Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp')
-rw-r--r--extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp681
1 files changed, 450 insertions, 231 deletions
diff --git a/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
index b52da597675..f1270cf2027 100644
--- a/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
+++ b/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
@@ -37,11 +37,12 @@ struct rcHeightPatch
int xmin, ymin, width, height;
};
+
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
-
+
inline float vdistSq2(const float* p, const float* q)
{
const float dx = q[0] - p[0];
@@ -55,7 +56,7 @@ inline float vdist2(const float* p, const float* q)
}
inline float vcross2(const float* p1, const float* p2, const float* p3)
-{
+{
const float u1 = p2[0] - p1[0];
const float v1 = p2[2] - p1[2];
const float u2 = p3[0] - p1[0];
@@ -67,21 +68,27 @@ static bool circumCircle(const float* p1, const float* p2, const float* p3,
float* c, float& r)
{
static const float EPS = 1e-6f;
+ // Calculate the circle relative to p1, to avoid some precision issues.
+ const float v1[3] = {0,0,0};
+ float v2[3], v3[3];
+ rcVsub(v2, p2,p1);
+ rcVsub(v3, p3,p1);
- const float cp = vcross2(p1, p2, p3);
+ const float cp = vcross2(v1, v2, v3);
if (fabsf(cp) > EPS)
{
- const float p1Sq = vdot2(p1,p1);
- const float p2Sq = vdot2(p2,p2);
- const float p3Sq = vdot2(p3,p3);
- c[0] = (p1Sq*(p2[2]-p3[2]) + p2Sq*(p3[2]-p1[2]) + p3Sq*(p1[2]-p2[2])) / (2*cp);
- c[2] = (p1Sq*(p3[0]-p2[0]) + p2Sq*(p1[0]-p3[0]) + p3Sq*(p2[0]-p1[0])) / (2*cp);
- r = vdist2(c, p1);
+ const float v1Sq = vdot2(v1,v1);
+ const float v2Sq = vdot2(v2,v2);
+ const float v3Sq = vdot2(v3,v3);
+ c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
+ c[1] = 0;
+ c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
+ r = vdist2(c, v1);
+ rcVadd(c, c, p1);
return true;
}
-
- c[0] = p1[0];
- c[2] = p1[2];
+
+ rcVcopy(c, p1);
r = 0;
return false;
}
@@ -92,7 +99,7 @@ static float distPtTri(const float* p, const float* a, const float* b, const flo
rcVsub(v0, c,a);
rcVsub(v1, b,a);
rcVsub(v2, p,a);
-
+
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
@@ -177,7 +184,7 @@ static float distToTriMesh(const float* p, const float* verts, const int /*nvert
static float distToPoly(int nvert, const float* verts, const float* p)
{
-
+
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
@@ -195,42 +202,79 @@ static float distToPoly(int nvert, const float* verts, const float* p)
static unsigned short getHeight(const float fx, const float fy, const float fz,
const float /*cs*/, const float ics, const float ch,
- const rcHeightPatch& hp)
+ const int radius, const rcHeightPatch& hp)
{
int ix = (int)floorf(fx*ics + 0.01f);
int iz = (int)floorf(fz*ics + 0.01f);
- ix = rcClamp(ix-hp.xmin, 0, hp.width);
- iz = rcClamp(iz-hp.ymin, 0, hp.height);
+ ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
+ iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
unsigned short h = hp.data[ix+iz*hp.width];
if (h == RC_UNSET_HEIGHT)
{
// Special case when data might be bad.
- // Find nearest neighbour pixel which has valid height.
- const int off[8*2] = { -1,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1};
+ // Walk adjacent cells in a spiral up to 'radius', and look
+ // for a pixel which has a valid height.
+ int x = 1, z = 0, dx = 1, dz = 0;
+ int maxSize = radius * 2 + 1;
+ int maxIter = maxSize * maxSize - 1;
+
+ int nextRingIterStart = 8;
+ int nextRingIters = 16;
+
float dmin = FLT_MAX;
- for (int i = 0; i < 8; ++i)
+ for (int i = 0; i < maxIter; i++)
{
- const int nx = ix+off[i*2+0];
- const int nz = iz+off[i*2+1];
- if (nx < 0 || nz < 0 || nx >= hp.width || nz >= hp.height) continue;
- const unsigned short nh = hp.data[nx+nz*hp.width];
- if (nh == RC_UNSET_HEIGHT) continue;
+ const int nx = ix + x;
+ const int nz = iz + z;
+
+ if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
+ {
+ const unsigned short nh = hp.data[nx + nz*hp.width];
+ if (nh != RC_UNSET_HEIGHT)
+ {
+ const float d = fabsf(nh*ch - fy);
+ if (d < dmin)
+ {
+ h = nh;
+ dmin = d;
+ }
+ }
+ }
- const float d = fabsf(nh*ch - fy);
- if (d < dmin)
+ // We are searching in a grid which looks approximately like this:
+ // __________
+ // |2 ______ 2|
+ // | |1 __ 1| |
+ // | | |__| | |
+ // | |______| |
+ // |__________|
+ // We want to find the best height as close to the center cell as possible. This means that
+ // if we find a height in one of the neighbor cells to the center, we don't want to
+ // expand further out than the 8 neighbors - we want to limit our search to the closest
+ // of these "rings", but the best height in the ring.
+ // For example, the center is just 1 cell. We checked that at the entrance to the function.
+ // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
+ // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
+ // can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
+ // Here we detect if we are about to enter the next ring, and if we are and we have found
+ // a height, we abort the search.
+ if (i + 1 == nextRingIterStart)
{
- h = nh;
- dmin = d;
+ if (h != RC_UNSET_HEIGHT)
+ break;
+
+ nextRingIterStart += nextRingIters;
+ nextRingIters += 8;
}
-
-/* const float dx = (nx+0.5f)*cs - fx;
- const float dz = (nz+0.5f)*cs - fz;
- const float d = dx*dx+dz*dz;
- if (d < dmin)
+
+ if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
{
- h = nh;
- dmin = d;
- } */
+ int tmp = dx;
+ dx = -dz;
+ dz = tmp;
+ }
+ x += dx;
+ z += dz;
}
}
return h;
@@ -239,8 +283,8 @@ static unsigned short getHeight(const float fx, const float fy, const float fz,
enum EdgeValues
{
- UNDEF = -1,
- HULL = -2,
+ EV_UNDEF = -1,
+ EV_HULL = -2,
};
static int findEdge(const int* edges, int nedges, int s, int t)
@@ -251,7 +295,7 @@ static int findEdge(const int* edges, int nedges, int s, int t)
if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
return i;
}
- return UNDEF;
+ return EV_UNDEF;
}
static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
@@ -259,33 +303,33 @@ static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges,
if (nedges >= maxEdges)
{
ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
- return UNDEF;
+ return EV_UNDEF;
}
- // Add edge if not already in the triangulation.
+ // Add edge if not already in the triangulation.
int e = findEdge(edges, nedges, s, t);
- if (e == UNDEF)
+ if (e == EV_UNDEF)
{
- int* e = &edges[nedges*4];
- e[0] = s;
- e[1] = t;
- e[2] = l;
- e[3] = r;
+ int* edge = &edges[nedges*4];
+ edge[0] = s;
+ edge[1] = t;
+ edge[2] = l;
+ edge[3] = r;
return nedges++;
}
else
{
- return UNDEF;
+ return EV_UNDEF;
}
}
static void updateLeftFace(int* e, int s, int t, int f)
{
- if (e[0] == s && e[1] == t && e[2] == UNDEF)
+ if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
e[2] = f;
- else if (e[1] == s && e[0] == t && e[3] == UNDEF)
+ else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
e[3] = f;
-}
+}
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
{
@@ -297,7 +341,7 @@ static int overlapSegSeg2d(const float* a, const float* b, const float* c, const
float a4 = a3 + a2 - a1;
if (a3 * a4 < 0.0f)
return 1;
- }
+ }
return 0;
}
@@ -319,28 +363,28 @@ static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1,
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
{
static const float EPS = 1e-5f;
-
+
int* edge = &edges[e*4];
// Cache s and t.
int s,t;
- if (edge[2] == UNDEF)
+ if (edge[2] == EV_UNDEF)
{
s = edge[0];
t = edge[1];
}
- else if (edge[3] == UNDEF)
+ else if (edge[3] == EV_UNDEF)
{
s = edge[1];
t = edge[0];
}
else
{
- // Edge already completed.
+ // Edge already completed.
return;
}
- // Find best point on left of edge.
+ // Find best point on left of edge.
int pt = npts;
float c[3] = {0,0,0};
float r = -1;
@@ -384,23 +428,23 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
}
- // Add new triangle or update edge info if s-t is on hull.
+ // Add new triangle or update edge info if s-t is on hull.
if (pt < npts)
{
- // Update face information of edge being completed.
+ // Update face information of edge being completed.
updateLeftFace(&edges[e*4], s, t, nfaces);
- // Add new edge or update face info of old edge.
+ // Add new edge or update face info of old edge.
e = findEdge(edges, nedges, pt, s);
- if (e == UNDEF)
- addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, UNDEF);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
else
updateLeftFace(&edges[e*4], pt, s, nfaces);
- // Add new edge or update face info of old edge.
+ // Add new edge or update face info of old edge.
e = findEdge(edges, nedges, t, pt);
- if (e == UNDEF)
- addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, UNDEF);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
else
updateLeftFace(&edges[e*4], t, pt, nfaces);
@@ -408,7 +452,7 @@ static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges
}
else
{
- updateLeftFace(&edges[e*4], s, t, HULL);
+ updateLeftFace(&edges[e*4], s, t, EV_HULL);
}
}
@@ -422,18 +466,18 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
edges.resize(maxEdges*4);
for (int i = 0, j = nhull-1; i < nhull; j=i++)
- addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], HULL, UNDEF);
+ addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
int currentEdge = 0;
while (currentEdge < nedges)
{
- if (edges[currentEdge*4+2] == UNDEF)
+ if (edges[currentEdge*4+2] == EV_UNDEF)
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
- if (edges[currentEdge*4+3] == UNDEF)
+ if (edges[currentEdge*4+3] == EV_UNDEF)
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
currentEdge++;
}
-
+
// Create tris
tris.resize(nfaces*4);
for (int i = 0; i < nfaces*4; ++i)
@@ -488,6 +532,97 @@ static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
}
}
+// Calculate minimum extend of the polygon.
+static float polyMinExtent(const float* verts, const int nverts)
+{
+ float minDist = FLT_MAX;
+ for (int i = 0; i < nverts; i++)
+ {
+ const int ni = (i+1) % nverts;
+ const float* p1 = &verts[i*3];
+ const float* p2 = &verts[ni*3];
+ float maxEdgeDist = 0;
+ for (int j = 0; j < nverts; j++)
+ {
+ if (j == i || j == ni) continue;
+ float d = distancePtSeg2d(&verts[j*3], p1,p2);
+ maxEdgeDist = rcMax(maxEdgeDist, d);
+ }
+ minDist = rcMin(minDist, maxEdgeDist);
+ }
+ return rcSqrt(minDist);
+}
+
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
+{
+ int start = 0, left = 1, right = nhull-1;
+
+ // Start from an ear with shortest perimeter.
+ // This tends to favor well formed triangles as starting point.
+ float dmin = 0;
+ for (int i = 0; i < nhull; i++)
+ {
+ int pi = prev(i, nhull);
+ int ni = next(i, nhull);
+ const float* pv = &verts[hull[pi]*3];
+ const float* cv = &verts[hull[i]*3];
+ const float* nv = &verts[hull[ni]*3];
+ const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
+ if (d < dmin)
+ {
+ start = i;
+ left = ni;
+ right = pi;
+ dmin = d;
+ }
+ }
+
+ // Add first triangle
+ tris.push(hull[start]);
+ tris.push(hull[left]);
+ tris.push(hull[right]);
+ tris.push(0);
+
+ // Triangulate the polygon by moving left or right,
+ // depending on which triangle has shorter perimeter.
+ // This heuristic was chose emprically, since it seems
+ // handle tesselated straight edges well.
+ while (next(left, nhull) != right)
+ {
+ // Check to see if se should advance left or right.
+ int nleft = next(left, nhull);
+ int nright = prev(right, nhull);
+
+ const float* cvleft = &verts[hull[left]*3];
+ const float* nvleft = &verts[hull[nleft]*3];
+ const float* cvright = &verts[hull[right]*3];
+ const float* nvright = &verts[hull[nright]*3];
+ const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
+ const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
+
+ if (dleft < dright)
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nleft]);
+ tris.push(hull[right]);
+ tris.push(0);
+ left = nleft;
+ }
+ else
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nright]);
+ tris.push(hull[right]);
+ tris.push(0);
+ right = nright;
+ }
+ }
+}
+
inline float getJitterX(const int i)
{
@@ -501,9 +636,9 @@ inline float getJitterY(const int i)
static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
const float sampleDist, const float sampleMaxError,
- const rcCompactHeightfield& chf, const rcHeightPatch& hp,
- float* verts, int& nverts, rcIntArray& tris,
- rcIntArray& edges, rcIntArray& samples)
+ const int heightSearchRadius, const rcCompactHeightfield& chf,
+ const rcHeightPatch& hp, float* verts, int& nverts,
+ rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
{
static const int MAX_VERTS = 127;
static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
@@ -511,16 +646,22 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
float edge[(MAX_VERTS_PER_EDGE+1)*3];
int hull[MAX_VERTS];
int nhull = 0;
-
+
nverts = 0;
-
+
for (int i = 0; i < nin; ++i)
rcVcopy(&verts[i*3], &in[i*3]);
nverts = nin;
+ edges.resize(0);
+ tris.resize(0);
+
const float cs = chf.cs;
const float ics = 1.0f/cs;
+ // Calculate minimum extents of the polygon based on input data.
+ float minExtent = polyMinExtent(verts, nverts);
+
// Tessellate outlines.
// This is done in separate pass in order to ensure
// seamless height values across the ply boundaries.
@@ -566,7 +707,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
pos[0] = vj[0] + dx*u;
pos[1] = vj[1] + dy*u;
pos[2] = vj[2] + dz*u;
- pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, hp)*chf.ch;
+ pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
}
// Simplify samples.
int idx[MAX_VERTS_PER_EDGE] = {0,nn};
@@ -579,23 +720,23 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
const float* vb = &edge[b*3];
// Find maximum deviation along the segment.
float maxd = 0;
- int i_max = -1;
+ int maxi = -1;
for (int m = a+1; m < b; ++m)
{
- float d = distancePtSeg(&edge[m*3],va,vb);
- if (d > maxd)
+ float dev = distancePtSeg(&edge[m*3],va,vb);
+ if (dev > maxd)
{
- maxd = d;
- i_max = m;
+ maxd = dev;
+ maxi = m;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
- if (i_max != -1 && maxd > rcSqr(sampleMaxError))
+ if (maxi != -1 && maxd > rcSqr(sampleMaxError))
{
for (int m = nidx; m > k; --m)
idx[m] = idx[m-1];
- idx[k+1] = i_max;
+ idx[k+1] = maxi;
nidx++;
}
else
@@ -627,27 +768,26 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
}
}
-
+ // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
+ if (minExtent < sampleDist*2)
+ {
+ triangulateHull(nverts, verts, nhull, hull, tris);
+ return true;
+ }
+
// Tessellate the base mesh.
- edges.resize(0);
- tris.resize(0);
-
- delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
+ // We're using the triangulateHull instead of delaunayHull as it tends to
+ // create a bit better triangulation for long thing triangles when there
+ // are no internal points.
+ triangulateHull(nverts, verts, nhull, hull, tris);
if (tris.size() == 0)
{
// Could not triangulate the poly, make sure there is some valid data there.
- ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon, adding default data.");
- for (int i = 2; i < nverts; ++i)
- {
- tris.push(0);
- tris.push(i-1);
- tris.push(i);
- tris.push(0);
- }
+ ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
return true;
}
-
+
if (sampleDist > 0)
{
// Create sample locations in a grid.
@@ -675,12 +815,12 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
// Make sure the samples are not too close to the edges.
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
samples.push(x);
- samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, hp));
+ samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
samples.push(z);
samples.push(0); // Not added
}
}
-
+
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
@@ -689,7 +829,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
{
if (nverts >= MAX_VERTS)
break;
-
+
// Find sample with most error.
float bestpt[3] = {0,0,0};
float bestd = 0;
@@ -727,45 +867,38 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
edges.resize(0);
tris.resize(0);
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
- }
+ }
}
-
+
const int ntris = tris.size()/4;
if (ntris > MAX_TRIS)
{
tris.resize(MAX_TRIS*4);
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
}
-
+
return true;
}
-static void getHeightData(const rcCompactHeightfield& chf,
- const unsigned short* poly, const int npoly,
- const unsigned short* verts, const int bs,
- rcHeightPatch& hp, rcIntArray& stack)
+static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& array)
{
- // Floodfill the heightfield to get 2D height data,
- // starting at vertex locations as seeds.
-
// Note: Reads to the compact heightfield are offset by border size (bs)
// since border size offset is already removed from the polymesh vertices.
- memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
-
- stack.resize(0);
-
static const int offset[9*2] =
{
0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
};
- // Use poly vertices as seed points for the flood fill.
- for (int j = 0; j < npoly; ++j)
+ // Find cell closest to a poly vertex
+ int startCellX = 0, startCellY = 0, startSpanIndex = -1;
+ int dmin = RC_UNSET_HEIGHT;
+ for (int j = 0; j < npoly && dmin > 0; ++j)
{
- int cx = 0, cz = 0, ci =-1;
- int dmin = RC_UNSET_HEIGHT;
- for (int k = 0; k < 9; ++k)
+ for (int k = 0; k < 9 && dmin > 0; ++k)
{
const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
const int ay = (int)verts[poly[j]*3+1];
@@ -775,118 +908,210 @@ static void getHeightData(const rcCompactHeightfield& chf,
continue;
const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
- for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int d = rcAbs(ay - (int)s.y);
if (d < dmin)
{
- cx = ax;
- cz = az;
- ci = i;
+ startCellX = ax;
+ startCellY = az;
+ startSpanIndex = i;
dmin = d;
}
}
}
- if (ci != -1)
- {
- stack.push(cx);
- stack.push(cz);
- stack.push(ci);
- }
}
- // Find center of the polygon using flood fill.
- int pcx = 0, pcz = 0;
+ rcAssert(startSpanIndex != -1);
+ // Find center of the polygon
+ int pcx = 0, pcy = 0;
for (int j = 0; j < npoly; ++j)
{
pcx += (int)verts[poly[j]*3+0];
- pcz += (int)verts[poly[j]*3+2];
+ pcy += (int)verts[poly[j]*3+2];
}
pcx /= npoly;
- pcz /= npoly;
-
- for (int i = 0; i < stack.size(); i += 3)
- {
- int cx = stack[i+0];
- int cy = stack[i+1];
- int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
- hp.data[idx] = 1;
- }
+ pcy /= npoly;
- while (stack.size() > 0)
+ // Use seeds array as a stack for DFS
+ array.resize(0);
+ array.push(startCellX);
+ array.push(startCellY);
+ array.push(startSpanIndex);
+
+ int dirs[] = { 0, 1, 2, 3 };
+ memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
+ // DFS to move to the center. Note that we need a DFS here and can not just move
+ // directly towards the center without recording intermediate nodes, even though the polygons
+ // are convex. In very rare we can get stuck due to contour simplification if we do not
+ // record nodes.
+ int cx = -1, cy = -1, ci = -1;
+ while (true)
{
- int ci = stack.pop();
- int cy = stack.pop();
- int cx = stack.pop();
-
- // Check if close to center of the polygon.
- if (rcAbs(cx-pcx) <= 1 && rcAbs(cy-pcz) <= 1)
+ if (array.size() < 3)
{
- stack.resize(0);
- stack.push(cx);
- stack.push(cy);
- stack.push(ci);
+ ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
break;
}
-
+
+ ci = array.pop();
+ cy = array.pop();
+ cx = array.pop();
+
+ if (cx == pcx && cy == pcy)
+ break;
+
+ // If we are already at the correct X-position, prefer direction
+ // directly towards the center in the Y-axis; otherwise prefer
+ // direction in the X-axis
+ int directDir;
+ if (cx == pcx)
+ directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
+ else
+ directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
+
+ // Push the direct dir last so we start with this on next iteration
+ rcSwap(dirs[directDir], dirs[3]);
+
const rcCompactSpan& cs = chf.spans[ci];
-
- for (int dir = 0; dir < 4; ++dir)
+ for (int i = 0; i < 4; i++)
{
- if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
-
- const int ax = cx + rcGetDirOffsetX(dir);
- const int ay = cy + rcGetDirOffsetY(dir);
-
- if (ax < hp.xmin || ax >= (hp.xmin+hp.width) ||
- ay < hp.ymin || ay >= (hp.ymin+hp.height))
+ int dir = dirs[i];
+ if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
continue;
-
- if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != 0)
+
+ int newX = cx + rcGetDirOffsetX(dir);
+ int newY = cy + rcGetDirOffsetY(dir);
+
+ int hpx = newX - hp.xmin;
+ int hpy = newY - hp.ymin;
+ if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
continue;
-
- const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
- int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
- hp.data[idx] = 1;
-
- stack.push(ax);
- stack.push(ay);
- stack.push(ai);
+ if (hp.data[hpx+hpy*hp.width] != 0)
+ continue;
+
+ hp.data[hpx+hpy*hp.width] = 1;
+ array.push(newX);
+ array.push(newY);
+ array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
}
+
+ rcSwap(dirs[directDir], dirs[3]);
}
+ array.resize(0);
+ // getHeightData seeds are given in coordinates with borders
+ array.push(cx+bs);
+ array.push(cy+bs);
+ array.push(ci);
+
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+ const rcCompactSpan& cs = chf.spans[ci];
+ hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
+}
+
- // Mark start locations.
- for (int i = 0; i < stack.size(); i += 3)
+static void push3(rcIntArray& queue, int v1, int v2, int v3)
+{
+ queue.resize(queue.size() + 3);
+ queue[queue.size() - 3] = v1;
+ queue[queue.size() - 2] = v2;
+ queue[queue.size() - 1] = v3;
+}
+
+static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& queue,
+ int region)
+{
+ // Note: Reads to the compact heightfield are offset by border size (bs)
+ // since border size offset is already removed from the polymesh vertices.
+
+ queue.resize(0);
+ // Set all heights to RC_UNSET_HEIGHT.
+ memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+
+ bool empty = true;
+
+ // We cannot sample from this poly if it was created from polys
+ // of different regions. If it was then it could potentially be overlapping
+ // with polys of that region and the heights sampled here could be wrong.
+ if (region != RC_MULTIPLE_REGS)
{
- int cx = stack[i+0];
- int cy = stack[i+1];
- int ci = stack[i+2];
- int idx = cx-hp.xmin+(cy-hp.ymin)*hp.width;
- const rcCompactSpan& cs = chf.spans[ci];
- hp.data[idx] = cs.y;
+ // Copy the height from the same region, and mark region borders
+ // as seed points to fill the rest.
+ for (int hy = 0; hy < hp.height; hy++)
+ {
+ int y = hp.ymin + hy + bs;
+ for (int hx = 0; hx < hp.width; hx++)
+ {
+ int x = hp.xmin + hx + bs;
+ const rcCompactCell& c = chf.cells[x + y*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (s.reg == region)
+ {
+ // Store height
+ hp.data[hx + hy*hp.width] = s.y;
+ empty = false;
+
+ // If any of the neighbours is not in same region,
+ // add the current location as flood fill start
+ bool border = false;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (as.reg != region)
+ {
+ border = true;
+ break;
+ }
+ }
+ }
+ if (border)
+ push3(queue, x, y, i);
+ break;
+ }
+ }
+ }
+ }
}
+ // if the polygon does not contain any points from the current region (rare, but happens)
+ // or if it could potentially be overlapping polygons of the same region,
+ // then use the center as the seed point.
+ if (empty)
+ seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
+
static const int RETRACT_SIZE = 256;
int head = 0;
- while (head*3 < stack.size())
+ // We assume the seed is centered in the polygon, so a BFS to collect
+ // height data will ensure we do not move onto overlapping polygons and
+ // sample wrong heights.
+ while (head*3 < queue.size())
{
- int cx = stack[head*3+0];
- int cy = stack[head*3+1];
- int ci = stack[head*3+2];
+ int cx = queue[head*3+0];
+ int cy = queue[head*3+1];
+ int ci = queue[head*3+2];
head++;
if (head >= RETRACT_SIZE)
{
head = 0;
- if (stack.size() > RETRACT_SIZE*3)
- memmove(&stack[0], &stack[RETRACT_SIZE*3], sizeof(int)*(stack.size()-RETRACT_SIZE*3));
- stack.resize(stack.size()-RETRACT_SIZE*3);
+ if (queue.size() > RETRACT_SIZE*3)
+ memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
+ queue.resize(queue.size()-RETRACT_SIZE*3);
}
-
+
const rcCompactSpan& cs = chf.spans[ci];
for (int dir = 0; dir < 4; ++dir)
{
@@ -894,26 +1119,23 @@ static void getHeightData(const rcCompactHeightfield& chf,
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
+ const int hx = ax - hp.xmin - bs;
+ const int hy = ay - hp.ymin - bs;
- if (ax < hp.xmin || ax >= (hp.xmin+hp.width) ||
- ay < hp.ymin || ay >= (hp.ymin+hp.height))
+ if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
continue;
- if (hp.data[ax-hp.xmin+(ay-hp.ymin)*hp.width] != RC_UNSET_HEIGHT)
+ if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
continue;
- const int ai = (int)chf.cells[(ax+bs)+(ay+bs)*chf.width].index + rcGetCon(cs, dir);
-
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
const rcCompactSpan& as = chf.spans[ai];
- int idx = ax-hp.xmin+(ay-hp.ymin)*hp.width;
- hp.data[idx] = as.y;
-
- stack.push(ax);
- stack.push(ay);
- stack.push(ai);
+
+ hp.data[hx + hy*hp.width] = as.y;
+
+ push3(queue, ax, ay, ai);
}
}
-
}
static unsigned char getEdgeFlags(const float* va, const float* vb,
@@ -923,7 +1145,7 @@ static unsigned char getEdgeFlags(const float* va, const float* vb,
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
- if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
+ if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
@@ -951,8 +1173,8 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
{
rcAssert(ctx);
- ctx->startTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
-
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
+
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
@@ -961,23 +1183,24 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
const float ch = mesh.ch;
const float* orig = mesh.bmin;
const int borderSize = mesh.borderSize;
+ const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
rcIntArray edges(64);
rcIntArray tris(512);
- rcIntArray stack(512);
+ rcIntArray arr(512);
rcIntArray samples(512);
float verts[256*3];
rcHeightPatch hp;
int nPolyVerts = 0;
int maxhw = 0, maxhh = 0;
- rcScopedDelete<int> bounds = (int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP);
+ rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
if (!bounds)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
return false;
}
- rcScopedDelete<float> poly = (float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP);
+ rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
if (!poly)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
@@ -1015,7 +1238,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
maxhh = rcMax(maxhh, ymax-ymin);
}
- hp.data = (unsigned short *)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
+ hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
if (!hp.data)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
@@ -1031,10 +1254,10 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
return false;
}
-
+
int vcap = nPolyVerts+nPolyVerts/2;
int tcap = vcap*2;
-
+
dmesh.nverts = 0;
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!dmesh.verts)
@@ -1043,7 +1266,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
return false;
}
dmesh.ntris = 0;
- dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char*)*tcap*4, RC_ALLOC_PERM);
+ dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
if (!dmesh.tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
@@ -1071,18 +1294,19 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
hp.ymin = bounds[i*4+2];
hp.width = bounds[i*4+1]-bounds[i*4+0];
hp.height = bounds[i*4+3]-bounds[i*4+2];
- getHeightData(chf, p, npoly, mesh.verts, borderSize, hp, stack);
+ getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
// Build detail mesh.
int nverts = 0;
if (!buildPolyDetail(ctx, poly, npoly,
sampleDist, sampleMaxError,
- chf, hp, verts, nverts, tris,
+ heightSearchRadius, chf, hp,
+ verts, nverts, tris,
edges, samples))
{
return false;
}
-
+
// Move detail verts to world space.
for (int j = 0; j < nverts; ++j)
{
@@ -1097,21 +1321,21 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
poly[j*3+1] += orig[1];
poly[j*3+2] += orig[2];
}
-
+
// Store detail submesh.
const int ntris = tris.size()/4;
-
+
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned int)nverts;
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
- dmesh.meshes[i*4+3] = (unsigned int)ntris;
+ dmesh.meshes[i*4+3] = (unsigned int)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
-
+
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!newv)
{
@@ -1157,9 +1381,7 @@ bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompa
dmesh.ntris++;
}
}
-
- ctx->stopTimer(RC_TIMER_BUILD_POLYMESHDETAIL);
-
+
return true;
}
@@ -1168,12 +1390,12 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
{
rcAssert(ctx);
- ctx->startTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
-
+ rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
+
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
-
+
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
@@ -1181,7 +1403,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
-
+
mesh.nmeshes = 0;
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
if (!mesh.meshes)
@@ -1189,7 +1411,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
-
+
mesh.ntris = 0;
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
if (!mesh.tris)
@@ -1197,7 +1419,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
-
+
mesh.nverts = 0;
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
if (!mesh.verts)
@@ -1221,7 +1443,7 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
dst[3] = src[3];
mesh.nmeshes++;
}
-
+
for (int k = 0; k < dm->nverts; ++k)
{
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
@@ -1236,9 +1458,6 @@ bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int
mesh.ntris++;
}
}
-
- ctx->stopTimer(RC_TIMER_MERGE_POLYMESHDETAIL);
return true;
}
-