Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Include/Recast.h')
-rw-r--r--extern/recastnavigation/Recast/Include/Recast.h1297
1 files changed, 962 insertions, 335 deletions
diff --git a/extern/recastnavigation/Recast/Include/Recast.h b/extern/recastnavigation/Recast/Include/Recast.h
index f25ab47f8fa..4e20b0f0fff 100644
--- a/extern/recastnavigation/Recast/Include/Recast.h
+++ b/extern/recastnavigation/Recast/Include/Recast.h
@@ -1,5 +1,5 @@
//
-// Copyright (c) 2009 Mikko Mononen memon@inside.org
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
@@ -19,298 +19,685 @@
#ifndef RECAST_H
#define RECAST_H
-// The units of the parameters are specified in parenthesis as follows:
-// (vx) voxels, (wu) world units
-struct rcConfig
+/// The value of PI used by Recast.
+static const float RC_PI = 3.14159265f;
+
+/// Recast log categories.
+/// @see rcContext
+enum rcLogCategory
{
- int width, height; // Dimensions of the rasterized heighfield (vx)
- int tileSize; // Width and Height of a tile (vx)
- int borderSize; // Non-navigable Border around the heightfield (vx)
- float cs, ch; // Grid cell size and height (wu)
- float bmin[3], bmax[3]; // Grid bounds (wu)
- float walkableSlopeAngle; // Maximum walkble slope angle in degrees.
- int walkableHeight; // Minimum height where the agent can still walk (vx)
- int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
- int walkableRadius; // Radius of the agent in cells (vx)
- int maxEdgeLen; // Maximum contour edge length (vx)
- float maxSimplificationError; // Maximum distance error from contour to cells (vx)
- int minRegionSize; // Minimum regions size. Smaller regions will be deleted (vx)
- int mergeRegionSize; // Minimum regions size. Smaller regions will be merged (vx)
- int maxVertsPerPoly; // Max number of vertices per polygon
- float detailSampleDist; // Detail mesh sample spacing.
- float detailSampleMaxError; // Detail mesh simplification max sample error.
+ RC_LOG_PROGRESS = 1, ///< A progress log entry.
+ RC_LOG_WARNING, ///< A warning log entry.
+ RC_LOG_ERROR, ///< An error log entry.
};
-// Heightfield span.
-struct rcSpan
+/// Recast performance timer categories.
+/// @see rcContext
+enum rcTimerLabel
+{
+ /// The user defined total time of the build.
+ RC_TIMER_TOTAL,
+ /// A user defined build time.
+ RC_TIMER_TEMP,
+ /// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
+ RC_TIMER_RASTERIZE_TRIANGLES,
+ /// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
+ RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
+ /// The total time to build the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS,
+ /// The time to trace the boundaries of the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS_TRACE,
+ /// The time to simplify the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
+ /// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
+ RC_TIMER_FILTER_BORDER,
+ /// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
+ RC_TIMER_FILTER_WALKABLE,
+ /// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
+ RC_TIMER_MEDIAN_AREA,
+ /// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
+ RC_TIMER_FILTER_LOW_OBSTACLES,
+ /// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
+ RC_TIMER_BUILD_POLYMESH,
+ /// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
+ RC_TIMER_MERGE_POLYMESH,
+ /// The time to erode the walkable area. (See: #rcErodeWalkableArea)
+ RC_TIMER_ERODE_AREA,
+ /// The time to mark a box area. (See: #rcMarkBoxArea)
+ RC_TIMER_MARK_BOX_AREA,
+ /// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
+ RC_TIMER_MARK_CYLINDER_AREA,
+ /// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
+ RC_TIMER_MARK_CONVEXPOLY_AREA,
+ /// The total time to build the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD,
+ /// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD_DIST,
+ /// The time to blur the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
+ /// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
+ RC_TIMER_BUILD_REGIONS,
+ /// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_WATERSHED,
+ /// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_EXPAND,
+ /// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_FLOOD,
+ /// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
+ RC_TIMER_BUILD_REGIONS_FILTER,
+ /// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
+ RC_TIMER_BUILD_LAYERS,
+ /// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
+ RC_TIMER_BUILD_POLYMESHDETAIL,
+ /// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
+ RC_TIMER_MERGE_POLYMESHDETAIL,
+ /// The maximum number of timers. (Used for iterating timers.)
+ RC_MAX_TIMERS
+};
+
+/// Provides an interface for optional logging and performance tracking of the Recast
+/// build process.
+/// @ingroup recast
+class rcContext
+{
+public:
+
+ /// Contructor.
+ /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
+ inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
+ virtual ~rcContext() {}
+
+ /// Enables or disables logging.
+ /// @param[in] state TRUE if logging should be enabled.
+ inline void enableLog(bool state) { m_logEnabled = state; }
+
+ /// Clears all log entries.
+ inline void resetLog() { if (m_logEnabled) doResetLog(); }
+
+ /// Logs a message.
+ /// @param[in] category The category of the message.
+ /// @param[in] format The message.
+ void log(const rcLogCategory category, const char* format, ...);
+
+ /// Enables or disables the performance timers.
+ /// @param[in] state TRUE if timers should be enabled.
+ inline void enableTimer(bool state) { m_timerEnabled = state; }
+
+ /// Clears all peformance timers. (Resets all to unused.)
+ inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
+
+ /// Starts the specified performance timer.
+ /// @param label The category of timer.
+ inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
+
+ /// Stops the specified performance timer.
+ /// @param label The category of the timer.
+ inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
+
+ /// Returns the total accumulated time of the specified performance timer.
+ /// @param label The category of the timer.
+ /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
+ inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
+
+protected:
+
+ /// Clears all log entries.
+ virtual void doResetLog() {}
+
+ /// Logs a message.
+ /// @param[in] category The category of the message.
+ /// @param[in] msg The formatted message.
+ /// @param[in] len The length of the formatted message.
+ virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
+
+ /// Clears all timers. (Resets all to unused.)
+ virtual void doResetTimers() {}
+
+ /// Starts the specified performance timer.
+ /// @param[in] label The category of timer.
+ virtual void doStartTimer(const rcTimerLabel /*label*/) {}
+
+ /// Stops the specified performance timer.
+ /// @param[in] label The category of the timer.
+ virtual void doStopTimer(const rcTimerLabel /*label*/) {}
+
+ /// Returns the total accumulated time of the specified performance timer.
+ /// @param[in] label The category of the timer.
+ /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
+ virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
+
+ /// True if logging is enabled.
+ bool m_logEnabled;
+
+ /// True if the performance timers are enabled.
+ bool m_timerEnabled;
+};
+
+/// Specifies a configuration to use when performing Recast builds.
+/// @ingroup recast
+struct rcConfig
{
- unsigned int smin : 15; // Span min height.
- unsigned int smax : 15; // Span max height.
- unsigned int flags : 2; // Span flags.
- rcSpan* next; // Next span in column.
+ /// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
+ int width;
+
+ /// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
+ int height;
+
+ /// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
+ int tileSize;
+
+ /// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
+ int borderSize;
+
+ /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
+ float cs;
+
+ /// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
+ float ch;
+
+ /// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+ float bmin[3];
+
+ /// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+ float bmax[3];
+
+ /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
+ float walkableSlopeAngle;
+
+ /// Minimum floor to 'ceiling' height that will still allow the floor area to
+ /// be considered walkable. [Limit: >= 3] [Units: vx]
+ int walkableHeight;
+
+ /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
+ int walkableClimb;
+
+ /// The distance to erode/shrink the walkable area of the heightfield away from
+ /// obstructions. [Limit: >=0] [Units: vx]
+ int walkableRadius;
+
+ /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
+ int maxEdgeLen;
+
+ /// The maximum distance a simplfied contour's border edges should deviate
+ /// the original raw contour. [Limit: >=0] [Units: wu]
+ float maxSimplificationError;
+
+ /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
+ int minRegionArea;
+
+ /// Any regions with a span count smaller than this value will, if possible,
+ /// be merged with larger regions. [Limit: >=0] [Units: vx]
+ int mergeRegionArea;
+
+ /// The maximum number of vertices allowed for polygons generated during the
+ /// contour to polygon conversion process. [Limit: >= 3]
+ int maxVertsPerPoly;
+
+ /// Sets the sampling distance to use when generating the detail mesh.
+ /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
+ float detailSampleDist;
+
+ /// The maximum distance the detail mesh surface should deviate from heightfield
+ /// data. (For height detail only.) [Limit: >=0] [Units: wu]
+ float detailSampleMaxError;
};
+/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
+static const int RC_SPAN_HEIGHT_BITS = 13;
+/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
+static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
+
+/// The number of spans allocated per span spool.
+/// @see rcSpanPool
static const int RC_SPANS_PER_POOL = 2048;
-// Memory pool used for quick span allocation.
+/// Represents a span in a heightfield.
+/// @see rcHeightfield
+struct rcSpan
+{
+ unsigned int smin : 13; ///< The lower limit of the span. [Limit: < #smax]
+ unsigned int smax : 13; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
+ unsigned int area : 6; ///< The area id assigned to the span.
+ rcSpan* next; ///< The next span higher up in column.
+};
+
+/// A memory pool used for quick allocation of spans within a heightfield.
+/// @see rcHeightfield
struct rcSpanPool
{
- rcSpanPool* next; // Pointer to next pool.
- rcSpan items[1]; // Array of spans (size RC_SPANS_PER_POOL).
+ rcSpanPool* next; ///< The next span pool.
+ rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
};
-// Dynamic span-heightfield.
+/// A dynamic heightfield representing obstructed space.
+/// @ingroup recast
struct rcHeightfield
{
- inline rcHeightfield() : width(0), height(0), spans(0), pools(0), freelist(0) {}
- inline ~rcHeightfield()
- {
- // Delete span array.
- delete [] spans;
- // Delete span pools.
- while (pools)
- {
- rcSpanPool* next = pools->next;
- delete [] reinterpret_cast<unsigned char*>(pools);
- pools = next;
- }
- }
- int width, height; // Dimension of the heightfield.
- float bmin[3], bmax[3]; // Bounding box of the heightfield
- float cs, ch; // Cell size and height.
- rcSpan** spans; // Heightfield of spans (width*height).
- rcSpanPool* pools; // Linked list of span pools.
- rcSpan* freelist; // Pointer to next free span.
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ rcSpan** spans; ///< Heightfield of spans (width*height).
+ rcSpanPool* pools; ///< Linked list of span pools.
+ rcSpan* freelist; ///< The next free span.
};
+/// Provides information on the content of a cell column in a compact heightfield.
struct rcCompactCell
{
- unsigned int index : 24; // Index to first span in column.
- unsigned int count : 8; // Number of spans in this column.
+ unsigned int index : 24; ///< Index to the first span in the column.
+ unsigned int count : 8; ///< Number of spans in the column.
};
+/// Represents a span of unobstructed space within a compact heightfield.
struct rcCompactSpan
{
- unsigned short y; // Bottom coordinate of the span.
- unsigned short reg; // Region ID
- unsigned short dist; // Distance to border
- unsigned short con; // Connections to neighbour cells.
- unsigned char h; // Height of the span.
- unsigned char flags; // Flags.
+ unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
+ unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
+ unsigned int con : 24; ///< Packed neighbor connection data.
+ unsigned int h : 8; ///< The height of the span. (Measured from #y.)
};
-// Compact static heightfield.
+/// A compact, static heightfield representing unobstructed space.
+/// @ingroup recast
struct rcCompactHeightfield
{
- inline rcCompactHeightfield() : maxDistance(0), maxRegions(0), cells(0), spans(0) {}
- inline ~rcCompactHeightfield() { delete [] cells; delete [] spans; }
- int width, height; // Width and height of the heighfield.
- int spanCount; // Number of spans in the heightfield.
- int walkableHeight, walkableClimb; // Agent properties.
- unsigned short maxDistance; // Maximum distance value stored in heightfield.
- unsigned short maxRegions; // Maximum Region Id stored in heightfield.
- float bmin[3], bmax[3]; // Bounding box of the heightfield.
- float cs, ch; // Cell size and height.
- rcCompactCell* cells; // Pointer to width*height cells.
- rcCompactSpan* spans; // Pointer to spans.
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ int spanCount; ///< The number of spans in the heightfield.
+ int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
+ int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
+ int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
+ unsigned short maxDistance; ///< The maximum distance value of any span within the field.
+ unsigned short maxRegions; ///< The maximum region id of any span within the field.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
+ rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
+ unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
+ unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
+};
+
+/// Represents a heightfield layer within a layer set.
+/// @see rcHeightfieldLayerSet
+struct rcHeightfieldLayer
+{
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ int minx; ///< The minimum x-bounds of usable data.
+ int maxx; ///< The maximum x-bounds of usable data.
+ int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
+ int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
+ int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
+ int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
+ unsigned char* heights; ///< The heightfield. [Size: (width - borderSize*2) * (h - borderSize*2)]
+ unsigned char* areas; ///< Area ids. [Size: Same as #heights]
+ unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
+};
+
+/// Represents a set of heightfield layers.
+/// @ingroup recast
+/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
+struct rcHeightfieldLayerSet
+{
+ rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
+ int nlayers; ///< The number of layers in the set.
};
+/// Represents a simple, non-overlapping contour in field space.
struct rcContour
{
- inline rcContour() : verts(0), nverts(0), rverts(0), nrverts(0) { }
- inline ~rcContour() { delete [] verts; delete [] rverts; }
- int* verts; // Vertex coordinates, each vertex contains 4 components.
- int nverts; // Number of vertices.
- int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
- int nrverts; // Number of raw vertices.
- unsigned short reg; // Region ID of the contour.
+ int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
+ int nverts; ///< The number of vertices in the simplified contour.
+ int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
+ int nrverts; ///< The number of vertices in the raw contour.
+ unsigned short reg; ///< The region id of the contour.
+ unsigned char area; ///< The area id of the contour.
};
+/// Represents a group of related contours.
+/// @ingroup recast
struct rcContourSet
{
- inline rcContourSet() : conts(0), nconts(0) {}
- inline ~rcContourSet() { delete [] conts; }
- rcContour* conts; // Pointer to all contours.
- int nconts; // Number of contours.
- float bmin[3], bmax[3]; // Bounding box of the heightfield.
- float cs, ch; // Cell size and height.
+ rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
+ int nconts; ///< The number of contours in the set.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int width; ///< The width of the set. (Along the x-axis in cell units.)
+ int height; ///< The height of the set. (Along the z-axis in cell units.)
+ int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
};
-// Polymesh store a connected mesh of polygons.
-// The polygons are store in an array where each polygons takes
-// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
-// and the second 'nvp' elements are indices to neighbour polygons.
-// If a polygona has less than 'bvp' vertices, the remaining indices
-// are set os 0xffff. If an polygon edge does not have a neighbour
-// the neighbour index is set to 0xffff.
-// Vertices can be transformed into world space as follows:
-// x = bmin[0] + verts[i*3+0]*cs;
-// y = bmin[1] + verts[i*3+1]*ch;
-// z = bmin[2] + verts[i*3+2]*cs;
+/// Represents a polygon mesh suitable for use in building a navigation mesh.
+/// @ingroup recast
struct rcPolyMesh
-{
- inline rcPolyMesh() : verts(0), polys(0), regs(0), nverts(0), npolys(0), nvp(3) {}
- inline ~rcPolyMesh() { delete [] verts; delete [] polys; delete [] regs; }
- unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
- unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
- unsigned short* regs; // Regions of the polygons.
- int nverts; // Number of vertices.
- int npolys; // Number of polygons.
- int nvp; // Max number of vertices per polygon.
- float bmin[3], bmax[3]; // Bounding box of the mesh.
- float cs, ch; // Cell size and height.
+{
+ unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
+ unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
+ unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
+ unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
+ unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
+ int nverts; ///< The number of vertices.
+ int npolys; ///< The number of polygons.
+ int maxpolys; ///< The number of allocated polygons.
+ int nvp; ///< The maximum number of vertices per polygon.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
};
-// Detail mesh generated from a rcPolyMesh.
-// Each submesh represents a polygon in the polymesh and they are stored in
-// excatly same order. Each submesh is described as 4 values:
-// base vertex, vertex count, base triangle, triangle count. That is,
-// const unsigned char* t = &dtl.tris[(tbase+i)*3]; and
-// const float* v = &dtl.verts[(vbase+t[j])*3];
-// If the input polygon has 'n' vertices, those vertices are first in the
-// submesh vertex list. This allows to compres the mesh by not storing the
-// first vertices and using the polymesh vertices instead.
-
+/// Contains triangle meshes that represent detailed height data associated
+/// with the polygons in its associated polygon mesh object.
+/// @ingroup recast
struct rcPolyMeshDetail
{
- inline rcPolyMeshDetail() :
- meshes(0), verts(0), tris(0),
- nmeshes(0), nverts(0), ntris(0) {}
- inline ~rcPolyMeshDetail()
- {
- delete [] meshes; delete [] verts; delete [] tris;
- }
-
- unsigned short* meshes; // Pointer to all mesh data.
- float* verts; // Pointer to all vertex data.
- unsigned char* tris; // Pointer to all triangle data.
- int nmeshes; // Number of meshes.
- int nverts; // Number of total vertices.
- int ntris; // Number of triangles.
+ unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
+ float* verts; ///< The mesh vertices. [Size: 3*#nverts]
+ unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
+ int nmeshes; ///< The number of sub-meshes defined by #meshes.
+ int nverts; ///< The number of vertices in #verts.
+ int ntris; ///< The number of triangles in #tris.
};
+/// @name Allocation Functions
+/// Functions used to allocate and de-allocate Recast objects.
+/// @see rcAllocSetCustom
+/// @{
-// Simple dynamic array ints.
-class rcIntArray
-{
- int* m_data;
- int m_size, m_cap;
-public:
- inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
- inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(n) { m_data = new int[n]; }
- inline ~rcIntArray() { delete [] m_data; }
- void resize(int n);
- inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
- inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
- inline const int& operator[](int i) const { return m_data[i]; }
- inline int& operator[](int i) { return m_data[i]; }
- inline int size() const { return m_size; }
-};
+/// Allocates a heightfield object using the Recast allocator.
+/// @return A heightfield that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcCreateHeightfield, rcFreeHeightField
+rcHeightfield* rcAllocHeightfield();
-enum rcSpanFlags
-{
- RC_WALKABLE = 0x01,
- RC_REACHABLE = 0x02,
-};
+/// Frees the specified heightfield object using the Recast allocator.
+/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
+/// @ingroup recast
+/// @see rcAllocHeightfield
+void rcFreeHeightField(rcHeightfield* hf);
+
+/// Allocates a compact heightfield object using the Recast allocator.
+/// @return A compact heightfield that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
+rcCompactHeightfield* rcAllocCompactHeightfield();
+
+/// Frees the specified compact heightfield object using the Recast allocator.
+/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
+/// @ingroup recast
+/// @see rcAllocCompactHeightfield
+void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
+
+/// Allocates a heightfield layer set using the Recast allocator.
+/// @return A heightfield layer set that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
+rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
+
+/// Frees the specified heightfield layer set using the Recast allocator.
+/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
+/// @ingroup recast
+/// @see rcAllocHeightfieldLayerSet
+void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
+
+/// Allocates a contour set object using the Recast allocator.
+/// @return A contour set that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildContours, rcFreeContourSet
+rcContourSet* rcAllocContourSet();
+
+/// Frees the specified contour set using the Recast allocator.
+/// @param[in] cset A contour set allocated using #rcAllocContourSet
+/// @ingroup recast
+/// @see rcAllocContourSet
+void rcFreeContourSet(rcContourSet* cset);
+
+/// Allocates a polygon mesh object using the Recast allocator.
+/// @return A polygon mesh that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildPolyMesh, rcFreePolyMesh
+rcPolyMesh* rcAllocPolyMesh();
+
+/// Frees the specified polygon mesh using the Recast allocator.
+/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
+/// @ingroup recast
+/// @see rcAllocPolyMesh
+void rcFreePolyMesh(rcPolyMesh* pmesh);
+
+/// Allocates a detail mesh object using the Recast allocator.
+/// @return A detail mesh that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
+rcPolyMeshDetail* rcAllocPolyMeshDetail();
+
+/// Frees the specified detail mesh using the Recast allocator.
+/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail
+/// @ingroup recast
+/// @see rcAllocPolyMeshDetail
+void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
-// If heightfield region ID has the following bit set, the region is on border area
-// and excluded from many calculations.
+/// @}
+
+/// Heighfield border flag.
+/// If a heightfield region ID has this bit set, then the region is a border
+/// region and its spans are considered unwalkable.
+/// (Used during the region and contour build process.)
+/// @see rcCompactSpan::reg
static const unsigned short RC_BORDER_REG = 0x8000;
-// If contour region ID has the following bit set, the vertex will be later
-// removed in order to match the segments and vertices at tile boundaries.
+/// Border vertex flag.
+/// If a region ID has this bit set, then the associated element lies on
+/// a tile border. If a contour vertex's region ID has this bit set, the
+/// vertex will later be removed in order to match the segments and vertices
+/// at tile boundaries.
+/// (Used during the build process.)
+/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_BORDER_VERTEX = 0x10000;
-// Compact span neighbour helpers.
-inline int rcGetCon(const rcCompactSpan& s, int dir)
-{
- return (s.con >> (dir*4)) & 0xf;
-}
+/// Area border flag.
+/// If a region ID has this bit set, then the associated element lies on
+/// the border of an area.
+/// (Used during the region and contour build process.)
+/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
+static const int RC_AREA_BORDER = 0x20000;
-inline int rcGetDirOffsetX(int dir)
+/// Contour build flags.
+/// @see rcBuildContours
+enum rcBuildContoursFlags
{
- const int offset[4] = { -1, 0, 1, 0, };
- return offset[dir&0x03];
-}
+ RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification.
+ RC_CONTOUR_TESS_AREA_EDGES = 0x02, ///< Tessellate edges between areas during contour simplification.
+};
-inline int rcGetDirOffsetY(int dir)
-{
- const int offset[4] = { 0, 1, 0, -1 };
- return offset[dir&0x03];
-}
+/// Applied to the region id field of contour vertices in order to extract the region id.
+/// The region id field of a vertex may have several flags applied to it. So the
+/// fields value can't be used directly.
+/// @see rcContour::verts, rcContour::rverts
+static const int RC_CONTOUR_REG_MASK = 0xffff;
+
+/// An value which indicates an invalid index within a mesh.
+/// @note This does not necessarily indicate an error.
+/// @see rcPolyMesh::polys
+static const unsigned short RC_MESH_NULL_IDX = 0xffff;
+
+/// Represents the null area.
+/// When a data element is given this value it is considered to no longer be
+/// assigned to a usable area. (E.g. It is unwalkable.)
+static const unsigned char RC_NULL_AREA = 0;
+
+/// The default area id used to indicate a walkable polygon.
+/// This is also the maximum allowed area id, and the only non-null area id
+/// recognized by some steps in the build process.
+static const unsigned char RC_WALKABLE_AREA = 63;
+
+/// The value returned by #rcGetCon if the specified direction is not connected
+/// to another span. (Has no neighbor.)
+static const int RC_NOT_CONNECTED = 0x3f;
+
+/// @name General helper functions
+/// @{
-// Common helper functions
+/// Swaps the values of the two parameters.
+/// @param[in,out] a Value A
+/// @param[in,out] b Value B
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
+
+/// Returns the minimum of two values.
+/// @param[in] a Value A
+/// @param[in] b Value B
+/// @return The minimum of the two values.
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
+
+/// Returns the maximum of two values.
+/// @param[in] a Value A
+/// @param[in] b Value B
+/// @return The maximum of the two values.
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
+
+/// Returns the absolute value.
+/// @param[in] a The value.
+/// @return The absolute value of the specified value.
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
+
+/// Return the square of a value.
+/// @param[in] a The value.
+/// @return The square of the value.
template<class T> inline T rcSqr(T a) { return a*a; }
+
+/// Clamps the value to the specified range.
+/// @param[in] v The value to clamp.
+/// @param[in] mn The minimum permitted return value.
+/// @param[in] mx The maximum permitted return value.
+/// @return The value, clamped to the specified range.
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
-// Common vector helper functions.
-inline void vcross(float* dest, const float* v1, const float* v2)
+/// Returns the square root of the value.
+/// @param[in] x The value.
+/// @return The square root of the vlaue.
+float rcSqrt(float x);
+
+/// Not documented. Internal use only.
+/// @param[in] x Not documented.
+/// @return Not documented.
+inline int rcAlign4(int x) { return (x+3) & ~3; }
+
+/// @}
+/// @name Vector helper functions.
+/// @{
+
+/// Derives the cross product of two vectors. (v1 x v2)
+/// @param[out] dest The cross product. [(x, y, z)]
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
+inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
- dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
+ dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
-inline float vdot(const float* v1, const float* v2)
+/// Derives the dot product of two vectors. (v1 . v2)
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
+/// @return The dot product.
+inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
-inline void vmad(float* dest, const float* v1, const float* v2, const float s)
+/// Performs a scaled vector addition. (v1 + (v2 * s))
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector [(x, y, z)]
+/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
+/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
+inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
-inline void vadd(float* dest, const float* v1, const float* v2)
+/// Performs a vector addition. (@p v1 + @p v2)
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector [(x, y, z)]
+/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
+inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
-inline void vsub(float* dest, const float* v1, const float* v2)
+/// Performs a vector subtraction. (@p v1 - @p v2)
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector [(x, y, z)]
+/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
+inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
-inline void vmin(float* mn, const float* v)
+/// Selects the minimum value of each element from the specified vectors.
+/// @param[in, out] mn A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
+inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
-inline void vmax(float* mx, const float* v)
+/// Selects the maximum value of each element from the specified vectors.
+/// @param[in, out] mx A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
+inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
-inline void vcopy(float* dest, const float* v)
+/// Performs a vector copy.
+/// @param[out] dest The result. [(x, y, z)]
+/// @param[in] v The vector to copy [(x, y, z)]
+inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
-inline float vdist(const float* v1, const float* v2)
+/// Returns the distance between two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The distance between the two points.
+inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
- return sqrtf(dx*dx + dy*dy + dz*dz);
+ return rcSqrt(dx*dx + dy*dy + dz*dz);
}
-inline float vdistSqr(const float* v1, const float* v2)
+/// Returns the square of the distance between two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The square of the distance between the two points.
+inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
@@ -318,184 +705,424 @@ inline float vdistSqr(const float* v1, const float* v2)
return dx*dx + dy*dy + dz*dz;
}
-inline void vnormalize(float* v)
+/// Normalizes the vector.
+/// @param[in,out] v The vector to normalize. [(x, y, z)]
+inline void rcVnormalize(float* v)
{
- float d = 1.0f / sqrtf(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
+ float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
-inline bool vequal(const float* p0, const float* p1)
+/// Not documented. Internal use only.
+/// @param[in] p0 Not documented.
+/// @param[in] p1 Not documented.
+/// @return Not documented.
+inline bool rcVequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
- const float d = vdistSqr(p0, p1);
+ const float d = rcVdistSqr(p0, p1);
return d < thr;
}
+/// @}
+/// @name Heightfield Functions
+/// @see rcHeightfield
+/// @{
-// Calculated bounding box of array of vertices.
-// Params:
-// verts - (in) array of vertices
-// nv - (in) vertex count
-// bmin, bmax - (out) bounding box
+/// Calculates the bounding box of an array of vertices.
+/// @ingroup recast
+/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices in the @p verts array.
+/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
-// Calculates grid size based on bounding box and grid cell size.
-// Params:
-// bmin, bmax - (in) bounding box
-// cs - (in) grid cell size
-// w - (out) grid width
-// h - (out) grid height
+/// Calculates the grid size based on the bounding box and grid cell size.
+/// @ingroup recast
+/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu]
+/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx]
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
-// Creates and initializes new heightfield.
-// Params:
-// hf - (in/out) heightfield to initialize.
-// width - (in) width of the heightfield.
-// height - (in) height of the heightfield.
-// bmin, bmax - (in) bounding box of the heightfield
-// cs - (in) grid cell size
-// ch - (in) grid cell height
-bool rcCreateHeightfield(rcHeightfield& hf, int width, int height,
+/// Initializes a new heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf The allocated heightfield to initialize.
+/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
+/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
+bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
-// Sets the WALKABLE flag for every triangle whose slope is below
-// the maximun walkable slope angle.
-// Params:
-// walkableSlopeAngle - (in) maximun slope angle in degrees.
-// verts - (in) array of vertices
-// nv - (in) vertex count
-// tris - (in) array of triangle vertex indices
-// nt - (in) triangle count
-// flags - (out) array of triangle flags
-void rcMarkWalkableTriangles(const float walkableSlopeAngle,
- const float* verts, int nv,
- const int* tris, int nt,
- unsigned char* flags);
-
-// Rasterizes a triangle into heightfield spans.
-// Params:
-// v0,v1,v2 - (in) the vertices of the triangle.
-// flags - (in) triangle flags (uses WALKABLE)
-// solid - (in) heighfield where the triangle is rasterized
-void rcRasterizeTriangle(const float* v0, const float* v1, const float* v2,
- unsigned char flags, rcHeightfield& solid);
-
-// Rasterizes the triangles into heightfield spans.
-// Params:
-// verts - (in) array of vertices
-// nv - (in) vertex count
-// tris - (in) array of triangle vertex indices
-// norms - (in) array of triangle normals
-// flags - (in) array of triangle flags (uses WALKABLE)
-// nt - (in) triangle count
-// solid - (in) heighfield where the triangles are rasterized
-void rcRasterizeTriangles(const float* verts, int nv,
- const int* tris, const unsigned char* flags, int nt,
- rcHeightfield& solid);
-
-// Removes WALKABLE flag from all spans that are at ledges. This filtering
-// removes possible overestimation of the conservative voxelization so that
-// the resulting mesh will not have regions hanging in air over ledges.
-// Params:
-// walkableHeight - (in) minimum height where the agent can still walk
-// walkableClimb - (in) maximum height between grid cells the agent can climb
-// solid - (in/out) heightfield describing the solid space
-void rcFilterLedgeSpans(const int walkableHeight,
- const int walkableClimb,
- rcHeightfield& solid);
-
-// Removes WALKABLE flag from all spans which have smaller than
-// 'walkableHeight' clearane above them.
-// Params:
-// walkableHeight - (in) minimum height where the agent can still walk
-// solid - (in/out) heightfield describing the solid space
-void rcFilterWalkableLowHeightSpans(int walkableHeight,
- rcHeightfield& solid);
-
-// Marks spans which are reachable from any of the topmost spans.
-// Params:
-// walkableHeight - (in) minimum height where the agent can still walk
-// walkableClimb - (in) maximum height between grid cells the agent can climb
-// solid - (in/out) heightfield describing the solid space
-// Returns false if operation ran out of memory.
-bool rcMarkReachableSpans(const int walkableHeight,
- const int walkableClimb,
- rcHeightfield& solid);
-
-// Builds compact representation of the heightfield.
-// Params:
-// walkableHeight - (in) minimum height where the agent can still walk
-// walkableClimb - (in) maximum height between grid cells the agent can climb
-// hf - (in) heightfield to be compacted
-// chf - (out) compact heightfield representing the open space.
-// Returns false if operation ran out of memory.
-bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
- unsigned char flags,
- rcHeightfield& hf,
- rcCompactHeightfield& chf);
-
-// Builds distance field and stores it into the combat heightfield.
-// Params:
-// chf - (in/out) compact heightfield representing the open space.
-// Returns false if operation ran out of memory.
-bool rcBuildDistanceField(rcCompactHeightfield& chf);
-
-// Divides the walkable heighfied into simple regions.
-// Each region has only one contour and no overlaps.
-// The regions are stored in the compact heightfield 'reg' field.
-// The regions will be shrinked by the radius of the agent.
-// The process sometimes creates small regions. The parameter
-// 'minRegionSize' specifies the smallest allowed regions size.
-// If the area of a regions is smaller than allowed, the regions is
-// removed or merged to neighbour region.
-// Params:
-// chf - (in/out) compact heightfield representing the open space.
-// walkableRadius - (in) the radius of the agent.
-// minRegionSize - (in) the smallest allowed regions size.
-// maxMergeRegionSize - (in) the largest allowed regions size which can be merged.
-// Returns false if operation ran out of memory.
-bool rcBuildRegions(rcCompactHeightfield& chf,
- int walkableRadius, int borderSize,
- int minRegionSize, int mergeRegionSize);
-
-// Builds simplified contours from the regions outlines.
-// Params:
-// chf - (in) compact heightfield which has regions set.
-// maxError - (in) maximum allowed distance between simplified countour and cells.
-// maxEdgeLen - (in) maximum allowed contour edge length in cells.
-// cset - (out) Resulting contour set.
-// Returns false if operation ran out of memory.
-bool rcBuildContours(rcCompactHeightfield& chf,
+/// Sets the area id of all triangles with a slope below the specified value
+/// to #RC_WALKABLE_AREA.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. [Limits: 0 <= value < 90]
+/// [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
+ const int* tris, int nt, unsigned char* areas);
+
+/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. [Limits: 0 <= value < 90]
+/// [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
+ const int* tris, int nt, unsigned char* areas);
+
+/// Adds a span to the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf An initialized heightfield.
+/// @param[in] x The width index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::width]
+/// @param[in] y The height index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::height]
+/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx]
+/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
+/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
+/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx]
+void rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
+ const unsigned short smin, const unsigned short smax,
+ const unsigned char area, const int flagMergeThr);
+
+/// Rasterizes a triangle into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
+/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
+/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
+/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in, out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
+ const unsigned char area, rcHeightfield& solid,
+ const int flagMergeThr = 1);
+
+/// Rasterizes an indexed triangle mesh into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in, out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+ const int* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Rasterizes an indexed triangle mesh into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in, out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+ const unsigned short* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Rasterizes triangles into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in, out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neihbor.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
+
+/// Marks spans that are ledges as not-walkable.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
+ const int walkableClimb, rcHeightfield& solid);
+
+/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
+
+/// Returns the number of spans contained in the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] hf An initialized heightfield.
+/// @returns The number of spans in the heightfield.
+int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
+
+/// @}
+/// @name Compact Heightfield Functions
+/// @see rcCompactHeightfield
+/// @{
+
+/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] hf The heightfield to be compacted.
+/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
+ rcHeightfield& hf, rcCompactHeightfield& chf);
+
+/// Erodes the walkable area within the heightfield by the specified radius.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
+/// @param[in,out] chf The populated compact heightfield to erode.
+/// @returns True if the operation completed successfully.
+bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
+
+/// Applies a median filter to walkable area types (based on area id), removing noise.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @returns True if the operation completed successfully.
+bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
+
+/// Applies an area id to all spans within the specified bounding box. (AABB)
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
+/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Applies the area id to the all spans within the specified convex polygon.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
+/// @param[in] nverts The number of vertices in the polygon.
+/// @param[in] hmin The height of the base of the polygon.
+/// @param[in] hmax The height of the top of the polygon.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
+ const float hmin, const float hmax, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Applies the area id to all spans within the specified cylinder.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
+/// @param[in] r The radius of the cylinder.
+/// @param[in] h The height of the cylinder.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkCylinderArea(rcContext* ctx, const float* pos,
+ const float r, const float h, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Builds the distance field for the specified compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @returns True if the operation completed successfully.
+bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
+
+/// Builds region data for the heightfield using watershed partitioning.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. [Limit: >=0]
+/// [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea);
+
+/// Builds region data for the heightfield using simple monotone partitioning.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. [Limit: >=0]
+/// [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea);
+
+
+/// Sets the neighbor connection data for the specified direction.
+/// @param[in] s The span to update.
+/// @param[in] dir The direction to set. [Limits: 0 <= value < 4]
+/// @param[in] i The index of the neighbor span.
+inline void rcSetCon(rcCompactSpan& s, int dir, int i)
+{
+ const unsigned int shift = (unsigned int)dir*6;
+ unsigned int con = s.con;
+ s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
+}
+
+/// Gets neighbor connection data for the specified direction.
+/// @param[in] s The span to check.
+/// @param[in] dir The direction to check. [Limits: 0 <= value < 4]
+/// @return The neighbor connection data for the specified direction,
+/// or #RC_NOT_CONNECTED if there is no connection.
+inline int rcGetCon(const rcCompactSpan& s, int dir)
+{
+ const unsigned int shift = (unsigned int)dir*6;
+ return (s.con >> shift) & 0x3f;
+}
+
+/// Gets the standard width (x-axis) offset for the specified direction.
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @return The width offset to apply to the current cell position to move
+/// in the direction.
+inline int rcGetDirOffsetX(int dir)
+{
+ const int offset[4] = { -1, 0, 1, 0, };
+ return offset[dir&0x03];
+}
+
+/// Gets the standard height (z-axis) offset for the specified direction.
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @return The height offset to apply to the current cell position to move
+/// in the direction.
+inline int rcGetDirOffsetY(int dir)
+{
+ const int offset[4] = { 0, 1, 0, -1 };
+ return offset[dir&0x03];
+}
+
+/// @}
+/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
+/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
+/// @{
+
+/// Builds a layer set from the specified compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
+/// [Units: vx]
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int walkableHeight,
+ rcHeightfieldLayerSet& lset);
+
+/// Builds a contour set from the region outlines in the provided compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate
+/// the original raw contour. [Limit: >=0] [Units: wu]
+/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
+/// [Limit: >=0] [Units: vx]
+/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
+/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
+/// @returns True if the operation completed successfully.
+bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
- rcContourSet& cset);
-
-// Builds connected convex polygon mesh from contour polygons.
-// Params:
-// cset - (in) contour set.
-// nvp - (in) maximum number of vertices per polygon.
-// mesh - (out) poly mesh.
-// Returns false if operation ran out of memory.
-bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh);
-
-bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
-
-// Builds detail triangle mesh for each polygon in the poly mesh.
-// Params:
-// mesh - (in) poly mesh to detail.
-// chf - (in) compacy height field, used to query height for new vertices.
-// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
-// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
-// pmdtl - (out) detail mesh.
-// Returns false if operation ran out of memory.
-bool rcBuildPolyMeshDetail(const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
+ rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
+
+/// Builds a polygon mesh from the provided contours.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] cset A fully built contour set.
+/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
+/// contour to polygon conversion process. [Limit: >= 3]
+/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
+
+/// Merges multiple polygon meshes into a single mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of polygon meshes in the meshes array.
+/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
+
+/// Builds a detail mesh from the provided polygon mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] mesh A fully built polygon mesh.
+/// @param[in] chf The compact heightfield used to build the polygon mesh.
+/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
+/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
+/// heightfield data. [Limit: >=0] [Units: wu]
+/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
-bool rcMergePolyMeshDetails(rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
+/// Merges multiple detail meshes into a single detail mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of detail meshes in the meshes array.
+/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
bool buildMeshAdjacency(unsigned short* polys, const int npolys, const int nverts, const int vertsPerPoly);
+/// @}
+
#endif // RECAST_H
+
+///////////////////////////////////////////////////////////////////////////
+
+// Due to the large amount of detail documentation for this file,
+// the content normally located at the end of the header file has been separated
+// out to a file in /Docs/Extern.