Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Source/RecastContour.cpp')
-rw-r--r--extern/recastnavigation/Recast/Source/RecastContour.cpp592
1 files changed, 422 insertions, 170 deletions
diff --git a/extern/recastnavigation/Recast/Source/RecastContour.cpp b/extern/recastnavigation/Recast/Source/RecastContour.cpp
index df943838ffb..277ab015018 100644
--- a/extern/recastnavigation/Recast/Source/RecastContour.cpp
+++ b/extern/recastnavigation/Recast/Source/RecastContour.cpp
@@ -20,6 +20,7 @@
#include <math.h>
#include <string.h>
#include <stdio.h>
+#include <stdlib.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
@@ -36,7 +37,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
unsigned int regs[4] = {0,0,0,0};
// Combine region and area codes in order to prevent
- // border vertices which are in between two areas to be removed.
+ // border vertices which are in between two areas to be removed.
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
@@ -187,27 +188,6 @@ static float distancePtSeg(const int x, const int z,
const int px, const int pz,
const int qx, const int qz)
{
-/* float pqx = (float)(qx - px);
- float pqy = (float)(qy - py);
- float pqz = (float)(qz - pz);
- float dx = (float)(x - px);
- float dy = (float)(y - py);
- float dz = (float)(z - pz);
- float d = pqx*pqx + pqy*pqy + pqz*pqz;
- float t = pqx*dx + pqy*dy + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = px + t*pqx - x;
- dy = py + t*pqy - y;
- dz = pz + t*pqz - z;
-
- return dx*dx + dy*dy + dz*dz;*/
-
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
@@ -257,13 +237,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified.push(points[i*4+2]);
simplified.push(i);
}
- }
+ }
}
if (simplified.size() == 0)
{
// If there is no connections at all,
- // create some initial points for the simplification process.
+ // create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
@@ -311,19 +291,19 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
{
int ii = (i+1) % (simplified.size()/4);
- const int ax = simplified[i*4+0];
- const int az = simplified[i*4+2];
- const int ai = simplified[i*4+3];
-
- const int bx = simplified[ii*4+0];
- const int bz = simplified[ii*4+2];
- const int bi = simplified[ii*4+3];
+ int ax = simplified[i*4+0];
+ int az = simplified[i*4+2];
+ int ai = simplified[i*4+3];
+
+ int bx = simplified[ii*4+0];
+ int bz = simplified[ii*4+2];
+ int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
float maxd = 0;
- int i_max = -1;
+ int maxi = -1;
int ci, cinc, endi;
-
+
// Traverse the segment in lexilogical order so that the
// max deviation is calculated similarly when traversing
// opposite segments.
@@ -338,6 +318,8 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
cinc = pn-1;
ci = (bi+cinc) % pn;
endi = ai;
+ rcSwap(ax, bx);
+ rcSwap(az, bz);
}
// Tessellate only outer edges or edges between areas.
@@ -350,7 +332,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
if (d > maxd)
{
maxd = d;
- i_max = ci;
+ maxi = ci;
}
ci = (ci+cinc) % pn;
}
@@ -359,7 +341,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
- if (i_max != -1 && maxd > (maxError*maxError))
+ if (maxi != -1 && maxd > (maxError*maxError))
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
@@ -372,10 +354,10 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
- simplified[(i+1)*4+0] = points[i_max*4+0];
- simplified[(i+1)*4+1] = points[i_max*4+1];
- simplified[(i+1)*4+2] = points[i_max*4+2];
- simplified[(i+1)*4+3] = i_max;
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
}
else
{
@@ -397,11 +379,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
-
+
// Find maximum deviation from the segment.
- int i_max = -1;
+ int maxi = -1;
int ci = (ai+1) % pn;
-
+
// Tessellate only outer edges or edges between areas.
bool tess = false;
// Wall edges.
@@ -420,22 +402,20 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// Round based on the segments in lexilogical order so that the
// max tesselation is consistent regardles in which direction
// segments are traversed.
- if (bx > ax || (bx == ax && bz > az))
+ const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
+ if (n > 1)
{
- const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
- i_max = (ai + n/2) % pn;
- }
- else
- {
- const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
- i_max = (ai + (n+1)/2) % pn;
+ if (bx > ax || (bx == ax && bz > az))
+ maxi = (ai + n/2) % pn;
+ else
+ maxi = (ai + (n+1)/2) % pn;
}
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
- if (i_max != -1)
+ if (maxi != -1)
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
@@ -448,10 +428,10 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
- simplified[(i+1)*4+0] = points[i_max*4+0];
- simplified[(i+1)*4+1] = points[i_max*4+1];
- simplified[(i+1)*4+2] = points[i_max*4+2];
- simplified[(i+1)*4+3] = i_max;
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
}
else
{
@@ -466,37 +446,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// and the neighbour region is take from the next raw point.
const int ai = (simplified[i*4+3]+1) % pn;
const int bi = simplified[i*4+3];
- simplified[i*4+3] = (points[ai*4+3] & RC_CONTOUR_REG_MASK) | (points[bi*4+3] & RC_BORDER_VERTEX);
+ simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
}
}
-static void removeDegenerateSegments(rcIntArray& simplified)
-{
- // Remove adjacent vertices which are equal on xz-plane,
- // or else the triangulator will get confused.
- for (int i = 0; i < simplified.size()/4; ++i)
- {
- int ni = i+1;
- if (ni >= (simplified.size()/4))
- ni = 0;
-
- if (simplified[i*4+0] == simplified[ni*4+0] &&
- simplified[i*4+2] == simplified[ni*4+2])
- {
- // Degenerate segment, remove.
- for (int j = i; j < simplified.size()/4-1; ++j)
- {
- simplified[j*4+0] = simplified[(j+1)*4+0];
- simplified[j*4+1] = simplified[(j+1)*4+1];
- simplified[j*4+2] = simplified[(j+1)*4+2];
- simplified[j*4+3] = simplified[(j+1)*4+3];
- }
- simplified.resize(simplified.size()-4);
- }
- }
-}
-
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
int area = 0;
@@ -509,54 +463,155 @@ static int calcAreaOfPolygon2D(const int* verts, const int nverts)
return (area+1) / 2;
}
-inline bool ileft(const int* a, const int* b, const int* c)
+// TODO: these are the same as in RecastMesh.cpp, consider using the same.
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
{
- return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
+ return !x ^ !y;
}
-static void getClosestIndices(const int* vertsa, const int nvertsa,
- const int* vertsb, const int nvertsb,
- int& ia, int& ib)
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
{
- int closestDist = 0xfffffff;
- ia = -1, ib = -1;
- for (int i = 0; i < nvertsa; ++i)
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
+{
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i.
+ if (i == k || i == k1)
+ continue;
+ const int* p0 = &verts[k * 4];
+ const int* p1 = &verts[k1 * 4];
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return true;
+ }
+ return false;
+}
+
+static bool inCone(int i, int n, const int* verts, const int* pj)
+{
+ const int* pi = &verts[i * 4];
+ const int* pi1 = &verts[next(i, n) * 4];
+ const int* pin1 = &verts[prev(i, n) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+
+static void removeDegenerateSegments(rcIntArray& simplified)
+{
+ // Remove adjacent vertices which are equal on xz-plane,
+ // or else the triangulator will get confused.
+ int npts = simplified.size()/4;
+ for (int i = 0; i < npts; ++i)
{
- const int in = (i+1) % nvertsa;
- const int ip = (i+nvertsa-1) % nvertsa;
- const int* va = &vertsa[i*4];
- const int* van = &vertsa[in*4];
- const int* vap = &vertsa[ip*4];
+ int ni = next(i, npts);
- for (int j = 0; j < nvertsb; ++j)
+ if (vequal(&simplified[i*4], &simplified[ni*4]))
{
- const int* vb = &vertsb[j*4];
- // vb must be "infront" of va.
- if (ileft(vap,va,vb) && ileft(va,van,vb))
+ // Degenerate segment, remove.
+ for (int j = i; j < simplified.size()/4-1; ++j)
{
- const int dx = vb[0] - va[0];
- const int dz = vb[2] - va[2];
- const int d = dx*dx + dz*dz;
- if (d < closestDist)
- {
- ia = i;
- ib = j;
- closestDist = d;
- }
+ simplified[j*4+0] = simplified[(j+1)*4+0];
+ simplified[j*4+1] = simplified[(j+1)*4+1];
+ simplified[j*4+2] = simplified[(j+1)*4+2];
+ simplified[j*4+3] = simplified[(j+1)*4+3];
}
+ simplified.resize(simplified.size()-4);
+ npts--;
}
}
}
+
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
const int maxVerts = ca.nverts + cb.nverts + 2;
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
if (!verts)
return false;
-
+
int nv = 0;
-
+
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
@@ -584,7 +639,7 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
rcFree(ca.verts);
ca.verts = verts;
ca.nverts = nv;
-
+
rcFree(cb.verts);
cb.verts = 0;
cb.nverts = 0;
@@ -592,18 +647,179 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
return true;
}
+struct rcContourHole
+{
+ rcContour* contour;
+ int minx, minz, leftmost;
+};
+
+struct rcContourRegion
+{
+ rcContour* outline;
+ rcContourHole* holes;
+ int nholes;
+};
+
+struct rcPotentialDiagonal
+{
+ int vert;
+ int dist;
+};
+
+// Finds the lowest leftmost vertex of a contour.
+static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
+{
+ *minx = contour->verts[0];
+ *minz = contour->verts[2];
+ *leftmost = 0;
+ for (int i = 1; i < contour->nverts; i++)
+ {
+ const int x = contour->verts[i*4+0];
+ const int z = contour->verts[i*4+2];
+ if (x < *minx || (x == *minx && z < *minz))
+ {
+ *minx = x;
+ *minz = z;
+ *leftmost = i;
+ }
+ }
+}
+
+static int compareHoles(const void* va, const void* vb)
+{
+ const rcContourHole* a = (const rcContourHole*)va;
+ const rcContourHole* b = (const rcContourHole*)vb;
+ if (a->minx == b->minx)
+ {
+ if (a->minz < b->minz)
+ return -1;
+ if (a->minz > b->minz)
+ return 1;
+ }
+ else
+ {
+ if (a->minx < b->minx)
+ return -1;
+ if (a->minx > b->minx)
+ return 1;
+ }
+ return 0;
+}
+
+
+static int compareDiagDist(const void* va, const void* vb)
+{
+ const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
+ const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
+ if (a->dist < b->dist)
+ return -1;
+ if (a->dist > b->dist)
+ return 1;
+ return 0;
+}
+
+
+static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
+{
+ // Sort holes from left to right.
+ for (int i = 0; i < region.nholes; i++)
+ findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
+
+ qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
+
+ int maxVerts = region.outline->nverts;
+ for (int i = 0; i < region.nholes; i++)
+ maxVerts += region.holes[i].contour->nverts;
+
+ rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
+ if (!diags)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
+ return;
+ }
+
+ rcContour* outline = region.outline;
+
+ // Merge holes into the outline one by one.
+ for (int i = 0; i < region.nholes; i++)
+ {
+ rcContour* hole = region.holes[i].contour;
+
+ int index = -1;
+ int bestVertex = region.holes[i].leftmost;
+ for (int iter = 0; iter < hole->nverts; iter++)
+ {
+ // Find potential diagonals.
+ // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
+ // ..o j-1
+ // |
+ // | * best
+ // |
+ // j o-----o j+1
+ // :
+ int ndiags = 0;
+ const int* corner = &hole->verts[bestVertex*4];
+ for (int j = 0; j < outline->nverts; j++)
+ {
+ if (inCone(j, outline->nverts, outline->verts, corner))
+ {
+ int dx = outline->verts[j*4+0] - corner[0];
+ int dz = outline->verts[j*4+2] - corner[2];
+ diags[ndiags].vert = j;
+ diags[ndiags].dist = dx*dx + dz*dz;
+ ndiags++;
+ }
+ }
+ // Sort potential diagonals by distance, we want to make the connection as short as possible.
+ qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
+
+ // Find a diagonal that is not intersecting the outline not the remaining holes.
+ index = -1;
+ for (int j = 0; j < ndiags; j++)
+ {
+ const int* pt = &outline->verts[diags[j].vert*4];
+ bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
+ for (int k = i; k < region.nholes && !intersect; k++)
+ intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
+ if (!intersect)
+ {
+ index = diags[j].vert;
+ break;
+ }
+ }
+ // If found non-intersecting diagonal, stop looking.
+ if (index != -1)
+ break;
+ // All the potential diagonals for the current vertex were intersecting, try next vertex.
+ bestVertex = (bestVertex + 1) % hole->nverts;
+ }
+
+ if (index == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
+ continue;
+ }
+ if (!mergeContours(*region.outline, *hole, index, bestVertex))
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
+ continue;
+ }
+ }
+}
+
+
/// @par
///
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
/// parameters control how closely the simplified contours will match the raw contours.
///
-/// Simplified contours are generated such that the vertices for portals between areas match up.
+/// Simplified contours are generated such that the vertices for portals between areas match up.
/// (They are considered mandatory vertices.)
///
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
-///
+///
/// See the #rcConfig documentation for more information on the configuration parameters.
-///
+///
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
@@ -615,7 +831,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const int h = chf.height;
const int borderSize = chf.borderSize;
- ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
rcVcopy(cset.bmin, chf.bmin);
rcVcopy(cset.bmax, chf.bmax);
@@ -633,6 +849,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
cset.width = chf.width - chf.borderSize*2;
cset.height = chf.height - chf.borderSize*2;
cset.borderSize = chf.borderSize;
+ cset.maxError = maxError;
int maxContours = rcMax((int)chf.maxRegions, 8);
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
@@ -640,7 +857,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
return false;
cset.nconts = 0;
- rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
+ rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
if (!flags)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
@@ -706,17 +923,17 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
verts.resize(0);
simplified.resize(0);
-
+
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
walkContour(x, y, i, chf, flags, verts);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
-
+
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
removeDegenerateSegments(simplified);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
-
+
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
@@ -724,7 +941,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (cset.nconts >= maxContours)
{
// Allocate more contours.
- // This can happen when there are tiny holes in the heightfield.
+ // This happens when a region has holes.
const int oldMax = maxContours;
maxContours *= 2;
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
@@ -737,10 +954,10 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
rcFree(cset.conts);
cset.conts = newConts;
-
+
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
}
-
+
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
@@ -754,9 +971,9 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (borderSize > 0)
{
// If the heightfield was build with bordersize, remove the offset.
- for (int i = 0; i < cont->nverts; ++i)
+ for (int j = 0; j < cont->nverts; ++j)
{
- int* v = &cont->verts[i*4];
+ int* v = &cont->verts[j*4];
v[0] -= borderSize;
v[2] -= borderSize;
}
@@ -773,25 +990,14 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (borderSize > 0)
{
// If the heightfield was build with bordersize, remove the offset.
- for (int i = 0; i < cont->nrverts; ++i)
+ for (int j = 0; j < cont->nrverts; ++j)
{
- int* v = &cont->rverts[i*4];
+ int* v = &cont->rverts[j*4];
v[0] -= borderSize;
v[2] -= borderSize;
}
}
-/* cont->cx = cont->cy = cont->cz = 0;
- for (int i = 0; i < cont->nverts; ++i)
- {
- cont->cx += cont->verts[i*4+0];
- cont->cy += cont->verts[i*4+1];
- cont->cz += cont->verts[i*4+2];
- }
- cont->cx /= cont->nverts;
- cont->cy /= cont->nverts;
- cont->cz /= cont->nverts;*/
-
cont->reg = reg;
cont->area = area;
}
@@ -799,55 +1005,101 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
}
- // Check and merge droppings.
- // Sometimes the previous algorithms can fail and create several contours
- // per area. This pass will try to merge the holes into the main region.
- for (int i = 0; i < cset.nconts; ++i)
+ // Merge holes if needed.
+ if (cset.nconts > 0)
{
- rcContour& cont = cset.conts[i];
- // Check if the contour is would backwards.
- if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
+ // Calculate winding of all polygons.
+ rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
+ if (!winding)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
+ return false;
+ }
+ int nholes = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // If the contour is wound backwards, it is a hole.
+ winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
+ if (winding[i] < 0)
+ nholes++;
+ }
+
+ if (nholes > 0)
{
- // Find another contour which has the same region ID.
- int mergeIdx = -1;
- for (int j = 0; j < cset.nconts; ++j)
+ // Collect outline contour and holes contours per region.
+ // We assume that there is one outline and multiple holes.
+ const int nregions = chf.maxRegions+1;
+ rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
+ return false;
+ }
+ memset(regions, 0, sizeof(rcContourRegion)*nregions);
+
+ rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
+ if (!holes)
{
- if (i == j) continue;
- if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
+ return false;
+ }
+ memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
+
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // Positively would contours are outlines, negative holes.
+ if (winding[i] > 0)
{
- // Make sure the polygon is correctly oriented.
- if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
- {
- mergeIdx = j;
- break;
- }
+ if (regions[cont.reg].outline)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
+ regions[cont.reg].outline = &cont;
+ }
+ else
+ {
+ regions[cont.reg].nholes++;
+ }
+ }
+ int index = 0;
+ for (int i = 0; i < nregions; i++)
+ {
+ if (regions[i].nholes > 0)
+ {
+ regions[i].holes = &holes[index];
+ index += regions[i].nholes;
+ regions[i].nholes = 0;
}
}
- if (mergeIdx == -1)
+ for (int i = 0; i < cset.nconts; ++i)
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
+ rcContour& cont = cset.conts[i];
+ rcContourRegion& reg = regions[cont.reg];
+ if (winding[i] < 0)
+ reg.holes[reg.nholes++].contour = &cont;
}
- else
+
+ // Finally merge each regions holes into the outline.
+ for (int i = 0; i < nregions; i++)
{
- rcContour& mcont = cset.conts[mergeIdx];
- // Merge by closest points.
- int ia = 0, ib = 0;
- getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
- if (ia == -1 || ib == -1)
+ rcContourRegion& reg = regions[i];
+ if (!reg.nholes) continue;
+
+ if (reg.outline)
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
- continue;
+ mergeRegionHoles(ctx, reg);
}
- if (!mergeContours(mcont, cont, ia, ib))
+ else
{
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
- continue;
+ // The region does not have an outline.
+ // This can happen if the contour becaomes selfoverlapping because of
+ // too aggressive simplification settings.
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
}
}
}
+
}
- ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
-
return true;
}