Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Source/RecastContour.cpp')
-rw-r--r--extern/recastnavigation/Recast/Source/RecastContour.cpp1105
1 files changed, 0 insertions, 1105 deletions
diff --git a/extern/recastnavigation/Recast/Source/RecastContour.cpp b/extern/recastnavigation/Recast/Source/RecastContour.cpp
deleted file mode 100644
index 277ab015018..00000000000
--- a/extern/recastnavigation/Recast/Source/RecastContour.cpp
+++ /dev/null
@@ -1,1105 +0,0 @@
-//
-// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
-//
-// This software is provided 'as-is', without any express or implied
-// warranty. In no event will the authors be held liable for any damages
-// arising from the use of this software.
-// Permission is granted to anyone to use this software for any purpose,
-// including commercial applications, and to alter it and redistribute it
-// freely, subject to the following restrictions:
-// 1. The origin of this software must not be misrepresented; you must not
-// claim that you wrote the original software. If you use this software
-// in a product, an acknowledgment in the product documentation would be
-// appreciated but is not required.
-// 2. Altered source versions must be plainly marked as such, and must not be
-// misrepresented as being the original software.
-// 3. This notice may not be removed or altered from any source distribution.
-//
-
-#define _USE_MATH_DEFINES
-#include <math.h>
-#include <string.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include "Recast.h"
-#include "RecastAlloc.h"
-#include "RecastAssert.h"
-
-
-static int getCornerHeight(int x, int y, int i, int dir,
- const rcCompactHeightfield& chf,
- bool& isBorderVertex)
-{
- const rcCompactSpan& s = chf.spans[i];
- int ch = (int)s.y;
- int dirp = (dir+1) & 0x3;
-
- unsigned int regs[4] = {0,0,0,0};
-
- // Combine region and area codes in order to prevent
- // border vertices which are in between two areas to be removed.
- regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
-
- if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
- {
- const int ax = x + rcGetDirOffsetX(dir);
- const int ay = y + rcGetDirOffsetY(dir);
- const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
- const rcCompactSpan& as = chf.spans[ai];
- ch = rcMax(ch, (int)as.y);
- regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
- if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
- {
- const int ax2 = ax + rcGetDirOffsetX(dirp);
- const int ay2 = ay + rcGetDirOffsetY(dirp);
- const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
- const rcCompactSpan& as2 = chf.spans[ai2];
- ch = rcMax(ch, (int)as2.y);
- regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
- }
- }
- if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
- {
- const int ax = x + rcGetDirOffsetX(dirp);
- const int ay = y + rcGetDirOffsetY(dirp);
- const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
- const rcCompactSpan& as = chf.spans[ai];
- ch = rcMax(ch, (int)as.y);
- regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
- if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
- {
- const int ax2 = ax + rcGetDirOffsetX(dir);
- const int ay2 = ay + rcGetDirOffsetY(dir);
- const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
- const rcCompactSpan& as2 = chf.spans[ai2];
- ch = rcMax(ch, (int)as2.y);
- regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
- }
- }
-
- // Check if the vertex is special edge vertex, these vertices will be removed later.
- for (int j = 0; j < 4; ++j)
- {
- const int a = j;
- const int b = (j+1) & 0x3;
- const int c = (j+2) & 0x3;
- const int d = (j+3) & 0x3;
-
- // The vertex is a border vertex there are two same exterior cells in a row,
- // followed by two interior cells and none of the regions are out of bounds.
- const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
- const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
- const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
- const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
- if (twoSameExts && twoInts && intsSameArea && noZeros)
- {
- isBorderVertex = true;
- break;
- }
- }
-
- return ch;
-}
-
-static void walkContour(int x, int y, int i,
- rcCompactHeightfield& chf,
- unsigned char* flags, rcIntArray& points)
-{
- // Choose the first non-connected edge
- unsigned char dir = 0;
- while ((flags[i] & (1 << dir)) == 0)
- dir++;
-
- unsigned char startDir = dir;
- int starti = i;
-
- const unsigned char area = chf.areas[i];
-
- int iter = 0;
- while (++iter < 40000)
- {
- if (flags[i] & (1 << dir))
- {
- // Choose the edge corner
- bool isBorderVertex = false;
- bool isAreaBorder = false;
- int px = x;
- int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
- int pz = y;
- switch(dir)
- {
- case 0: pz++; break;
- case 1: px++; pz++; break;
- case 2: px++; break;
- }
- int r = 0;
- const rcCompactSpan& s = chf.spans[i];
- if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
- {
- const int ax = x + rcGetDirOffsetX(dir);
- const int ay = y + rcGetDirOffsetY(dir);
- const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
- r = (int)chf.spans[ai].reg;
- if (area != chf.areas[ai])
- isAreaBorder = true;
- }
- if (isBorderVertex)
- r |= RC_BORDER_VERTEX;
- if (isAreaBorder)
- r |= RC_AREA_BORDER;
- points.push(px);
- points.push(py);
- points.push(pz);
- points.push(r);
-
- flags[i] &= ~(1 << dir); // Remove visited edges
- dir = (dir+1) & 0x3; // Rotate CW
- }
- else
- {
- int ni = -1;
- const int nx = x + rcGetDirOffsetX(dir);
- const int ny = y + rcGetDirOffsetY(dir);
- const rcCompactSpan& s = chf.spans[i];
- if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
- {
- const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
- ni = (int)nc.index + rcGetCon(s, dir);
- }
- if (ni == -1)
- {
- // Should not happen.
- return;
- }
- x = nx;
- y = ny;
- i = ni;
- dir = (dir+3) & 0x3; // Rotate CCW
- }
-
- if (starti == i && startDir == dir)
- {
- break;
- }
- }
-}
-
-static float distancePtSeg(const int x, const int z,
- const int px, const int pz,
- const int qx, const int qz)
-{
- float pqx = (float)(qx - px);
- float pqz = (float)(qz - pz);
- float dx = (float)(x - px);
- float dz = (float)(z - pz);
- float d = pqx*pqx + pqz*pqz;
- float t = pqx*dx + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = px + t*pqx - x;
- dz = pz + t*pqz - z;
-
- return dx*dx + dz*dz;
-}
-
-static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
- const float maxError, const int maxEdgeLen, const int buildFlags)
-{
- // Add initial points.
- bool hasConnections = false;
- for (int i = 0; i < points.size(); i += 4)
- {
- if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
- {
- hasConnections = true;
- break;
- }
- }
-
- if (hasConnections)
- {
- // The contour has some portals to other regions.
- // Add a new point to every location where the region changes.
- for (int i = 0, ni = points.size()/4; i < ni; ++i)
- {
- int ii = (i+1) % ni;
- const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
- const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
- if (differentRegs || areaBorders)
- {
- simplified.push(points[i*4+0]);
- simplified.push(points[i*4+1]);
- simplified.push(points[i*4+2]);
- simplified.push(i);
- }
- }
- }
-
- if (simplified.size() == 0)
- {
- // If there is no connections at all,
- // create some initial points for the simplification process.
- // Find lower-left and upper-right vertices of the contour.
- int llx = points[0];
- int lly = points[1];
- int llz = points[2];
- int lli = 0;
- int urx = points[0];
- int ury = points[1];
- int urz = points[2];
- int uri = 0;
- for (int i = 0; i < points.size(); i += 4)
- {
- int x = points[i+0];
- int y = points[i+1];
- int z = points[i+2];
- if (x < llx || (x == llx && z < llz))
- {
- llx = x;
- lly = y;
- llz = z;
- lli = i/4;
- }
- if (x > urx || (x == urx && z > urz))
- {
- urx = x;
- ury = y;
- urz = z;
- uri = i/4;
- }
- }
- simplified.push(llx);
- simplified.push(lly);
- simplified.push(llz);
- simplified.push(lli);
-
- simplified.push(urx);
- simplified.push(ury);
- simplified.push(urz);
- simplified.push(uri);
- }
-
- // Add points until all raw points are within
- // error tolerance to the simplified shape.
- const int pn = points.size()/4;
- for (int i = 0; i < simplified.size()/4; )
- {
- int ii = (i+1) % (simplified.size()/4);
-
- int ax = simplified[i*4+0];
- int az = simplified[i*4+2];
- int ai = simplified[i*4+3];
-
- int bx = simplified[ii*4+0];
- int bz = simplified[ii*4+2];
- int bi = simplified[ii*4+3];
-
- // Find maximum deviation from the segment.
- float maxd = 0;
- int maxi = -1;
- int ci, cinc, endi;
-
- // Traverse the segment in lexilogical order so that the
- // max deviation is calculated similarly when traversing
- // opposite segments.
- if (bx > ax || (bx == ax && bz > az))
- {
- cinc = 1;
- ci = (ai+cinc) % pn;
- endi = bi;
- }
- else
- {
- cinc = pn-1;
- ci = (bi+cinc) % pn;
- endi = ai;
- rcSwap(ax, bx);
- rcSwap(az, bz);
- }
-
- // Tessellate only outer edges or edges between areas.
- if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
- (points[ci*4+3] & RC_AREA_BORDER))
- {
- while (ci != endi)
- {
- float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
- if (d > maxd)
- {
- maxd = d;
- maxi = ci;
- }
- ci = (ci+cinc) % pn;
- }
- }
-
-
- // If the max deviation is larger than accepted error,
- // add new point, else continue to next segment.
- if (maxi != -1 && maxd > (maxError*maxError))
- {
- // Add space for the new point.
- simplified.resize(simplified.size()+4);
- const int n = simplified.size()/4;
- for (int j = n-1; j > i; --j)
- {
- simplified[j*4+0] = simplified[(j-1)*4+0];
- simplified[j*4+1] = simplified[(j-1)*4+1];
- simplified[j*4+2] = simplified[(j-1)*4+2];
- simplified[j*4+3] = simplified[(j-1)*4+3];
- }
- // Add the point.
- simplified[(i+1)*4+0] = points[maxi*4+0];
- simplified[(i+1)*4+1] = points[maxi*4+1];
- simplified[(i+1)*4+2] = points[maxi*4+2];
- simplified[(i+1)*4+3] = maxi;
- }
- else
- {
- ++i;
- }
- }
-
- // Split too long edges.
- if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
- {
- for (int i = 0; i < simplified.size()/4; )
- {
- const int ii = (i+1) % (simplified.size()/4);
-
- const int ax = simplified[i*4+0];
- const int az = simplified[i*4+2];
- const int ai = simplified[i*4+3];
-
- const int bx = simplified[ii*4+0];
- const int bz = simplified[ii*4+2];
- const int bi = simplified[ii*4+3];
-
- // Find maximum deviation from the segment.
- int maxi = -1;
- int ci = (ai+1) % pn;
-
- // Tessellate only outer edges or edges between areas.
- bool tess = false;
- // Wall edges.
- if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
- tess = true;
- // Edges between areas.
- if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
- tess = true;
-
- if (tess)
- {
- int dx = bx - ax;
- int dz = bz - az;
- if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
- {
- // Round based on the segments in lexilogical order so that the
- // max tesselation is consistent regardles in which direction
- // segments are traversed.
- const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
- if (n > 1)
- {
- if (bx > ax || (bx == ax && bz > az))
- maxi = (ai + n/2) % pn;
- else
- maxi = (ai + (n+1)/2) % pn;
- }
- }
- }
-
- // If the max deviation is larger than accepted error,
- // add new point, else continue to next segment.
- if (maxi != -1)
- {
- // Add space for the new point.
- simplified.resize(simplified.size()+4);
- const int n = simplified.size()/4;
- for (int j = n-1; j > i; --j)
- {
- simplified[j*4+0] = simplified[(j-1)*4+0];
- simplified[j*4+1] = simplified[(j-1)*4+1];
- simplified[j*4+2] = simplified[(j-1)*4+2];
- simplified[j*4+3] = simplified[(j-1)*4+3];
- }
- // Add the point.
- simplified[(i+1)*4+0] = points[maxi*4+0];
- simplified[(i+1)*4+1] = points[maxi*4+1];
- simplified[(i+1)*4+2] = points[maxi*4+2];
- simplified[(i+1)*4+3] = maxi;
- }
- else
- {
- ++i;
- }
- }
- }
-
- for (int i = 0; i < simplified.size()/4; ++i)
- {
- // The edge vertex flag is take from the current raw point,
- // and the neighbour region is take from the next raw point.
- const int ai = (simplified[i*4+3]+1) % pn;
- const int bi = simplified[i*4+3];
- simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
- }
-
-}
-
-static int calcAreaOfPolygon2D(const int* verts, const int nverts)
-{
- int area = 0;
- for (int i = 0, j = nverts-1; i < nverts; j=i++)
- {
- const int* vi = &verts[i*4];
- const int* vj = &verts[j*4];
- area += vi[0] * vj[2] - vj[0] * vi[2];
- }
- return (area+1) / 2;
-}
-
-// TODO: these are the same as in RecastMesh.cpp, consider using the same.
-// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
-inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
-inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
-
-inline int area2(const int* a, const int* b, const int* c)
-{
- return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
-}
-
-// Exclusive or: true iff exactly one argument is true.
-// The arguments are negated to ensure that they are 0/1
-// values. Then the bitwise Xor operator may apply.
-// (This idea is due to Michael Baldwin.)
-inline bool xorb(bool x, bool y)
-{
- return !x ^ !y;
-}
-
-// Returns true iff c is strictly to the left of the directed
-// line through a to b.
-inline bool left(const int* a, const int* b, const int* c)
-{
- return area2(a, b, c) < 0;
-}
-
-inline bool leftOn(const int* a, const int* b, const int* c)
-{
- return area2(a, b, c) <= 0;
-}
-
-inline bool collinear(const int* a, const int* b, const int* c)
-{
- return area2(a, b, c) == 0;
-}
-
-// Returns true iff ab properly intersects cd: they share
-// a point interior to both segments. The properness of the
-// intersection is ensured by using strict leftness.
-static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
-{
- // Eliminate improper cases.
- if (collinear(a,b,c) || collinear(a,b,d) ||
- collinear(c,d,a) || collinear(c,d,b))
- return false;
-
- return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
-}
-
-// Returns T iff (a,b,c) are collinear and point c lies
-// on the closed segement ab.
-static bool between(const int* a, const int* b, const int* c)
-{
- if (!collinear(a, b, c))
- return false;
- // If ab not vertical, check betweenness on x; else on y.
- if (a[0] != b[0])
- return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
- else
- return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
-}
-
-// Returns true iff segments ab and cd intersect, properly or improperly.
-static bool intersect(const int* a, const int* b, const int* c, const int* d)
-{
- if (intersectProp(a, b, c, d))
- return true;
- else if (between(a, b, c) || between(a, b, d) ||
- between(c, d, a) || between(c, d, b))
- return true;
- else
- return false;
-}
-
-static bool vequal(const int* a, const int* b)
-{
- return a[0] == b[0] && a[2] == b[2];
-}
-
-static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
-{
- // For each edge (k,k+1) of P
- for (int k = 0; k < n; k++)
- {
- int k1 = next(k, n);
- // Skip edges incident to i.
- if (i == k || i == k1)
- continue;
- const int* p0 = &verts[k * 4];
- const int* p1 = &verts[k1 * 4];
- if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
- continue;
-
- if (intersect(d0, d1, p0, p1))
- return true;
- }
- return false;
-}
-
-static bool inCone(int i, int n, const int* verts, const int* pj)
-{
- const int* pi = &verts[i * 4];
- const int* pi1 = &verts[next(i, n) * 4];
- const int* pin1 = &verts[prev(i, n) * 4];
-
- // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
- if (leftOn(pin1, pi, pi1))
- return left(pi, pj, pin1) && left(pj, pi, pi1);
- // Assume (i-1,i,i+1) not collinear.
- // else P[i] is reflex.
- return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
-}
-
-
-static void removeDegenerateSegments(rcIntArray& simplified)
-{
- // Remove adjacent vertices which are equal on xz-plane,
- // or else the triangulator will get confused.
- int npts = simplified.size()/4;
- for (int i = 0; i < npts; ++i)
- {
- int ni = next(i, npts);
-
- if (vequal(&simplified[i*4], &simplified[ni*4]))
- {
- // Degenerate segment, remove.
- for (int j = i; j < simplified.size()/4-1; ++j)
- {
- simplified[j*4+0] = simplified[(j+1)*4+0];
- simplified[j*4+1] = simplified[(j+1)*4+1];
- simplified[j*4+2] = simplified[(j+1)*4+2];
- simplified[j*4+3] = simplified[(j+1)*4+3];
- }
- simplified.resize(simplified.size()-4);
- npts--;
- }
- }
-}
-
-
-static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
-{
- const int maxVerts = ca.nverts + cb.nverts + 2;
- int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
- if (!verts)
- return false;
-
- int nv = 0;
-
- // Copy contour A.
- for (int i = 0; i <= ca.nverts; ++i)
- {
- int* dst = &verts[nv*4];
- const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- nv++;
- }
-
- // Copy contour B
- for (int i = 0; i <= cb.nverts; ++i)
- {
- int* dst = &verts[nv*4];
- const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
- dst[0] = src[0];
- dst[1] = src[1];
- dst[2] = src[2];
- dst[3] = src[3];
- nv++;
- }
-
- rcFree(ca.verts);
- ca.verts = verts;
- ca.nverts = nv;
-
- rcFree(cb.verts);
- cb.verts = 0;
- cb.nverts = 0;
-
- return true;
-}
-
-struct rcContourHole
-{
- rcContour* contour;
- int minx, minz, leftmost;
-};
-
-struct rcContourRegion
-{
- rcContour* outline;
- rcContourHole* holes;
- int nholes;
-};
-
-struct rcPotentialDiagonal
-{
- int vert;
- int dist;
-};
-
-// Finds the lowest leftmost vertex of a contour.
-static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
-{
- *minx = contour->verts[0];
- *minz = contour->verts[2];
- *leftmost = 0;
- for (int i = 1; i < contour->nverts; i++)
- {
- const int x = contour->verts[i*4+0];
- const int z = contour->verts[i*4+2];
- if (x < *minx || (x == *minx && z < *minz))
- {
- *minx = x;
- *minz = z;
- *leftmost = i;
- }
- }
-}
-
-static int compareHoles(const void* va, const void* vb)
-{
- const rcContourHole* a = (const rcContourHole*)va;
- const rcContourHole* b = (const rcContourHole*)vb;
- if (a->minx == b->minx)
- {
- if (a->minz < b->minz)
- return -1;
- if (a->minz > b->minz)
- return 1;
- }
- else
- {
- if (a->minx < b->minx)
- return -1;
- if (a->minx > b->minx)
- return 1;
- }
- return 0;
-}
-
-
-static int compareDiagDist(const void* va, const void* vb)
-{
- const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
- const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
- if (a->dist < b->dist)
- return -1;
- if (a->dist > b->dist)
- return 1;
- return 0;
-}
-
-
-static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
-{
- // Sort holes from left to right.
- for (int i = 0; i < region.nholes; i++)
- findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
-
- qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
-
- int maxVerts = region.outline->nverts;
- for (int i = 0; i < region.nholes; i++)
- maxVerts += region.holes[i].contour->nverts;
-
- rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
- if (!diags)
- {
- ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
- return;
- }
-
- rcContour* outline = region.outline;
-
- // Merge holes into the outline one by one.
- for (int i = 0; i < region.nholes; i++)
- {
- rcContour* hole = region.holes[i].contour;
-
- int index = -1;
- int bestVertex = region.holes[i].leftmost;
- for (int iter = 0; iter < hole->nverts; iter++)
- {
- // Find potential diagonals.
- // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
- // ..o j-1
- // |
- // | * best
- // |
- // j o-----o j+1
- // :
- int ndiags = 0;
- const int* corner = &hole->verts[bestVertex*4];
- for (int j = 0; j < outline->nverts; j++)
- {
- if (inCone(j, outline->nverts, outline->verts, corner))
- {
- int dx = outline->verts[j*4+0] - corner[0];
- int dz = outline->verts[j*4+2] - corner[2];
- diags[ndiags].vert = j;
- diags[ndiags].dist = dx*dx + dz*dz;
- ndiags++;
- }
- }
- // Sort potential diagonals by distance, we want to make the connection as short as possible.
- qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
-
- // Find a diagonal that is not intersecting the outline not the remaining holes.
- index = -1;
- for (int j = 0; j < ndiags; j++)
- {
- const int* pt = &outline->verts[diags[j].vert*4];
- bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
- for (int k = i; k < region.nholes && !intersect; k++)
- intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
- if (!intersect)
- {
- index = diags[j].vert;
- break;
- }
- }
- // If found non-intersecting diagonal, stop looking.
- if (index != -1)
- break;
- // All the potential diagonals for the current vertex were intersecting, try next vertex.
- bestVertex = (bestVertex + 1) % hole->nverts;
- }
-
- if (index == -1)
- {
- ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
- continue;
- }
- if (!mergeContours(*region.outline, *hole, index, bestVertex))
- {
- ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
- continue;
- }
- }
-}
-
-
-/// @par
-///
-/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
-/// parameters control how closely the simplified contours will match the raw contours.
-///
-/// Simplified contours are generated such that the vertices for portals between areas match up.
-/// (They are considered mandatory vertices.)
-///
-/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
-///
-/// See the #rcConfig documentation for more information on the configuration parameters.
-///
-/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
-bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
- const float maxError, const int maxEdgeLen,
- rcContourSet& cset, const int buildFlags)
-{
- rcAssert(ctx);
-
- const int w = chf.width;
- const int h = chf.height;
- const int borderSize = chf.borderSize;
-
- rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
-
- rcVcopy(cset.bmin, chf.bmin);
- rcVcopy(cset.bmax, chf.bmax);
- if (borderSize > 0)
- {
- // If the heightfield was build with bordersize, remove the offset.
- const float pad = borderSize*chf.cs;
- cset.bmin[0] += pad;
- cset.bmin[2] += pad;
- cset.bmax[0] -= pad;
- cset.bmax[2] -= pad;
- }
- cset.cs = chf.cs;
- cset.ch = chf.ch;
- cset.width = chf.width - chf.borderSize*2;
- cset.height = chf.height - chf.borderSize*2;
- cset.borderSize = chf.borderSize;
- cset.maxError = maxError;
-
- int maxContours = rcMax((int)chf.maxRegions, 8);
- cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
- if (!cset.conts)
- return false;
- cset.nconts = 0;
-
- rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
- if (!flags)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
- return false;
- }
-
- ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
-
- // Mark boundaries.
- for (int y = 0; y < h; ++y)
- {
- for (int x = 0; x < w; ++x)
- {
- const rcCompactCell& c = chf.cells[x+y*w];
- for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
- {
- unsigned char res = 0;
- const rcCompactSpan& s = chf.spans[i];
- if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
- {
- flags[i] = 0;
- continue;
- }
- for (int dir = 0; dir < 4; ++dir)
- {
- unsigned short r = 0;
- if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
- {
- const int ax = x + rcGetDirOffsetX(dir);
- const int ay = y + rcGetDirOffsetY(dir);
- const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
- r = chf.spans[ai].reg;
- }
- if (r == chf.spans[i].reg)
- res |= (1 << dir);
- }
- flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
- }
- }
- }
-
- ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
-
- rcIntArray verts(256);
- rcIntArray simplified(64);
-
- for (int y = 0; y < h; ++y)
- {
- for (int x = 0; x < w; ++x)
- {
- const rcCompactCell& c = chf.cells[x+y*w];
- for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
- {
- if (flags[i] == 0 || flags[i] == 0xf)
- {
- flags[i] = 0;
- continue;
- }
- const unsigned short reg = chf.spans[i].reg;
- if (!reg || (reg & RC_BORDER_REG))
- continue;
- const unsigned char area = chf.areas[i];
-
- verts.resize(0);
- simplified.resize(0);
-
- ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
- walkContour(x, y, i, chf, flags, verts);
- ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
-
- ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
- simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
- removeDegenerateSegments(simplified);
- ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
-
-
- // Store region->contour remap info.
- // Create contour.
- if (simplified.size()/4 >= 3)
- {
- if (cset.nconts >= maxContours)
- {
- // Allocate more contours.
- // This happens when a region has holes.
- const int oldMax = maxContours;
- maxContours *= 2;
- rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
- for (int j = 0; j < cset.nconts; ++j)
- {
- newConts[j] = cset.conts[j];
- // Reset source pointers to prevent data deletion.
- cset.conts[j].verts = 0;
- cset.conts[j].rverts = 0;
- }
- rcFree(cset.conts);
- cset.conts = newConts;
-
- ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
- }
-
- rcContour* cont = &cset.conts[cset.nconts++];
-
- cont->nverts = simplified.size()/4;
- cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
- if (!cont->verts)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
- return false;
- }
- memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
- if (borderSize > 0)
- {
- // If the heightfield was build with bordersize, remove the offset.
- for (int j = 0; j < cont->nverts; ++j)
- {
- int* v = &cont->verts[j*4];
- v[0] -= borderSize;
- v[2] -= borderSize;
- }
- }
-
- cont->nrverts = verts.size()/4;
- cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
- if (!cont->rverts)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
- return false;
- }
- memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
- if (borderSize > 0)
- {
- // If the heightfield was build with bordersize, remove the offset.
- for (int j = 0; j < cont->nrverts; ++j)
- {
- int* v = &cont->rverts[j*4];
- v[0] -= borderSize;
- v[2] -= borderSize;
- }
- }
-
- cont->reg = reg;
- cont->area = area;
- }
- }
- }
- }
-
- // Merge holes if needed.
- if (cset.nconts > 0)
- {
- // Calculate winding of all polygons.
- rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
- if (!winding)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
- return false;
- }
- int nholes = 0;
- for (int i = 0; i < cset.nconts; ++i)
- {
- rcContour& cont = cset.conts[i];
- // If the contour is wound backwards, it is a hole.
- winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
- if (winding[i] < 0)
- nholes++;
- }
-
- if (nholes > 0)
- {
- // Collect outline contour and holes contours per region.
- // We assume that there is one outline and multiple holes.
- const int nregions = chf.maxRegions+1;
- rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
- if (!regions)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
- return false;
- }
- memset(regions, 0, sizeof(rcContourRegion)*nregions);
-
- rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
- if (!holes)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
- return false;
- }
- memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
-
- for (int i = 0; i < cset.nconts; ++i)
- {
- rcContour& cont = cset.conts[i];
- // Positively would contours are outlines, negative holes.
- if (winding[i] > 0)
- {
- if (regions[cont.reg].outline)
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
- regions[cont.reg].outline = &cont;
- }
- else
- {
- regions[cont.reg].nholes++;
- }
- }
- int index = 0;
- for (int i = 0; i < nregions; i++)
- {
- if (regions[i].nholes > 0)
- {
- regions[i].holes = &holes[index];
- index += regions[i].nholes;
- regions[i].nholes = 0;
- }
- }
- for (int i = 0; i < cset.nconts; ++i)
- {
- rcContour& cont = cset.conts[i];
- rcContourRegion& reg = regions[cont.reg];
- if (winding[i] < 0)
- reg.holes[reg.nholes++].contour = &cont;
- }
-
- // Finally merge each regions holes into the outline.
- for (int i = 0; i < nregions; i++)
- {
- rcContourRegion& reg = regions[i];
- if (!reg.nholes) continue;
-
- if (reg.outline)
- {
- mergeRegionHoles(ctx, reg);
- }
- else
- {
- // The region does not have an outline.
- // This can happen if the contour becaomes selfoverlapping because of
- // too aggressive simplification settings.
- ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
- }
- }
- }
-
- }
-
- return true;
-}