Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Include/Recast.h')
-rw-r--r--extern/recastnavigation/Recast/Include/Recast.h822
1 files changed, 444 insertions, 378 deletions
diff --git a/extern/recastnavigation/Recast/Include/Recast.h b/extern/recastnavigation/Recast/Include/Recast.h
index 4e20b0f0fff..6f18247d527 100644
--- a/extern/recastnavigation/Recast/Include/Recast.h
+++ b/extern/recastnavigation/Recast/Include/Recast.h
@@ -15,7 +15,7 @@
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
-
+
#ifndef RECAST_H
#define RECAST_H
@@ -27,8 +27,8 @@ static const float RC_PI = 3.14159265f;
enum rcLogCategory
{
RC_LOG_PROGRESS = 1, ///< A progress log entry.
- RC_LOG_WARNING, ///< A warning log entry.
- RC_LOG_ERROR, ///< An error log entry.
+ RC_LOG_WARNING, ///< A warning log entry.
+ RC_LOG_ERROR, ///< An error log entry.
};
/// Recast performance timer categories.
@@ -86,7 +86,7 @@ enum rcTimerLabel
/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
RC_TIMER_BUILD_REGIONS_FILTER,
/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
- RC_TIMER_BUILD_LAYERS,
+ RC_TIMER_BUILD_LAYERS,
/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
RC_TIMER_BUILD_POLYMESHDETAIL,
/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
@@ -95,7 +95,7 @@ enum rcTimerLabel
RC_MAX_TIMERS
};
-/// Provides an interface for optional logging and performance tracking of the Recast
+/// Provides an interface for optional logging and performance tracking of the Recast
/// build process.
/// @ingroup recast
class rcContext
@@ -103,39 +103,39 @@ class rcContext
public:
/// Contructor.
- /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
+ /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
/// Enables or disables logging.
- /// @param[in] state TRUE if logging should be enabled.
+ /// @param[in] state TRUE if logging should be enabled.
inline void enableLog(bool state) { m_logEnabled = state; }
/// Clears all log entries.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
/// Logs a message.
- /// @param[in] category The category of the message.
- /// @param[in] format The message.
+ /// @param[in] category The category of the message.
+ /// @param[in] format The message.
void log(const rcLogCategory category, const char* format, ...);
/// Enables or disables the performance timers.
- /// @param[in] state TRUE if timers should be enabled.
+ /// @param[in] state TRUE if timers should be enabled.
inline void enableTimer(bool state) { m_timerEnabled = state; }
/// Clears all peformance timers. (Resets all to unused.)
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
/// Starts the specified performance timer.
- /// @param label The category of timer.
+ /// @param label The category of the timer.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
/// Stops the specified performance timer.
- /// @param label The category of the timer.
+ /// @param label The category of the timer.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
/// Returns the total accumulated time of the specified performance timer.
- /// @param label The category of the timer.
+ /// @param label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
@@ -145,27 +145,27 @@ protected:
virtual void doResetLog() {}
/// Logs a message.
- /// @param[in] category The category of the message.
- /// @param[in] msg The formatted message.
- /// @param[in] len The length of the formatted message.
+ /// @param[in] category The category of the message.
+ /// @param[in] msg The formatted message.
+ /// @param[in] len The length of the formatted message.
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
/// Clears all timers. (Resets all to unused.)
virtual void doResetTimers() {}
/// Starts the specified performance timer.
- /// @param[in] label The category of timer.
+ /// @param[in] label The category of timer.
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
/// Stops the specified performance timer.
- /// @param[in] label The category of the timer.
+ /// @param[in] label The category of the timer.
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
/// Returns the total accumulated time of the specified performance timer.
- /// @param[in] label The category of the timer.
+ /// @param[in] label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
-
+
/// True if logging is enabled.
bool m_logEnabled;
@@ -173,6 +173,26 @@ protected:
bool m_timerEnabled;
};
+/// A helper to first start a timer and then stop it when this helper goes out of scope.
+/// @see rcContext
+class rcScopedTimer
+{
+public:
+ /// Constructs an instance and starts the timer.
+ /// @param[in] ctx The context to use.
+ /// @param[in] label The category of the timer.
+ inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
+ inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }
+
+private:
+ // Explicitly disabled copy constructor and copy assignment operator.
+ rcScopedTimer(const rcScopedTimer&);
+ rcScopedTimer& operator=(const rcScopedTimer&);
+
+ rcContext* const m_ctx;
+ const rcTimerLabel m_label;
+};
+
/// Specifies a configuration to use when performing Recast builds.
/// @ingroup recast
struct rcConfig
@@ -181,71 +201,71 @@ struct rcConfig
int width;
/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
- int height;
-
+ int height;
+
/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
- int tileSize;
-
+ int tileSize;
+
/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
int borderSize;
- /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
+ /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
float cs;
/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
float ch;
/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
- float bmin[3];
+ float bmin[3];
/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
float bmax[3];
- /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
+ /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
float walkableSlopeAngle;
- /// Minimum floor to 'ceiling' height that will still allow the floor area to
- /// be considered walkable. [Limit: >= 3] [Units: vx]
- int walkableHeight;
-
- /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
- int walkableClimb;
-
- /// The distance to erode/shrink the walkable area of the heightfield away from
- /// obstructions. [Limit: >=0] [Units: vx]
- int walkableRadius;
-
- /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
- int maxEdgeLen;
-
- /// The maximum distance a simplfied contour's border edges should deviate
- /// the original raw contour. [Limit: >=0] [Units: wu]
- float maxSimplificationError;
-
- /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
- int minRegionArea;
-
- /// Any regions with a span count smaller than this value will, if possible,
- /// be merged with larger regions. [Limit: >=0] [Units: vx]
- int mergeRegionArea;
-
- /// The maximum number of vertices allowed for polygons generated during the
- /// contour to polygon conversion process. [Limit: >= 3]
+ /// Minimum floor to 'ceiling' height that will still allow the floor area to
+ /// be considered walkable. [Limit: >= 3] [Units: vx]
+ int walkableHeight;
+
+ /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
+ int walkableClimb;
+
+ /// The distance to erode/shrink the walkable area of the heightfield away from
+ /// obstructions. [Limit: >=0] [Units: vx]
+ int walkableRadius;
+
+ /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
+ int maxEdgeLen;
+
+ /// The maximum distance a simplfied contour's border edges should deviate
+ /// the original raw contour. [Limit: >=0] [Units: vx]
+ float maxSimplificationError;
+
+ /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
+ int minRegionArea;
+
+ /// Any regions with a span count smaller than this value will, if possible,
+ /// be merged with larger regions. [Limit: >=0] [Units: vx]
+ int mergeRegionArea;
+
+ /// The maximum number of vertices allowed for polygons generated during the
+ /// contour to polygon conversion process. [Limit: >= 3]
int maxVertsPerPoly;
-
+
/// Sets the sampling distance to use when generating the detail mesh.
- /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
+ /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
float detailSampleDist;
-
+
/// The maximum distance the detail mesh surface should deviate from heightfield
- /// data. (For height detail only.) [Limit: >=0] [Units: wu]
+ /// data. (For height detail only.) [Limit: >=0] [Units: wu]
float detailSampleMaxError;
};
/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
-static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
+static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;
/// The number of spans allocated per span spool.
/// @see rcSpanPool
@@ -255,10 +275,10 @@ static const int RC_SPANS_PER_POOL = 2048;
/// @see rcHeightfield
struct rcSpan
{
- unsigned int smin : 13; ///< The lower limit of the span. [Limit: < #smax]
- unsigned int smax : 13; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
- unsigned int area : 6; ///< The area id assigned to the span.
- rcSpan* next; ///< The next span higher up in column.
+ unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
+ unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
+ unsigned int area : 6; ///< The area id assigned to the span.
+ rcSpan* next; ///< The next span higher up in column.
};
/// A memory pool used for quick allocation of spans within a heightfield.
@@ -273,18 +293,18 @@ struct rcSpanPool
/// @ingroup recast
struct rcHeightfield
{
- int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
- float cs; ///< The size of each cell. (On the xz-plane.)
+ float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcSpan** spans; ///< Heightfield of spans (width*height).
rcSpanPool* pools; ///< Linked list of span pools.
rcSpan* freelist; ///< The next free span.
};
-/// Provides information on the content of a cell column in a compact heightfield.
+/// Provides information on the content of a cell column in a compact heightfield.
struct rcCompactCell
{
unsigned int index : 24; ///< Index to the first span in the column.
@@ -295,7 +315,7 @@ struct rcCompactCell
struct rcCompactSpan
{
unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
- unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
+ unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
unsigned int con : 24; ///< Packed neighbor connection data.
unsigned int h : 8; ///< The height of the span. (Measured from #y.)
};
@@ -304,17 +324,17 @@ struct rcCompactSpan
/// @ingroup recast
struct rcCompactHeightfield
{
- int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int spanCount; ///< The number of spans in the heightfield.
- int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
+ int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
- unsigned short maxDistance; ///< The maximum distance value of any span within the field.
- unsigned short maxRegions; ///< The maximum region id of any span within the field.
- float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ unsigned short maxDistance; ///< The maximum distance value of any span within the field.
+ unsigned short maxRegions; ///< The maximum region id of any span within the field.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
- float cs; ///< The size of each cell. (On the xz-plane.)
+ float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
@@ -326,26 +346,26 @@ struct rcCompactHeightfield
/// @see rcHeightfieldLayerSet
struct rcHeightfieldLayer
{
- float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
- float cs; ///< The size of each cell. (On the xz-plane.)
+ float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
- int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
- int minx; ///< The minimum x-bounds of usable data.
- int maxx; ///< The maximum x-bounds of usable data.
- int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
+ int minx; ///< The minimum x-bounds of usable data.
+ int maxx; ///< The maximum x-bounds of usable data.
+ int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
- int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
+ int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
- unsigned char* heights; ///< The heightfield. [Size: (width - borderSize*2) * (h - borderSize*2)]
+ unsigned char* heights; ///< The heightfield. [Size: width * height]
unsigned char* areas; ///< Area ids. [Size: Same as #heights]
unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
};
/// Represents a set of heightfield layers.
/// @ingroup recast
-/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
+/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
struct rcHeightfieldLayerSet
{
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
@@ -356,9 +376,9 @@ struct rcHeightfieldLayerSet
struct rcContour
{
int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
- int nverts; ///< The number of vertices in the simplified contour.
+ int nverts; ///< The number of vertices in the simplified contour.
int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
- int nrverts; ///< The number of vertices in the raw contour.
+ int nrverts; ///< The number of vertices in the raw contour.
unsigned short reg; ///< The region id of the contour.
unsigned char area; ///< The area id of the contour.
};
@@ -371,17 +391,18 @@ struct rcContourSet
int nconts; ///< The number of contours in the set.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
- float cs; ///< The size of each cell. (On the xz-plane.)
+ float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
- int width; ///< The width of the set. (Along the x-axis in cell units.)
- int height; ///< The height of the set. (Along the z-axis in cell units.)
+ int width; ///< The width of the set. (Along the x-axis in cell units.)
+ int height; ///< The height of the set. (Along the z-axis in cell units.)
int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
+ float maxError; ///< The max edge error that this contour set was simplified with.
};
-/// Represents a polygon mesh suitable for use in building a navigation mesh.
+/// Represents a polygon mesh suitable for use in building a navigation mesh.
/// @ingroup recast
struct rcPolyMesh
-{
+{
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
@@ -391,24 +412,25 @@ struct rcPolyMesh
int npolys; ///< The number of polygons.
int maxpolys; ///< The number of allocated polygons.
int nvp; ///< The maximum number of vertices per polygon.
- float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
- float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
- float cs; ///< The size of each cell. (On the xz-plane.)
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
+ float maxEdgeError; ///< The max error of the polygon edges in the mesh.
};
-/// Contains triangle meshes that represent detailed height data associated
+/// Contains triangle meshes that represent detailed height data associated
/// with the polygons in its associated polygon mesh object.
/// @ingroup recast
struct rcPolyMeshDetail
{
- unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
- float* verts; ///< The mesh vertices. [Size: 3*#nverts]
- unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
- int nmeshes; ///< The number of sub-meshes defined by #meshes.
- int nverts; ///< The number of vertices in #verts.
- int ntris; ///< The number of triangles in #tris.
+ unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
+ float* verts; ///< The mesh vertices. [Size: 3*#nverts]
+ unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
+ int nmeshes; ///< The number of sub-meshes defined by #meshes.
+ int nverts; ///< The number of vertices in #verts.
+ int ntris; ///< The number of triangles in #tris.
};
/// @name Allocation Functions
@@ -423,7 +445,7 @@ struct rcPolyMeshDetail
rcHeightfield* rcAllocHeightfield();
/// Frees the specified heightfield object using the Recast allocator.
-/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
+/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
/// @ingroup recast
/// @see rcAllocHeightfield
void rcFreeHeightField(rcHeightfield* hf);
@@ -435,7 +457,7 @@ void rcFreeHeightField(rcHeightfield* hf);
rcCompactHeightfield* rcAllocCompactHeightfield();
/// Frees the specified compact heightfield object using the Recast allocator.
-/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
+/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
/// @ingroup recast
/// @see rcAllocCompactHeightfield
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
@@ -447,7 +469,7 @@ void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
/// Frees the specified heightfield layer set using the Recast allocator.
-/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
+/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
@@ -459,7 +481,7 @@ void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
rcContourSet* rcAllocContourSet();
/// Frees the specified contour set using the Recast allocator.
-/// @param[in] cset A contour set allocated using #rcAllocContourSet
+/// @param[in] cset A contour set allocated using #rcAllocContourSet
/// @ingroup recast
/// @see rcAllocContourSet
void rcFreeContourSet(rcContourSet* cset);
@@ -471,7 +493,7 @@ void rcFreeContourSet(rcContourSet* cset);
rcPolyMesh* rcAllocPolyMesh();
/// Frees the specified polygon mesh using the Recast allocator.
-/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
+/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
/// @ingroup recast
/// @see rcAllocPolyMesh
void rcFreePolyMesh(rcPolyMesh* pmesh);
@@ -483,7 +505,7 @@ void rcFreePolyMesh(rcPolyMesh* pmesh);
rcPolyMeshDetail* rcAllocPolyMeshDetail();
/// Frees the specified detail mesh using the Recast allocator.
-/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail
+/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail
/// @ingroup recast
/// @see rcAllocPolyMeshDetail
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
@@ -491,16 +513,24 @@ void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
/// @}
/// Heighfield border flag.
-/// If a heightfield region ID has this bit set, then the region is a border
+/// If a heightfield region ID has this bit set, then the region is a border
/// region and its spans are considered unwalkable.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg
static const unsigned short RC_BORDER_REG = 0x8000;
+/// Polygon touches multiple regions.
+/// If a polygon has this region ID it was merged with or created
+/// from polygons of different regions during the polymesh
+/// build step that removes redundant border vertices.
+/// (Used during the polymesh and detail polymesh build processes)
+/// @see rcPolyMesh::regs
+static const unsigned short RC_MULTIPLE_REGS = 0;
+
/// Border vertex flag.
/// If a region ID has this bit set, then the associated element lies on
-/// a tile border. If a contour vertex's region ID has this bit set, the
-/// vertex will later be removed in order to match the segments and vertices
+/// a tile border. If a contour vertex's region ID has this bit set, the
+/// vertex will later be removed in order to match the segments and vertices
/// at tile boundaries.
/// (Used during the build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
@@ -533,13 +563,13 @@ static const int RC_CONTOUR_REG_MASK = 0xffff;
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
/// Represents the null area.
-/// When a data element is given this value it is considered to no longer be
+/// When a data element is given this value it is considered to no longer be
/// assigned to a usable area. (E.g. It is unwalkable.)
static const unsigned char RC_NULL_AREA = 0;
-/// The default area id used to indicate a walkable polygon.
-/// This is also the maximum allowed area id, and the only non-null area id
-/// recognized by some steps in the build process.
+/// The default area id used to indicate a walkable polygon.
+/// This is also the maximum allowed area id, and the only non-null area id
+/// recognized by some steps in the build process.
static const unsigned char RC_WALKABLE_AREA = 63;
/// The value returned by #rcGetCon if the specified direction is not connected
@@ -549,58 +579,58 @@ static const int RC_NOT_CONNECTED = 0x3f;
/// @name General helper functions
/// @{
+/// Used to ignore a function parameter. VS complains about unused parameters
+/// and this silences the warning.
+/// @param [in] _ Unused parameter
+template<class T> void rcIgnoreUnused(const T&) { }
+
/// Swaps the values of the two parameters.
-/// @param[in,out] a Value A
-/// @param[in,out] b Value B
+/// @param[in,out] a Value A
+/// @param[in,out] b Value B
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
/// Returns the minimum of two values.
-/// @param[in] a Value A
-/// @param[in] b Value B
+/// @param[in] a Value A
+/// @param[in] b Value B
/// @return The minimum of the two values.
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
/// Returns the maximum of two values.
-/// @param[in] a Value A
-/// @param[in] b Value B
+/// @param[in] a Value A
+/// @param[in] b Value B
/// @return The maximum of the two values.
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
/// Returns the absolute value.
-/// @param[in] a The value.
+/// @param[in] a The value.
/// @return The absolute value of the specified value.
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
-/// Return the square of a value.
-/// @param[in] a The value.
+/// Returns the square of the value.
+/// @param[in] a The value.
/// @return The square of the value.
template<class T> inline T rcSqr(T a) { return a*a; }
/// Clamps the value to the specified range.
-/// @param[in] v The value to clamp.
-/// @param[in] mn The minimum permitted return value.
-/// @param[in] mx The maximum permitted return value.
+/// @param[in] v The value to clamp.
+/// @param[in] mn The minimum permitted return value.
+/// @param[in] mx The maximum permitted return value.
/// @return The value, clamped to the specified range.
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
/// Returns the square root of the value.
-/// @param[in] x The value.
+/// @param[in] x The value.
/// @return The square root of the vlaue.
float rcSqrt(float x);
-/// Not documented. Internal use only.
-/// @param[in] x Not documented.
-/// @return Not documented.
-inline int rcAlign4(int x) { return (x+3) & ~3; }
-
/// @}
/// @name Vector helper functions.
/// @{
-/// Derives the cross product of two vectors. (v1 x v2)
-/// @param[out] dest The cross product. [(x, y, z)]
-/// @param[in] v1 A Vector [(x, y, z)]
-/// @param[in] v2 A vector [(x, y, z)]
+/// Derives the cross product of two vectors. (@p v1 x @p v2)
+/// @param[out] dest The cross product. [(x, y, z)]
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
@@ -608,20 +638,20 @@ inline void rcVcross(float* dest, const float* v1, const float* v2)
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
-/// Derives the dot product of two vectors. (v1 . v2)
-/// @param[in] v1 A Vector [(x, y, z)]
-/// @param[in] v2 A vector [(x, y, z)]
-/// @return The dot product.
+/// Derives the dot product of two vectors. (@p v1 . @p v2)
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
+/// @return The dot product.
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
-/// Performs a scaled vector addition. (v1 + (v2 * s))
-/// @param[out] dest The result vector. [(x, y, z)]
-/// @param[in] v1 The base vector [(x, y, z)]
-/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
-/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
+/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
+/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
@@ -630,9 +660,9 @@ inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
}
/// Performs a vector addition. (@p v1 + @p v2)
-/// @param[out] dest The result vector. [(x, y, z)]
-/// @param[in] v1 The base vector [(x, y, z)]
-/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
@@ -641,9 +671,9 @@ inline void rcVadd(float* dest, const float* v1, const float* v2)
}
/// Performs a vector subtraction. (@p v1 - @p v2)
-/// @param[out] dest The result vector. [(x, y, z)]
-/// @param[in] v1 The base vector [(x, y, z)]
-/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
@@ -652,8 +682,8 @@ inline void rcVsub(float* dest, const float* v1, const float* v2)
}
/// Selects the minimum value of each element from the specified vectors.
-/// @param[in, out] mn A vector. (Will be updated with the result.) [(x, y, z)]
-/// @param[in] v A vector. [(x, y, z)]
+/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
@@ -662,8 +692,8 @@ inline void rcVmin(float* mn, const float* v)
}
/// Selects the maximum value of each element from the specified vectors.
-/// @param[in, out] mx A vector. (Will be updated with the result.) [(x, y, z)]
-/// @param[in] v A vector. [(x, y, z)]
+/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
@@ -672,8 +702,8 @@ inline void rcVmax(float* mx, const float* v)
}
/// Performs a vector copy.
-/// @param[out] dest The result. [(x, y, z)]
-/// @param[in] v The vector to copy [(x, y, z)]
+/// @param[out] dest The result. [(x, y, z)]
+/// @param[in] v The vector to copy. [(x, y, z)]
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
@@ -682,9 +712,9 @@ inline void rcVcopy(float* dest, const float* v)
}
/// Returns the distance between two points.
-/// @param[in] v1 A point. [(x, y, z)]
-/// @param[in] v2 A point. [(x, y, z)]
-/// @return The distance between the two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The distance between the two points.
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
@@ -694,9 +724,9 @@ inline float rcVdist(const float* v1, const float* v2)
}
/// Returns the square of the distance between two points.
-/// @param[in] v1 A point. [(x, y, z)]
-/// @param[in] v2 A point. [(x, y, z)]
-/// @return The square of the distance between the two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The square of the distance between the two points.
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
@@ -706,7 +736,7 @@ inline float rcVdistSqr(const float* v1, const float* v2)
}
/// Normalizes the vector.
-/// @param[in,out] v The vector to normalize. [(x, y, z)]
+/// @param[in,out] v The vector to normalize. [(x, y, z)]
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
@@ -715,17 +745,6 @@ inline void rcVnormalize(float* v)
v[2] *= d;
}
-/// Not documented. Internal use only.
-/// @param[in] p0 Not documented.
-/// @param[in] p1 Not documented.
-/// @return Not documented.
-inline bool rcVequal(const float* p0, const float* p1)
-{
- static const float thr = rcSqr(1.0f/16384.0f);
- const float d = rcVdistSqr(p0, p1);
- return d < thr;
-}
-
/// @}
/// @name Heightfield Functions
/// @see rcHeightfield
@@ -733,31 +752,32 @@ inline bool rcVequal(const float* p0, const float* p1)
/// Calculates the bounding box of an array of vertices.
/// @ingroup recast
-/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
-/// @param[in] nv The number of vertices in the @p verts array.
-/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
-/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices in the @p verts array.
+/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
/// Calculates the grid size based on the bounding box and grid cell size.
/// @ingroup recast
-/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
-/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
-/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu]
-/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx]
-/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu]
+/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx]
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
/// Initializes a new heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] hf The allocated heightfield to initialize.
-/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
-/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
-/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
-/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
-/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
-/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf The allocated heightfield to initialize.
+/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
+/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
+/// @returns True if the operation completed successfully.
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
@@ -765,133 +785,138 @@ bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int heigh
/// Sets the area id of all triangles with a slope below the specified value
/// to #RC_WALKABLE_AREA.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. [Limits: 0 <= value < 90]
-/// [Units: Degrees]
-/// @param[in] verts The vertices. [(x, y, z) * @p nv]
-/// @param[in] nv The number of vertices.
-/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
-/// @param[in] nt The number of triangles.
-/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
+/// [Limits: 0 <= value < 90] [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
- const int* tris, int nt, unsigned char* areas);
+ const int* tris, int nt, unsigned char* areas);
/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. [Limits: 0 <= value < 90]
-/// [Units: Degrees]
-/// @param[in] verts The vertices. [(x, y, z) * @p nv]
-/// @param[in] nv The number of vertices.
-/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
-/// @param[in] nt The number of triangles.
-/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
+/// [Limits: 0 <= value < 90] [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
- const int* tris, int nt, unsigned char* areas);
+ const int* tris, int nt, unsigned char* areas);
/// Adds a span to the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] hf An initialized heightfield.
-/// @param[in] x The width index where the span is to be added.
-/// [Limits: 0 <= value < rcHeightfield::width]
-/// @param[in] y The height index where the span is to be added.
-/// [Limits: 0 <= value < rcHeightfield::height]
-/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx]
-/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
-/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
-/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx]
-void rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf An initialized heightfield.
+/// @param[in] x The width index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::width]
+/// @param[in] y The height index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::height]
+/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx]
+/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
+/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
+/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr);
/// Rasterizes a triangle into the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
-/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
-/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
-/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
-/// @param[in, out] solid An initialized heightfield.
-/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
-/// [Limit: >= 0] [Units: vx]
-void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
+/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
+/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
+/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
/// Rasterizes an indexed triangle mesh into the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] verts The vertices. [(x, y, z) * @p nv]
-/// @param[in] nv The number of vertices.
-/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
-/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
-/// @param[in] nt The number of triangles.
-/// @param[in, out] solid An initialized heightfield.
-/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
-/// [Limit: >= 0] [Units: vx]
-void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes an indexed triangle mesh into the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] verts The vertices. [(x, y, z) * @p nv]
-/// @param[in] nv The number of vertices.
-/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
-/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
-/// @param[in] nt The number of triangles.
-/// @param[in, out] solid An initialized heightfield.
-/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
-/// [Limit: >= 0] [Units: vx]
-void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes triangles into the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
-/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
-/// @param[in] nt The number of triangles.
-/// @param[in, out] solid An initialized heightfield.
-/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
-/// [Limit: >= 0] [Units: vx]
-void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
-/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neihbor.
+/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neihbor.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
-/// [Limit: >=0] [Units: vx]
-/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
-/// Marks spans that are ledges as not-walkable.
+/// Marks spans that are ledges as not-walkable.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
-/// be considered walkable. [Limit: >= 3] [Units: vx]
-/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
-/// [Limit: >=0] [Units: vx]
-/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
-/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height.
+/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
-/// be considered walkable. [Limit: >= 3] [Units: vx]
-/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
/// Returns the number of spans contained in the specified heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] hf An initialized heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] hf An initialized heightfield.
/// @returns The number of spans in the heightfield.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
@@ -902,105 +927,128 @@ int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
-/// to be considered walkable. [Limit: >= 3] [Units: vx]
-/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
-/// [Limit: >=0] [Units: vx]
-/// @param[in] hf The heightfield to be compacted.
-/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] hf The heightfield to be compacted.
+/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
-/// Erodes the walkable area within the heightfield by the specified radius.
+/// Erodes the walkable area within the heightfield by the specified radius.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
-/// @param[in,out] chf The populated compact heightfield to erode.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
+/// @param[in,out] chf The populated compact heightfield to erode.
/// @returns True if the operation completed successfully.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
/// Applies a median filter to walkable area types (based on area id), removing noise.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] chf A populated compact heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
/// @returns True if the operation completed successfully.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
-/// Applies an area id to all spans within the specified bounding box. (AABB)
+/// Applies an area id to all spans within the specified bounding box. (AABB)
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
-/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
-/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
-/// @param[in,out] chf A populated compact heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
+/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
-/// Applies the area id to the all spans within the specified convex polygon.
+/// Applies the area id to the all spans within the specified convex polygon.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
-/// @param[in] nverts The number of vertices in the polygon.
-/// @param[in] hmin The height of the base of the polygon.
-/// @param[in] hmax The height of the top of the polygon.
-/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
-/// @param[in,out] chf A populated compact heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
+/// @param[in] nverts The number of vertices in the polygon.
+/// @param[in] hmin The height of the base of the polygon.
+/// @param[in] hmax The height of the top of the polygon.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
+/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
+/// @ingroup recast
+/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts]
+/// @param[in] nverts The number of vertices in the polygon.
+/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
+/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts.
+/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
+int rcOffsetPoly(const float* verts, const int nverts, const float offset,
+ float* outVerts, const int maxOutVerts);
+
/// Applies the area id to all spans within the specified cylinder.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
-/// @param[in] r The radius of the cylinder.
-/// @param[in] h The height of the cylinder.
-/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
-/// @param[in,out] chf A populated compact heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
+/// @param[in] r The radius of the cylinder.
+/// @param[in] h The height of the cylinder.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
const float r, const float h, unsigned char areaId,
rcCompactHeightfield& chf);
-/// Builds the distance field for the specified compact heightfield.
+/// Builds the distance field for the specified compact heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] chf A populated compact heightfield.
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
/// @returns True if the operation completed successfully.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
-/// Builds region data for the heightfield using watershed partitioning.
+/// Builds region data for the heightfield using watershed partitioning.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] chf A populated compact heightfield.
-/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
-/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. [Limit: >=0]
-/// [Units: vx].
-/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
-/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
+/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @returns True if the operation completed successfully.
+bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea);
+
/// Builds region data for the heightfield using simple monotone partitioning.
-/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in,out] chf A populated compact heightfield.
-/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
-/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. [Limit: >=0]
-/// [Units: vx].
-/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
-/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
-
/// Sets the neighbor connection data for the specified direction.
-/// @param[in] s The span to update.
-/// @param[in] dir The direction to set. [Limits: 0 <= value < 4]
-/// @param[in] i The index of the neighbor span.
+/// @param[in] s The span to update.
+/// @param[in] dir The direction to set. [Limits: 0 <= value < 4]
+/// @param[in] i The index of the neighbor span.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
@@ -1009,10 +1057,10 @@ inline void rcSetCon(rcCompactSpan& s, int dir, int i)
}
/// Gets neighbor connection data for the specified direction.
-/// @param[in] s The span to check.
-/// @param[in] dir The direction to check. [Limits: 0 <= value < 4]
+/// @param[in] s The span to check.
+/// @param[in] dir The direction to check. [Limits: 0 <= value < 4]
/// @return The neighbor connection data for the specified direction,
-/// or #RC_NOT_CONNECTED if there is no connection.
+/// or #RC_NOT_CONNECTED if there is no connection.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
@@ -1020,25 +1068,35 @@ inline int rcGetCon(const rcCompactSpan& s, int dir)
}
/// Gets the standard width (x-axis) offset for the specified direction.
-/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
/// @return The width offset to apply to the current cell position to move
-/// in the direction.
+/// in the direction.
inline int rcGetDirOffsetX(int dir)
{
- const int offset[4] = { -1, 0, 1, 0, };
+ static const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
/// Gets the standard height (z-axis) offset for the specified direction.
-/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
/// @return The height offset to apply to the current cell position to move
-/// in the direction.
+/// in the direction.
inline int rcGetDirOffsetY(int dir)
{
- const int offset[4] = { 0, 1, 0, -1 };
+ static const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
+/// Gets the direction for the specified offset. One of x and y should be 0.
+/// @param[in] x The x offset. [Limits: -1 <= value <= 1]
+/// @param[in] y The y offset. [Limits: -1 <= value <= 1]
+/// @return The direction that represents the offset.
+inline int rcGetDirForOffset(int x, int y)
+{
+ static const int dirs[5] = { 3, 0, -1, 2, 1 };
+ return dirs[((y+1)<<1)+x];
+}
+
/// @}
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
@@ -1046,72 +1104,80 @@ inline int rcGetDirOffsetY(int dir)
/// Builds a layer set from the specified compact heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] chf A fully built compact heightfield.
-/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
-/// [Units: vx]
-/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
-/// to be considered walkable. [Limit: >= 3] [Units: vx]
-/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
+/// [Units: vx]
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
-bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
+bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int walkableHeight,
rcHeightfieldLayerSet& lset);
/// Builds a contour set from the region outlines in the provided compact heightfield.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] chf A fully built compact heightfield.
-/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate
-/// the original raw contour. [Limit: >=0] [Units: wu]
-/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
-/// [Limit: >=0] [Units: vx]
-/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
-/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate
+/// the original raw contour. [Limit: >=0] [Units: wu]
+/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
+/// [Limit: >=0] [Units: vx]
+/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
+/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
/// @returns True if the operation completed successfully.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
- rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
+ rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);
/// Builds a polygon mesh from the provided contours.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] cset A fully built contour set.
-/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
-/// contour to polygon conversion process. [Limit: >= 3]
-/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] cset A fully built contour set.
+/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
+/// contour to polygon conversion process. [Limit: >= 3]
+/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
/// Merges multiple polygon meshes into a single mesh.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
-/// @param[in] nmeshes The number of polygon meshes in the meshes array.
-/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of polygon meshes in the meshes array.
+/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
/// Builds a detail mesh from the provided polygon mesh.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] mesh A fully built polygon mesh.
-/// @param[in] chf The compact heightfield used to build the polygon mesh.
-/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
-/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
-/// heightfield data. [Limit: >=0] [Units: wu]
-/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] mesh A fully built polygon mesh.
+/// @param[in] chf The compact heightfield used to build the polygon mesh.
+/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
+/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
+/// heightfield data. [Limit: >=0] [Units: wu]
+/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
+/// Copies the poly mesh data from src to dst.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] src The source mesh to copy from.
+/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
+/// @returns True if the operation completed successfully.
+bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);
+
/// Merges multiple detail meshes into a single detail mesh.
/// @ingroup recast
-/// @param[in,out] ctx The build context to use during the operation.
-/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
-/// @param[in] nmeshes The number of detail meshes in the meshes array.
-/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of detail meshes in the meshes array.
+/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
@@ -1123,6 +1189,6 @@ bool buildMeshAdjacency(unsigned short* polys, const int npolys, const int nvert
///////////////////////////////////////////////////////////////////////////
-// Due to the large amount of detail documentation for this file,
+// Due to the large amount of detail documentation for this file,
// the content normally located at the end of the header file has been separated
// out to a file in /Docs/Extern.