePolyRef base = getTileId(tile);
+ for (int i = 0; i < header->npolys; ++i)
+ {
+ // Calc polygon bounds.
+ dtTilePoly* p = &header->polys[i];
+ const float* v = &header->verts[p->v[0]*3];
+ vcopy(bmin, v);
+ vcopy(bmax, v);
+ for (int j = 1; j < p->nv; ++j)
+ {
+ v = &header->verts[p->v[j]*3];
+ vmin(bmin, v);
+ vmax(bmax, v);
+ }
+ if (overlapBoxes(qmin,qmax, bmin,bmax))
+ {
+ if (n < maxPolys)
+ polys[n++] = base | (dtTilePolyRef)i;
+ }
+ }
+ return n;
+}
+
+int dtTiledNavMesh::queryPolygons(const float* center, const float* extents,
+ dtTilePolyRef* polys, const int maxPolys)
+{
+ float bmin[3], bmax[3];
+ bmin[0] = center[0] - extents[0];
+ bmin[1] = center[1] - extents[1];
+ bmin[2] = center[2] - extents[2];
+
+ bmax[0] = center[0] + extents[0];
+ bmax[1] = center[1] + extents[1];
+ bmax[2] = center[2] + extents[2];
+
+ // Find tiles the query touches.
+ const int minx = (int)floorf((bmin[0]-m_orig[0]) / m_tileSize);
+ const int maxx = (int)ceilf((bmax[0]-m_orig[0]) / m_tileSize);
+
+ const int miny = (int)floorf((bmin[2]-m_orig[2]) / m_tileSize);
+ const int maxy = (int)ceilf((bmax[2]-m_orig[2]) / m_tileSize);
+
+ int n = 0;
+ for (int y = miny; y < maxy; ++y)
+ {
+ for (int x = minx; x < maxx; ++x)
+ {
+ dtTile* tile = getTileAt(x,y);
+ if (!tile) continue;
+ n += queryTilePolygons(tile, bmin, bmax, polys+n, maxPolys-n);
+ if (n >= maxPolys) return n;
+ }
+ }
+
+ return n;
+}
+
+int dtTiledNavMesh::findPath(dtTilePolyRef startRef, dtTilePolyRef endRef,
+ const float* startPos, const float* endPos,
+ dtTilePolyRef* path, const int maxPathSize)
+{
+ if (!startRef || !endRef)
+ return 0;
+
+ if (!maxPathSize)
+ return 0;
+
+ if (!getPolyByRef(startRef) || !getPolyByRef(endRef))
+ return 0;
+
+ if (startRef == endRef)
+ {
+ path[0] = startRef;
+ return 1;
+ }
+
+ if (!m_nodePool || !m_openList)
+ return 0;
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ static const float H_SCALE = 1.1f; // Heuristic scale.
+
+ dtNode* startNode = m_nodePool->getNode(startRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = vdist(startPos, endPos) * H_SCALE;
+ startNode->id = startRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ dtNode* lastBestNode = startNode;
+ float lastBestNodeCost = startNode->total;
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+
+ if (bestNode->id == endRef)
+ {
+ lastBestNode = bestNode;
+ break;
+ }
+
+ // Get poly and tile.
+ unsigned int salt, it, ip;
+ dtDecodeTileId(bestNode->id, salt, it, ip);
+ // The API input has been cheked already, skip checking internal data.
+ const dtTileHeader* header = m_tiles[it].header;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ for (int i = 0; i < poly->nlinks; ++i)
+ {
+ dtTilePolyRef neighbour = header->links[poly->links+i].ref;
+ if (neighbour)
+ {
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ // Calculate cost.
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, startPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.cost = parent->cost + vdist(p0,p1);
+ // Special case for last node.
+ if (newNode.id == endRef)
+ newNode.cost += vdist(p1, endPos);
+
+ // Heuristic
+ const float h = vdist(p1,endPos)*H_SCALE;
+ newNode.total = newNode.cost + h;
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->cost = newNode.cost;
+ actualNode->total = newNode.total;
+
+ if (h < lastBestNodeCost)
+ {
+ lastBestNodeCost = h;
+ lastBestNode = actualNode;
+ }
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ actualNode->flags |= DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ }
+ bestNode->flags |= DT_NODE_CLOSED;
+ }
+
+ // Reverse the path.
+ dtNode* prev = 0;
+ dtNode* node = lastBestNode;
+ do
+ {
+ dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
+ node->pidx = m_nodePool->getNodeIdx(prev);
+ prev = node;
+ node = next;
+ }
+ while (node);
+
+ // Store path
+ node = prev;
+ int n = 0;
+ do
+ {
+ path[n++] = node->id;
+ node = m_nodePool->getNodeAtIdx(node->pidx);
+ }
+ while (node && n < maxPathSize);
+
+ return n;
+}
+
+int dtTiledNavMesh::findStraightPath(const float* startPos, const float* endPos,
+ const dtTilePolyRef* path, const int pathSize,
+ float* straightPath, const int maxStraightPathSize)
+{
+ if (!maxStraightPathSize)
+ return 0;
+
+ if (!path[0])
+ return 0;
+
+ int straightPathSize = 0;
+
+ float closestStartPos[3];
+ if (!closestPointToPoly(path[0], startPos, closestStartPos))
+ return 0;
+
+ // Add start point.
+ vcopy(&straightPath[straightPathSize*3], closestStartPos);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+
+ float closestEndPos[3];
+ if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
+ return 0;
+
+ float portalApex[3], portalLeft[3], portalRight[3];
+
+ if (pathSize > 1)
+ {
+ vcopy(portalApex, closestStartPos);
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ int apexIndex = 0;
+ int leftIndex = 0;
+ int rightIndex = 0;
+
+ for (int i = 0; i < pathSize; ++i)
+ {
+ float left[3], right[3];
+ if (i < pathSize-1)
+ {
+ // Next portal.
+ if (!getPortalPoints(path[i], path[i+1], left, right))
+ {
+ if (!closestPointToPoly(path[i], endPos, closestEndPos))
+ return 0;
+ vcopy(&straightPath[straightPathSize*3], closestEndPos);
+ straightPathSize++;
+ return straightPathSize;
+ }
+ }
+ else
+ {
+ // End of the path.
+ vcopy(left, closestEndPos);
+ vcopy(right, closestEndPos);
+ }
+
+ // Right vertex.
+ if (vequal(portalApex, portalRight))
+ {
+ vcopy(portalRight, right);
+ rightIndex = i;
+ }
+ else
+ {
+ if (triArea2D(portalApex, portalRight, right) <= 0.0f)
+ {
+ if (triArea2D(portalApex, portalLeft, right) > 0.0f)
+ {
+ vcopy(portalRight, right);
+ rightIndex = i;
+ }
+ else
+ {
+ vcopy(portalApex, portalLeft);
+ apexIndex = leftIndex;
+
+ if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
+ {
+ vcopy(&straightPath[straightPathSize*3], portalApex);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+ }
+
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ leftIndex = apexIndex;
+ rightIndex = apexIndex;
+
+ // Restart
+ i = apexIndex;
+
+ continue;
+ }
+ }
+ }
+
+ // Left vertex.
+ if (vequal(portalApex, portalLeft))
+ {
+ vcopy(portalLeft, left);
+ leftIndex = i;
+ }
+ else
+ {
+ if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
+ {
+ if (triArea2D(portalApex, portalRight, left) < 0.0f)
+ {
+ vcopy(portalLeft, left);
+ leftIndex = i;
+ }
+ else
+ {
+ vcopy(portalApex, portalRight);
+ apexIndex = rightIndex;
+
+ if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
+ {
+ vcopy(&straightPath[straightPathSize*3], portalApex);
+ straightPathSize++;
+ if (straightPathSize >= maxStraightPathSize)
+ return straightPathSize;
+ }
+
+ vcopy(portalLeft, portalApex);
+ vcopy(portalRight, portalApex);
+ leftIndex = apexIndex;
+ rightIndex = apexIndex;
+
+ // Restart
+ i = apexIndex;
+
+ continue;
+ }
+ }
+ }
+ }
+ }
+
+ // Add end point.
+ vcopy(&straightPath[straightPathSize*3], closestEndPos);
+ straightPathSize++;
+
+ return straightPathSize;
+}
+
+// Returns portal points between two polygons.
+bool dtTiledNavMesh::getPortalPoints(dtTilePolyRef from, dtTilePolyRef to, float* left, float* right) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(from, salt, it, ip);
+ if (it >= DT_MAX_TILES) return false;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
+ if (ip >= (unsigned int)m_tiles[it].header->npolys) return false;
+ const dtTileHeader* fromHeader = m_tiles[it].header;
+ const dtTilePoly* fromPoly = &fromHeader->polys[ip];
+
+ for (int i = 0; i < fromPoly->nlinks; ++i)
+ {
+ const dtTileLink* link = &fromHeader->links[fromPoly->links+i];
+ if (link->ref == to)
+ {
+ // Find portal vertices.
+ const int v0 = fromPoly->v[link->e];
+ const int v1 = fromPoly->v[(link->e+1) % fromPoly->nv];
+ vcopy(left, &fromHeader->verts[v0*3]);
+ vcopy(right, &fromHeader->verts[v1*3]);
+ // If the link is at tile boundary, clamp the vertices to
+ // the link width.
+ if (link->side == 0 || link->side == 2)
+ {
+ // Unpack portal limits.
+ const float smin = min(left[2],right[2]);
+ const float smax = max(left[2],right[2]);
+ const float s = (smax-smin) / 255.0f;
+ const float lmin = smin + link->bmin*s;
+ const float lmax = smin + link->bmax*s;
+ left[2] = max(left[2],lmin);
+ left[2] = min(left[2],lmax);
+ right[2] = max(right[2],lmin);
+ right[2] = min(right[2],lmax);
+ }
+ else if (link->side == 1 || link->side == 3)
+ {
+ // Unpack portal limits.
+ const float smin = min(left[0],right[0]);
+ const float smax = max(left[0],right[0]);
+ const float s = (smax-smin) / 255.0f;
+ const float lmin = smin + link->bmin*s;
+ const float lmax = smin + link->bmax*s;
+ left[0] = max(left[0],lmin);
+ left[0] = min(left[0],lmax);
+ right[0] = max(right[0],lmin);
+ right[0] = min(right[0],lmax);
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+// Returns edge mid point between two polygons.
+bool dtTiledNavMesh::getEdgeMidPoint(dtTilePolyRef from, dtTilePolyRef to, float* mid) const
+{
+ float left[3], right[3];
+ if (!getPortalPoints(from, to, left,right)) return false;
+ mid[0] = (left[0]+right[0])*0.5f;
+ mid[1] = (left[1]+right[1])*0.5f;
+ mid[2] = (left[2]+right[2])*0.5f;
+ return true;
+}
+
+int dtTiledNavMesh::raycast(dtTilePolyRef centerRef, const float* startPos, const float* endPos,
+ float& t, dtTilePolyRef* path, const int pathSize)
+{
+ t = 0;
+
+ if (!centerRef || !getPolyByRef(centerRef))
+ return 0;
+
+ dtTilePolyRef curRef = centerRef;
+ float verts[DT_TILE_VERTS_PER_POLYGON*3];
+ int n = 0;
+
+ while (curRef)
+ {
+ // Cast ray against current polygon.
+
+ // The API input has been cheked already, skip checking internal data.
+ unsigned int salt, it, ip;
+ dtDecodeTileId(curRef, salt, it, ip);
+ const dtTileHeader* header = m_tiles[it].header;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ // Collect vertices.
+ int nv = 0;
+ for (int i = 0; i < (int)poly->nv; ++i)
+ {
+ vcopy(&verts[nv*3], &header->verts[poly->v[i]*3]);
+ nv++;
+ }
+ if (nv < 3)
+ {
+ // Hit bad polygon, report hit.
+ return n;
+ }
+
+ float tmin, tmax;
+ int segMin, segMax;
+ if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
+ {
+ // Could not hit the polygon, keep the old t and report hit.
+ return n;
+ }
+ // Keep track of furthest t so far.
+ if (tmax > t)
+ t = tmax;
+
+ if (n < pathSize)
+ path[n++] = curRef;
+
+ // Follow neighbours.
+ dtTilePolyRef nextRef = 0;
+ for (int i = 0; i < poly->nlinks; ++i)
+ {
+ const dtTileLink* link = &header->links[poly->links+i];
+ if ((int)link->e == segMax)
+ {
+ // If the link is internal, just return the ref.
+ if (link->side == 0xff)
+ {
+ nextRef = link->ref;
+ break;
+ }
+
+ // If the link is at tile boundary,
+ const int v0 = poly->v[link->e];
+ const int v1 = poly->v[(link->e+1) % poly->nv];
+ const float* left = &header->verts[v0*3];
+ const float* right = &header->verts[v1*3];
+
+ // Check that the intersection lies inside the link portal.
+ if (link->side == 0 || link->side == 2)
+ {
+ // Calculate link size.
+ const float smin = min(left[2],right[2]);
+ const float smax = max(left[2],right[2]);
+ const float s = (smax-smin) / 255.0f;
+ const float lmin = smin + link->bmin*s;
+ const float lmax = smin + link->bmax*s;
+ // Find Z intersection.
+ float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
+ if (z >= lmin && z <= lmax)
+ {
+ nextRef = link->ref;
+ break;
+ }
+ }
+ else if (link->side == 1 || link->side == 3)
+ {
+ // Calculate link size.
+ const float smin = min(left[0],right[0]);
+ const float smax = max(left[0],right[0]);
+ const float s = (smax-smin) / 255.0f;
+ const float lmin = smin + link->bmin*s;
+ const float lmax = smin + link->bmax*s;
+ // Find X intersection.
+ float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
+ if (x >= lmin && x <= lmax)
+ {
+ nextRef = link->ref;
+ break;
+ }
+ }
+ }
+ }
+
+ if (!nextRef)
+ {
+ // No neighbour, we hit a wall.
+ return n;
+ }
+
+ // No hit, advance to neighbour polygon.
+ curRef = nextRef;
+ }
+
+ return n;
+}
+
+int dtTiledNavMesh::findPolysAround(dtTilePolyRef centerRef, const float* centerPos, float radius,
+ dtTilePolyRef* resultRef, dtTilePolyRef* resultParent, float* resultCost,
+ const int maxResult)
+{
+ if (!centerRef) return 0;
+ if (!getPolyByRef(centerRef)) return 0;
+ if (!m_nodePool || !m_openList) return 0;
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ dtNode* startNode = m_nodePool->getNode(centerRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = 0;
+ startNode->id = centerRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ int n = 0;
+ if (n < maxResult)
+ {
+ if (resultRef)
+ resultRef[n] = startNode->id;
+ if (resultParent)
+ resultParent[n] = 0;
+ if (resultCost)
+ resultCost[n] = 0;
+ ++n;
+ }
+
+ const float radiusSqr = sqr(radius);
+
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+
+ // Get poly and tile.
+ unsigned int salt, it, ip;
+ dtDecodeTileId(bestNode->id, salt, it, ip);
+ // The API input has been cheked already, skip checking internal data.
+ const dtTileHeader* header = m_tiles[it].header;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ for (int i = 0; i < poly->nlinks; ++i)
+ {
+ const dtTileLink* link = &header->links[poly->links+i];
+ dtTilePolyRef neighbour = link->ref;
+ if (neighbour)
+ {
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ // Calc distance to the edge.
+ const float* va = &header->verts[poly->v[link->e]*3];
+ const float* vb = &header->verts[poly->v[(link->e+1)%poly->nv]*3];
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
+
+ // If the circle is not touching the next polygon, skip it.
+ if (distSqr > radiusSqr)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ // Cost
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, centerPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.total = parent->total + vdist(p0,p1);
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= ~DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->total = newNode.total;
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ if (n < maxResult)
+ {
+ if (resultRef)
+ resultRef[n] = actualNode->id;
+ if (resultParent)
+ resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
+ if (resultCost)
+ resultCost[n] = actualNode->total;
+ ++n;
+ }
+ actualNode->flags = DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ }
+ }
+
+ return n;
+}
+
+float dtTiledNavMesh::findDistanceToWall(dtTilePolyRef centerRef, const float* centerPos, float maxRadius,
+ float* hitPos, float* hitNormal)
+{
+ if (!centerRef) return 0;
+ if (!getPolyByRef(centerRef)) return 0;
+ if (!m_nodePool || !m_openList) return 0;
+
+ m_nodePool->clear();
+ m_openList->clear();
+
+ dtNode* startNode = m_nodePool->getNode(centerRef);
+ startNode->pidx = 0;
+ startNode->cost = 0;
+ startNode->total = 0;
+ startNode->id = centerRef;
+ startNode->flags = DT_NODE_OPEN;
+ m_openList->push(startNode);
+
+ float radiusSqr = sqr(maxRadius);
+
+ while (!m_openList->empty())
+ {
+ dtNode* bestNode = m_openList->pop();
+
+ // Get poly and tile.
+ unsigned int salt, it, ip;
+ dtDecodeTileId(bestNode->id, salt, it, ip);
+ // The API input has been cheked already, skip checking internal data.
+ const dtTileHeader* header = m_tiles[it].header;
+ const dtTilePoly* poly = &header->polys[ip];
+
+ // Hit test walls.
+ for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
+ {
+ // Skip non-solid edges.
+ if (poly->n[j] & 0x8000)
+ {
+ // Tile border.
+ bool solid = true;
+ for (int i = 0; i < poly->nlinks; ++i)
+ {
+ const dtTileLink* link = &header->links[poly->links+i];
+ if (link->e == j && link->ref != 0)
+ {
+ solid = false;
+ break;
+ }
+ }
+ if (!solid) continue;
+ }
+ else if (poly->n[j])
+ {
+ // Internal edge
+ continue;
+ }
+
+ // Calc distance to the edge.
+ const float* vj = &header->verts[poly->v[j]*3];
+ const float* vi = &header->verts[poly->v[i]*3];
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
+
+ // Edge is too far, skip.
+ if (distSqr > radiusSqr)
+ continue;
+
+ // Hit wall, update radius.
+ radiusSqr = distSqr;
+ // Calculate hit pos.
+ hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
+ hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
+ hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
+ }
+
+ for (int i = 0; i < poly->nlinks; ++i)
+ {
+ const dtTileLink* link = &header->links[poly->links+i];
+ dtTilePolyRef neighbour = link->ref;
+ if (neighbour)
+ {
+ // Skip parent node.
+ if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
+ continue;
+
+ // Calc distance to the edge.
+ const float* va = &header->verts[poly->v[link->e]*3];
+ const float* vb = &header->verts[poly->v[(link->e+1)%poly->nv]*3];
+ float tseg;
+ float distSqr = distancePtSegSqr2D(centerPos, va, vb, tseg);
+
+ // If the circle is not touching the next polygon, skip it.
+ if (distSqr > radiusSqr)
+ continue;
+
+ dtNode* parent = bestNode;
+ dtNode newNode;
+ newNode.pidx = m_nodePool->getNodeIdx(parent);
+ newNode.id = neighbour;
+
+ float p0[3], p1[3];
+ if (!parent->pidx)
+ vcopy(p0, centerPos);
+ else
+ getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
+ getEdgeMidPoint(parent->id, newNode.id, p1);
+ newNode.total = parent->total + vdist(p0,p1);
+
+ dtNode* actualNode = m_nodePool->getNode(newNode.id);
+ if (!actualNode)
+ continue;
+
+ if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
+ !((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
+ {
+ actualNode->flags &= ~DT_NODE_CLOSED;
+ actualNode->pidx = newNode.pidx;
+ actualNode->total = newNode.total;
+
+ if (actualNode->flags & DT_NODE_OPEN)
+ {
+ m_openList->modify(actualNode);
+ }
+ else
+ {
+ actualNode->flags = DT_NODE_OPEN;
+ m_openList->push(actualNode);
+ }
+ }
+ }
+ }
+ }
+
+ // Calc hit normal.
+ vsub(hitNormal, centerPos, hitPos);
+ vnormalize(hitNormal);
+
+ return sqrtf(radiusSqr);
+}
+
+const dtTilePoly* dtTiledNavMesh::getPolyByRef(dtTilePolyRef ref) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(ref, salt, it, ip);
+ if (it >= DT_MAX_TILES) return 0;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
+ if (ip >= (unsigned int)m_tiles[it].header->npolys) return 0;
+ return &m_tiles[it].header->polys[ip];
+}
+
+const float* dtTiledNavMesh::getPolyVertsByRef(dtTilePolyRef ref) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(ref, salt, it, ip);
+ if (it >= DT_MAX_TILES) return 0;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
+ if (ip >= (unsigned int)m_tiles[it].header->npolys) return 0;
+ return m_tiles[it].header->verts;
+}
+
+const dtTileLink* dtTiledNavMesh::getPolyLinksByRef(dtTilePolyRef ref) const
+{
+ unsigned int salt, it, ip;
+ dtDecodeTileId(ref, salt, it, ip);
+ if (it >= DT_MAX_TILES) return 0;
+ if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
+ if (ip >= (unsigned int)m_tiles[it].header->npolys) return 0;
+ return m_tiles[it].header->links;
+}