Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Source/RecastMesh.cpp')
-rw-r--r--extern/recastnavigation/Recast/Source/RecastMesh.cpp1218
1 files changed, 1218 insertions, 0 deletions
diff --git a/extern/recastnavigation/Recast/Source/RecastMesh.cpp b/extern/recastnavigation/Recast/Source/RecastMesh.cpp
new file mode 100644
index 00000000000..38d62904213
--- /dev/null
+++ b/extern/recastnavigation/Recast/Source/RecastMesh.cpp
@@ -0,0 +1,1218 @@
+//
+// Copyright (c) 2009 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastLog.h"
+#include "RecastTimer.h"
+
+
+struct rcEdge
+{
+ unsigned short vert[2];
+ unsigned short polyEdge[2];
+ unsigned short poly[2];
+};
+
+/*static */bool buildMeshAdjacency(unsigned short* polys, const int npolys,
+ const int nverts, const int vertsPerPoly)
+{
+ // Based on code by Eric Lengyel from:
+ // http://www.terathon.com/code/edges.php
+
+ int maxEdgeCount = npolys*vertsPerPoly;
+ unsigned short* firstEdge = new unsigned short[nverts + maxEdgeCount];
+ if (!firstEdge)
+ return false;
+ unsigned short* nextEdge = firstEdge + nverts;
+ int edgeCount = 0;
+
+ rcEdge* edges = new rcEdge[maxEdgeCount];
+ if (!edges)
+ return false;
+
+ for (int i = 0; i < nverts; i++)
+ firstEdge[i] = 0xffff;
+
+ // Invalida indices are marked as 0xffff, the following code
+ // handles them just fine.
+
+ for (int i = 0; i < npolys; ++i)
+ {
+ unsigned short* t = &polys[i*vertsPerPoly*2];
+ for (int j = 0; j < vertsPerPoly; ++j)
+ {
+ unsigned short v0 = t[j];
+ unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == 0xffff) ? t[0] : t[j+1];
+ if (v0 < v1)
+ {
+ rcEdge& edge = edges[edgeCount];
+ edge.vert[0] = v0;
+ edge.vert[1] = v1;
+ edge.poly[0] = (unsigned short)i;
+ edge.polyEdge[0] = (unsigned short)j;
+ edge.poly[1] = (unsigned short)i;
+ edge.polyEdge[1] = 0;
+ // Insert edge
+ nextEdge[edgeCount] = firstEdge[v0];
+ firstEdge[v0] = edgeCount;
+ edgeCount++;
+ }
+ }
+ }
+
+ for (int i = 0; i < npolys; ++i)
+ {
+ unsigned short* t = &polys[i*vertsPerPoly*2];
+ for (int j = 0; j < vertsPerPoly; ++j)
+ {
+ unsigned short v0 = t[j];
+ unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == 0xffff) ? t[0] : t[j+1];
+ if (v0 > v1)
+ {
+ for (unsigned short e = firstEdge[v1]; e != 0xffff; e = nextEdge[e])
+ {
+ rcEdge& edge = edges[e];
+ if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
+ {
+ edge.poly[1] = (unsigned short)i;
+ edge.polyEdge[1] = (unsigned short)j;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Store adjacency
+ for (int i = 0; i < edgeCount; ++i)
+ {
+ const rcEdge& e = edges[i];
+ if (e.poly[0] != e.poly[1])
+ {
+ unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2];
+ unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2];
+ p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1];
+ p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0];
+ }
+ }
+
+ delete [] firstEdge;
+ delete [] edges;
+
+ return true;
+}
+
+
+static const int VERTEX_BUCKET_COUNT = (1<<12);
+
+inline int computeVertexHash(int x, int y, int z)
+{
+ const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
+ const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
+ const unsigned int h3 = 0xcb1ab31f;
+ unsigned int n = h1 * x + h2 * y + h3 * z;
+ return (int)(n & (VERTEX_BUCKET_COUNT-1));
+}
+
+static int addVertex(unsigned short x, unsigned short y, unsigned short z,
+ unsigned short* verts, int* firstVert, int* nextVert, int& nv)
+{
+ int bucket = computeVertexHash(x, 0, z);
+ int i = firstVert[bucket];
+
+ while (i != -1)
+ {
+ const unsigned short* v = &verts[i*3];
+ if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z)
+ return i;
+ i = nextVert[i]; // next
+ }
+
+ // Could not find, create new.
+ i = nv; nv++;
+ unsigned short* v = &verts[i*3];
+ v[0] = x;
+ v[1] = y;
+ v[2] = z;
+ nextVert[i] = firstVert[bucket];
+ firstVert[bucket] = i;
+
+ return i;
+}
+
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
+{
+ return !x ^ !y;
+}
+
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+// Returns T iff (v_i, v_j) is a proper internal *or* external
+// diagonal of P, *ignoring edges incident to v_i and v_j*.
+static bool diagonalie(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
+
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i or j
+ if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
+ {
+ const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
+ const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
+
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Returns true iff the diagonal (i,j) is strictly internal to the
+// polygon P in the neighborhood of the i endpoint.
+static bool inCone(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
+ const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
+ const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+// Returns T iff (v_i, v_j) is a proper internal
+// diagonal of P.
+static bool diagonal(int i, int j, int n, const int* verts, int* indices)
+{
+ return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
+}
+
+int triangulate(int n, const int* verts, int* indices, int* tris)
+{
+ int ntris = 0;
+ int* dst = tris;
+
+ // The last bit of the index is used to indicate if the vertex can be removed.
+ for (int i = 0; i < n; i++)
+ {
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+ if (diagonal(i, i2, n, verts, indices))
+ indices[i1] |= 0x80000000;
+ }
+
+ while (n > 3)
+ {
+ int minLen = -1;
+ int mini = -1;
+ for (int i = 0; i < n; i++)
+ {
+ int i1 = next(i, n);
+ if (indices[i1] & 0x80000000)
+ {
+ const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
+
+ int dx = p2[0] - p0[0];
+ int dy = p2[2] - p0[2];
+ int len = dx*dx + dy*dy;
+
+ if (minLen < 0 || len < minLen)
+ {
+ minLen = len;
+ mini = i;
+ }
+ }
+ }
+
+ if (mini == -1)
+ {
+ // Should not happen.
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "triangulate: Failed to triangulate polygon.");
+/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
+ for (int i = 0; i < n; i++)
+ {
+ printf("%d ", indices[i] & 0x0fffffff);
+ }
+ printf("\n");*/
+ return -ntris;
+ }
+
+ int i = mini;
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+
+ *dst++ = indices[i] & 0x0fffffff;
+ *dst++ = indices[i1] & 0x0fffffff;
+ *dst++ = indices[i2] & 0x0fffffff;
+ ntris++;
+
+ // Removes P[i1] by copying P[i+1]...P[n-1] left one index.
+ n--;
+ for (int k = i1; k < n; k++)
+ indices[k] = indices[k+1];
+
+ if (i1 >= n) i1 = 0;
+ i = prev(i1,n);
+ // Update diagonal flags.
+ if (diagonal(prev(i, n), i1, n, verts, indices))
+ indices[i] |= 0x80000000;
+ else
+ indices[i] &= 0x0fffffff;
+
+ if (diagonal(i, next(i1, n), n, verts, indices))
+ indices[i1] |= 0x80000000;
+ else
+ indices[i1] &= 0x0fffffff;
+ }
+
+ // Append the remaining triangle.
+ *dst++ = indices[0] & 0x0fffffff;
+ *dst++ = indices[1] & 0x0fffffff;
+ *dst++ = indices[2] & 0x0fffffff;
+ ntris++;
+
+ return ntris;
+}
+
+static int countPolyVerts(const unsigned short* p, const int nvp)
+{
+ for (int i = 0; i < nvp; ++i)
+ if (p[i] == 0xffff)
+ return i;
+ return nvp;
+}
+
+inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
+{
+ return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
+ ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
+}
+
+static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
+ const unsigned short* verts, int& ea, int& eb,
+ const int nvp)
+{
+ const int na = countPolyVerts(pa, nvp);
+ const int nb = countPolyVerts(pb, nvp);
+
+ // If the merged polygon would be too big, do not merge.
+ if (na+nb-2 > nvp)
+ return -1;
+
+ // Check if the polygons share an edge.
+ ea = -1;
+ eb = -1;
+
+ for (int i = 0; i < na; ++i)
+ {
+ unsigned short va0 = pa[i];
+ unsigned short va1 = pa[(i+1) % na];
+ if (va0 > va1)
+ rcSwap(va0, va1);
+ for (int j = 0; j < nb; ++j)
+ {
+ unsigned short vb0 = pb[j];
+ unsigned short vb1 = pb[(j+1) % nb];
+ if (vb0 > vb1)
+ rcSwap(vb0, vb1);
+ if (va0 == vb0 && va1 == vb1)
+ {
+ ea = i;
+ eb = j;
+ break;
+ }
+ }
+ }
+
+ // No common edge, cannot merge.
+ if (ea == -1 || eb == -1)
+ return -1;
+
+ // Check to see if the merged polygon would be convex.
+ unsigned short va, vb, vc;
+
+ va = pa[(ea+na-1) % na];
+ vb = pa[ea];
+ vc = pb[(eb+2) % nb];
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
+ return -1;
+
+ va = pb[(eb+nb-1) % nb];
+ vb = pb[eb];
+ vc = pa[(ea+2) % na];
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
+ return -1;
+
+ va = pa[ea];
+ vb = pa[(ea+1)%na];
+
+ int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
+ int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
+
+ return dx*dx + dy*dy;
+}
+
+static void mergePolys(unsigned short* pa, unsigned short* pb,
+ const unsigned short* verts, int ea, int eb,
+ unsigned short* tmp, const int nvp)
+{
+ const int na = countPolyVerts(pa, nvp);
+ const int nb = countPolyVerts(pb, nvp);
+
+ // Merge polygons.
+ memset(tmp, 0xff, sizeof(unsigned short)*nvp);
+ int n = 0;
+ // Add pa
+ for (int i = 0; i < na-1; ++i)
+ tmp[n++] = pa[(ea+1+i) % na];
+ // Add pb
+ for (int i = 0; i < nb-1; ++i)
+ tmp[n++] = pb[(eb+1+i) % nb];
+
+ memcpy(pa, tmp, sizeof(unsigned short)*nvp);
+}
+
+static void pushFront(int v, int* arr, int& an)
+{
+ an++;
+ for (int i = an-1; i > 0; --i) arr[i] = arr[i-1];
+ arr[0] = v;
+}
+
+static void pushBack(int v, int* arr, int& an)
+{
+ arr[an] = v;
+ an++;
+}
+
+static bool removeVertex(rcPolyMesh& mesh, const unsigned short rem, const int maxTris)
+{
+ unsigned short* tmpPoly;
+ int ntris;
+
+ static const int nvp = mesh.nvp;
+
+ int* edges = 0;
+ int nedges = 0;
+ int* hole = 0;
+ int nhole = 0;
+ int* hreg = 0;
+ int nhreg = 0;
+ int* tris = 0;
+ int* tverts = 0;
+ int* thole = 0;
+ unsigned short* polys = 0;
+ unsigned short* pregs = 0;
+ int npolys = 0;
+
+ // Count number of polygons to remove.
+ int nrem = 0;
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ for (int j = 0; j < nvp; ++j)
+ if (p[j] == rem) { nrem++; break; }
+ }
+
+ edges = new int[nrem*nvp*3];
+ if (!edges)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", nrem*nvp*3);
+ goto failure;
+ }
+
+ hole = new int[nrem*nvp];
+ if (!hole)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", nrem*nvp);
+ goto failure;
+ }
+ hreg = new int[nrem*nvp];
+ if (!hreg)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", nrem*nvp);
+ goto failure;
+ }
+
+
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ bool hasRem = false;
+ for (int j = 0; j < nv; ++j)
+ if (p[j] == rem) hasRem = true;
+ if (hasRem)
+ {
+ // Collect edges which does not touch the removed vertex.
+ for (int j = 0, k = nv-1; j < nv; k = j++)
+ {
+ if (p[j] != rem && p[k] != rem)
+ {
+ int* e = &edges[nedges*3];
+ e[0] = p[k];
+ e[1] = p[j];
+ e[2] = mesh.regs[i];
+ nedges++;
+ }
+ }
+ // Remove the polygon.
+ unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
+ memcpy(p,p2,sizeof(unsigned short)*nvp);
+ mesh.regs[i] = mesh.regs[mesh.npolys-1];
+ mesh.npolys--;
+ --i;
+ }
+ }
+
+ // Remove vertex.
+ for (int i = (int)rem; i < mesh.nverts; ++i)
+ {
+ mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
+ mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
+ mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
+ }
+ mesh.nverts--;
+
+ // Adjust indices to match the removed vertex layout.
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ for (int j = 0; j < nv; ++j)
+ if (p[j] > rem) p[j]--;
+ }
+ for (int i = 0; i < nedges; ++i)
+ {
+ if (edges[i*3+0] > rem) edges[i*3+0]--;
+ if (edges[i*3+1] > rem) edges[i*3+1]--;
+ }
+
+ if (nedges == 0)
+ return true;
+
+ hole[nhole] = edges[0];
+ hreg[nhole] = edges[2];
+ nhole++;
+
+ while (nedges)
+ {
+ bool match = false;
+
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int ea = edges[i*3+0];
+ const int eb = edges[i*3+1];
+ const int r = edges[i*3+2];
+ bool add = false;
+ if (hole[0] == eb)
+ {
+ pushFront(ea, hole, nhole);
+ pushFront(r, hreg, nhreg);
+ add = true;
+ }
+ else if (hole[nhole-1] == ea)
+ {
+ pushBack(eb, hole, nhole);
+ pushBack(r, hreg, nhreg);
+ add = true;
+ }
+ if (add)
+ {
+ // Remove edge.
+ edges[i*3+0] = edges[(nedges-1)*3+0];
+ edges[i*3+1] = edges[(nedges-1)*3+1];
+ edges[i*3+2] = edges[(nedges-1)*3+2];
+ --nedges;
+ match = true;
+ --i;
+ }
+ }
+
+ if (!match)
+ break;
+ }
+
+ tris = new int[nhole*3];
+ if (!tris)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
+ goto failure;
+ }
+
+ tverts = new int[nhole*4];
+ if (!tverts)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
+ goto failure;
+ }
+
+ thole = new int[nhole];
+ if (!tverts)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
+ goto failure;
+ }
+
+ // Generate temp vertex array for triangulation.
+ for (int i = 0; i < nhole; ++i)
+ {
+ const int pi = hole[i];
+ tverts[i*4+0] = mesh.verts[pi*3+0];
+ tverts[i*4+1] = mesh.verts[pi*3+1];
+ tverts[i*4+2] = mesh.verts[pi*3+2];
+ tverts[i*4+3] = 0;
+ thole[i] = i;
+ }
+
+ // Triangulate the hole.
+ ntris = triangulate(nhole, &tverts[0], &thole[0], tris);
+
+ // Merge the hole triangles back to polygons.
+ polys = new unsigned short[(ntris+1)*nvp];
+ if (!polys)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
+ goto failure;
+ }
+ pregs = new unsigned short[ntris];
+ if (!pregs)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'pregs' (%d).", ntris);
+ goto failure;
+ }
+
+ tmpPoly = &polys[ntris*nvp];
+
+ // Build initial polygons.
+ memset(polys, 0xff, ntris*nvp*sizeof(unsigned short));
+ for (int j = 0; j < ntris; ++j)
+ {
+ int* t = &tris[j*3];
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
+ {
+ polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
+ polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
+ polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
+ pregs[npolys] = hreg[t[0]];
+ npolys++;
+ }
+ }
+ if (!npolys)
+ return true;
+
+ // Merge polygons.
+ if (nvp > 3)
+ {
+ while (true)
+ {
+ // Find best polygons to merge.
+ int bestMergeVal = 0;
+ int bestPa, bestPb, bestEa, bestEb;
+
+ for (int j = 0; j < npolys-1; ++j)
+ {
+ unsigned short* pj = &polys[j*nvp];
+ for (int k = j+1; k < npolys; ++k)
+ {
+ unsigned short* pk = &polys[k*nvp];
+ int ea, eb;
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
+ if (v > bestMergeVal)
+ {
+ bestMergeVal = v;
+ bestPa = j;
+ bestPb = k;
+ bestEa = ea;
+ bestEb = eb;
+ }
+ }
+ }
+
+ if (bestMergeVal > 0)
+ {
+ // Found best, merge.
+ unsigned short* pa = &polys[bestPa*nvp];
+ unsigned short* pb = &polys[bestPb*nvp];
+ mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp);
+ memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
+ pregs[bestPb] = pregs[npolys-1];
+ npolys--;
+ }
+ else
+ {
+ // Could not merge any polygons, stop.
+ break;
+ }
+ }
+ }
+
+ // Store polygons.
+ for (int i = 0; i < npolys; ++i)
+ {
+ if (mesh.npolys >= maxTris) break;
+ unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
+ memset(p,0xff,sizeof(unsigned short)*nvp*2);
+ for (int j = 0; j < nvp; ++j)
+ p[j] = polys[i*nvp+j];
+ mesh.regs[mesh.npolys] = pregs[i];
+ mesh.npolys++;
+ }
+
+ delete [] edges;
+ delete [] hole;
+ delete [] hreg;
+ delete [] tris;
+ delete [] thole;
+ delete [] tverts;
+ delete [] polys;
+ delete [] pregs;
+
+ return true;
+
+failure:
+ delete [] edges;
+ delete [] hole;
+ delete [] hreg;
+ delete [] tris;
+ delete [] thole;
+ delete [] tverts;
+ delete [] polys;
+ delete [] pregs;
+
+ return false;
+}
+
+
+bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh)
+{
+ unsigned short* tmpPoly;
+ rcTimeVal startTime = rcGetPerformanceTimer();
+ rcTimeVal endTime;
+
+ vcopy(mesh.bmin, cset.bmin);
+ vcopy(mesh.bmax, cset.bmax);
+ mesh.cs = cset.cs;
+ mesh.ch = cset.ch;
+
+ int maxVertices = 0;
+ int maxTris = 0;
+ int maxVertsPerCont = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ maxVertices += cset.conts[i].nverts;
+ maxTris += cset.conts[i].nverts - 2;
+ maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
+ }
+
+ if (maxVertices >= 0xfffe)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
+ return false;
+ }
+
+ unsigned char* vflags = 0;
+ int* nextVert = 0;
+ int* firstVert = 0;
+ int* indices = 0;
+ int* tris = 0;
+ unsigned short* polys = 0;
+
+ vflags = new unsigned char[maxVertices];
+ if (!vflags)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
+ goto failure;
+ }
+ memset(vflags, 0, maxVertices);
+
+ mesh.verts = new unsigned short[maxVertices*3];
+ if (!mesh.verts)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
+ goto failure;
+ }
+ mesh.polys = new unsigned short[maxTris*nvp*2];
+ if (!mesh.polys)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
+ goto failure;
+ }
+ mesh.regs = new unsigned short[maxTris];
+ if (!mesh.regs)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
+ goto failure;
+ }
+ mesh.nverts = 0;
+ mesh.npolys = 0;
+ mesh.nvp = nvp;
+
+ memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
+ memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
+ memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
+
+ nextVert = new int[maxVertices];
+ if (!nextVert)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
+ goto failure;
+ }
+ memset(nextVert, 0, sizeof(int)*maxVertices);
+
+ firstVert = new int[VERTEX_BUCKET_COUNT];
+ if (!firstVert)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
+ goto failure;
+ }
+ for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
+ firstVert[i] = -1;
+
+ indices = new int[maxVertsPerCont];
+ if (!indices)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
+ goto failure;
+ }
+ tris = new int[maxVertsPerCont*3];
+ if (!tris)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
+ goto failure;
+ }
+ polys = new unsigned short[(maxVertsPerCont+1)*nvp];
+ if (!polys)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
+ goto failure;
+ }
+ tmpPoly = &polys[maxVertsPerCont*nvp];
+
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+
+ // Skip empty contours.
+ if (cont.nverts < 3)
+ continue;
+
+ // Triangulate contour
+ for (int j = 0; j < cont.nverts; ++j)
+ indices[j] = j;
+
+ int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
+ if (ntris <= 0)
+ {
+ // Bad triangulation, should not happen.
+/* for (int k = 0; k < cont.nverts; ++k)
+ {
+ const int* v = &cont.verts[k*4];
+ printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
+ if (nBadPos < 100)
+ {
+ badPos[nBadPos*3+0] = v[0];
+ badPos[nBadPos*3+1] = v[1];
+ badPos[nBadPos*3+2] = v[2];
+ nBadPos++;
+ }
+ }*/
+ ntris = -ntris;
+ }
+ // Add and merge vertices.
+ for (int j = 0; j < cont.nverts; ++j)
+ {
+ const int* v = &cont.verts[j*4];
+ indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
+ mesh.verts, firstVert, nextVert, mesh.nverts);
+ if (v[3] & RC_BORDER_VERTEX)
+ {
+ // This vertex should be removed.
+ vflags[indices[j]] = 1;
+ }
+ }
+
+ // Build initial polygons.
+ int npolys = 0;
+ memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
+ for (int j = 0; j < ntris; ++j)
+ {
+ int* t = &tris[j*3];
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
+ {
+ polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
+ polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
+ polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
+ npolys++;
+ }
+ }
+ if (!npolys)
+ continue;
+
+ // Merge polygons.
+ if (nvp > 3)
+ {
+ while (true)
+ {
+ // Find best polygons to merge.
+ int bestMergeVal = 0;
+ int bestPa, bestPb, bestEa, bestEb;
+
+ for (int j = 0; j < npolys-1; ++j)
+ {
+ unsigned short* pj = &polys[j*nvp];
+ for (int k = j+1; k < npolys; ++k)
+ {
+ unsigned short* pk = &polys[k*nvp];
+ int ea, eb;
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
+ if (v > bestMergeVal)
+ {
+ bestMergeVal = v;
+ bestPa = j;
+ bestPb = k;
+ bestEa = ea;
+ bestEb = eb;
+ }
+ }
+ }
+
+ if (bestMergeVal > 0)
+ {
+ // Found best, merge.
+ unsigned short* pa = &polys[bestPa*nvp];
+ unsigned short* pb = &polys[bestPb*nvp];
+ mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp);
+ memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
+ npolys--;
+ }
+ else
+ {
+ // Could not merge any polygons, stop.
+ break;
+ }
+ }
+ }
+
+
+ // Store polygons.
+ for (int j = 0; j < npolys; ++j)
+ {
+ unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
+ unsigned short* q = &polys[j*nvp];
+ for (int k = 0; k < nvp; ++k)
+ p[k] = q[k];
+ mesh.regs[mesh.npolys] = cont.reg;
+ mesh.npolys++;
+ }
+ }
+
+
+ // Remove edge vertices.
+ for (int i = 0; i < mesh.nverts; ++i)
+ {
+ if (vflags[i])
+ {
+ if (!removeVertex(mesh, i, maxTris))
+ goto failure;
+ for (int j = i; j < mesh.nverts-1; ++j)
+ vflags[j] = vflags[j+1];
+ --i;
+ }
+ }
+
+ delete [] vflags;
+ delete [] firstVert;
+ delete [] nextVert;
+ delete [] indices;
+ delete [] tris;
+
+ // Calculate adjacency.
+ if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
+ return false;
+ }
+
+ endTime = rcGetPerformanceTimer();
+
+// if (rcGetLog())
+// rcGetLog()->log(RC_LOG_PROGRESS, "Build polymesh: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
+ if (rcGetBuildTimes())
+ rcGetBuildTimes()->buildPolymesh += rcGetDeltaTimeUsec(startTime, endTime);
+
+ return true;
+
+failure:
+ delete [] vflags;
+ delete [] tmpPoly;
+ delete [] firstVert;
+ delete [] nextVert;
+ delete [] indices;
+ delete [] tris;
+
+ return false;
+}
+
+bool rcMergePolyMeshes(rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
+{
+ if (!nmeshes || !meshes)
+ return true;
+
+ rcTimeVal startTime = rcGetPerformanceTimer();
+ rcTimeVal endTime;
+
+ int* nextVert = 0;
+ int* firstVert = 0;
+ unsigned short* vremap = 0;
+
+ mesh.nvp = meshes[0]->nvp;
+ mesh.cs = meshes[0]->cs;
+ mesh.ch = meshes[0]->ch;
+ vcopy(mesh.bmin, meshes[0]->bmin);
+ vcopy(mesh.bmax, meshes[0]->bmax);
+
+ int maxVerts = 0;
+ int maxPolys = 0;
+ int maxVertsPerMesh = 0;
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ vmin(mesh.bmin, meshes[i]->bmin);
+ vmax(mesh.bmax, meshes[i]->bmax);
+ maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
+ maxVerts += meshes[i]->nverts;
+ maxPolys += meshes[i]->npolys;
+ }
+
+ mesh.nverts = 0;
+ mesh.verts = new unsigned short[maxVerts*3];
+ if (!mesh.verts)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
+ return false;
+ }
+
+ mesh.npolys = 0;
+ mesh.polys = new unsigned short[maxPolys*2*mesh.nvp];
+ if (!mesh.polys)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
+ return false;
+ }
+ memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);
+
+ mesh.regs = new unsigned short[maxPolys];
+ if (!mesh.regs)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
+ return false;
+ }
+ memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
+
+ nextVert = new int[maxVerts];
+ if (!nextVert)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
+ goto failure;
+ }
+ memset(nextVert, 0, sizeof(int)*maxVerts);
+
+ firstVert = new int[VERTEX_BUCKET_COUNT];
+ if (!firstVert)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
+ goto failure;
+ }
+ for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
+ firstVert[i] = -1;
+
+ vremap = new unsigned short[maxVertsPerMesh];
+ if (!vremap)
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
+ goto failure;
+ }
+ memset(nextVert, 0, sizeof(int)*maxVerts);
+
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ const rcPolyMesh* pmesh = meshes[i];
+
+ const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
+ const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
+
+ for (int j = 0; j < pmesh->nverts; ++j)
+ {
+ unsigned short* v = &pmesh->verts[j*3];
+ vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
+ mesh.verts, firstVert, nextVert, mesh.nverts);
+ }
+
+ for (int j = 0; j < pmesh->npolys; ++j)
+ {
+ unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
+ unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
+ mesh.regs[mesh.npolys] = pmesh->regs[j];
+ mesh.npolys++;
+ for (int k = 0; k < mesh.nvp; ++k)
+ {
+ if (src[k] == 0xffff) break;
+ tgt[k] = vremap[src[k]];
+ }
+ }
+ }
+
+ // Calculate adjacency.
+ if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
+ {
+ if (rcGetLog())
+ rcGetLog()->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
+ return false;
+ }
+
+
+ delete [] firstVert;
+ delete [] nextVert;
+ delete [] vremap;
+
+ endTime = rcGetPerformanceTimer();
+
+ if (rcGetBuildTimes())
+ rcGetBuildTimes()->mergePolyMesh += rcGetDeltaTimeUsec(startTime, endTime);
+
+ return true;
+
+failure:
+ delete [] firstVert;
+ delete [] nextVert;
+ delete [] vremap;
+
+ return false;
+}