Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp')
-rw-r--r--extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp1463
1 files changed, 0 insertions, 1463 deletions
diff --git a/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
deleted file mode 100644
index f1270cf2027..00000000000
--- a/extern/recastnavigation/Recast/Source/RecastMeshDetail.cpp
+++ /dev/null
@@ -1,1463 +0,0 @@
-//
-// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
-//
-// This software is provided 'as-is', without any express or implied
-// warranty. In no event will the authors be held liable for any damages
-// arising from the use of this software.
-// Permission is granted to anyone to use this software for any purpose,
-// including commercial applications, and to alter it and redistribute it
-// freely, subject to the following restrictions:
-// 1. The origin of this software must not be misrepresented; you must not
-// claim that you wrote the original software. If you use this software
-// in a product, an acknowledgment in the product documentation would be
-// appreciated but is not required.
-// 2. Altered source versions must be plainly marked as such, and must not be
-// misrepresented as being the original software.
-// 3. This notice may not be removed or altered from any source distribution.
-//
-
-#include <float.h>
-#define _USE_MATH_DEFINES
-#include <math.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include "Recast.h"
-#include "RecastAlloc.h"
-#include "RecastAssert.h"
-
-
-static const unsigned RC_UNSET_HEIGHT = 0xffff;
-
-struct rcHeightPatch
-{
- inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
- inline ~rcHeightPatch() { rcFree(data); }
- unsigned short* data;
- int xmin, ymin, width, height;
-};
-
-
-inline float vdot2(const float* a, const float* b)
-{
- return a[0]*b[0] + a[2]*b[2];
-}
-
-inline float vdistSq2(const float* p, const float* q)
-{
- const float dx = q[0] - p[0];
- const float dy = q[2] - p[2];
- return dx*dx + dy*dy;
-}
-
-inline float vdist2(const float* p, const float* q)
-{
- return sqrtf(vdistSq2(p,q));
-}
-
-inline float vcross2(const float* p1, const float* p2, const float* p3)
-{
- const float u1 = p2[0] - p1[0];
- const float v1 = p2[2] - p1[2];
- const float u2 = p3[0] - p1[0];
- const float v2 = p3[2] - p1[2];
- return u1 * v2 - v1 * u2;
-}
-
-static bool circumCircle(const float* p1, const float* p2, const float* p3,
- float* c, float& r)
-{
- static const float EPS = 1e-6f;
- // Calculate the circle relative to p1, to avoid some precision issues.
- const float v1[3] = {0,0,0};
- float v2[3], v3[3];
- rcVsub(v2, p2,p1);
- rcVsub(v3, p3,p1);
-
- const float cp = vcross2(v1, v2, v3);
- if (fabsf(cp) > EPS)
- {
- const float v1Sq = vdot2(v1,v1);
- const float v2Sq = vdot2(v2,v2);
- const float v3Sq = vdot2(v3,v3);
- c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
- c[1] = 0;
- c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
- r = vdist2(c, v1);
- rcVadd(c, c, p1);
- return true;
- }
-
- rcVcopy(c, p1);
- r = 0;
- return false;
-}
-
-static float distPtTri(const float* p, const float* a, const float* b, const float* c)
-{
- float v0[3], v1[3], v2[3];
- rcVsub(v0, c,a);
- rcVsub(v1, b,a);
- rcVsub(v2, p,a);
-
- const float dot00 = vdot2(v0, v0);
- const float dot01 = vdot2(v0, v1);
- const float dot02 = vdot2(v0, v2);
- const float dot11 = vdot2(v1, v1);
- const float dot12 = vdot2(v1, v2);
-
- // Compute barycentric coordinates
- const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
- const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
- float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
-
- // If point lies inside the triangle, return interpolated y-coord.
- static const float EPS = 1e-4f;
- if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
- {
- const float y = a[1] + v0[1]*u + v1[1]*v;
- return fabsf(y-p[1]);
- }
- return FLT_MAX;
-}
-
-static float distancePtSeg(const float* pt, const float* p, const float* q)
-{
- float pqx = q[0] - p[0];
- float pqy = q[1] - p[1];
- float pqz = q[2] - p[2];
- float dx = pt[0] - p[0];
- float dy = pt[1] - p[1];
- float dz = pt[2] - p[2];
- float d = pqx*pqx + pqy*pqy + pqz*pqz;
- float t = pqx*dx + pqy*dy + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = p[0] + t*pqx - pt[0];
- dy = p[1] + t*pqy - pt[1];
- dz = p[2] + t*pqz - pt[2];
-
- return dx*dx + dy*dy + dz*dz;
-}
-
-static float distancePtSeg2d(const float* pt, const float* p, const float* q)
-{
- float pqx = q[0] - p[0];
- float pqz = q[2] - p[2];
- float dx = pt[0] - p[0];
- float dz = pt[2] - p[2];
- float d = pqx*pqx + pqz*pqz;
- float t = pqx*dx + pqz*dz;
- if (d > 0)
- t /= d;
- if (t < 0)
- t = 0;
- else if (t > 1)
- t = 1;
-
- dx = p[0] + t*pqx - pt[0];
- dz = p[2] + t*pqz - pt[2];
-
- return dx*dx + dz*dz;
-}
-
-static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
-{
- float dmin = FLT_MAX;
- for (int i = 0; i < ntris; ++i)
- {
- const float* va = &verts[tris[i*4+0]*3];
- const float* vb = &verts[tris[i*4+1]*3];
- const float* vc = &verts[tris[i*4+2]*3];
- float d = distPtTri(p, va,vb,vc);
- if (d < dmin)
- dmin = d;
- }
- if (dmin == FLT_MAX) return -1;
- return dmin;
-}
-
-static float distToPoly(int nvert, const float* verts, const float* p)
-{
-
- float dmin = FLT_MAX;
- int i, j, c = 0;
- for (i = 0, j = nvert-1; i < nvert; j = i++)
- {
- const float* vi = &verts[i*3];
- const float* vj = &verts[j*3];
- if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
- (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
- c = !c;
- dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
- }
- return c ? -dmin : dmin;
-}
-
-
-static unsigned short getHeight(const float fx, const float fy, const float fz,
- const float /*cs*/, const float ics, const float ch,
- const int radius, const rcHeightPatch& hp)
-{
- int ix = (int)floorf(fx*ics + 0.01f);
- int iz = (int)floorf(fz*ics + 0.01f);
- ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
- iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
- unsigned short h = hp.data[ix+iz*hp.width];
- if (h == RC_UNSET_HEIGHT)
- {
- // Special case when data might be bad.
- // Walk adjacent cells in a spiral up to 'radius', and look
- // for a pixel which has a valid height.
- int x = 1, z = 0, dx = 1, dz = 0;
- int maxSize = radius * 2 + 1;
- int maxIter = maxSize * maxSize - 1;
-
- int nextRingIterStart = 8;
- int nextRingIters = 16;
-
- float dmin = FLT_MAX;
- for (int i = 0; i < maxIter; i++)
- {
- const int nx = ix + x;
- const int nz = iz + z;
-
- if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
- {
- const unsigned short nh = hp.data[nx + nz*hp.width];
- if (nh != RC_UNSET_HEIGHT)
- {
- const float d = fabsf(nh*ch - fy);
- if (d < dmin)
- {
- h = nh;
- dmin = d;
- }
- }
- }
-
- // We are searching in a grid which looks approximately like this:
- // __________
- // |2 ______ 2|
- // | |1 __ 1| |
- // | | |__| | |
- // | |______| |
- // |__________|
- // We want to find the best height as close to the center cell as possible. This means that
- // if we find a height in one of the neighbor cells to the center, we don't want to
- // expand further out than the 8 neighbors - we want to limit our search to the closest
- // of these "rings", but the best height in the ring.
- // For example, the center is just 1 cell. We checked that at the entrance to the function.
- // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
- // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
- // can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
- // Here we detect if we are about to enter the next ring, and if we are and we have found
- // a height, we abort the search.
- if (i + 1 == nextRingIterStart)
- {
- if (h != RC_UNSET_HEIGHT)
- break;
-
- nextRingIterStart += nextRingIters;
- nextRingIters += 8;
- }
-
- if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
- {
- int tmp = dx;
- dx = -dz;
- dz = tmp;
- }
- x += dx;
- z += dz;
- }
- }
- return h;
-}
-
-
-enum EdgeValues
-{
- EV_UNDEF = -1,
- EV_HULL = -2,
-};
-
-static int findEdge(const int* edges, int nedges, int s, int t)
-{
- for (int i = 0; i < nedges; i++)
- {
- const int* e = &edges[i*4];
- if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
- return i;
- }
- return EV_UNDEF;
-}
-
-static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
-{
- if (nedges >= maxEdges)
- {
- ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
- return EV_UNDEF;
- }
-
- // Add edge if not already in the triangulation.
- int e = findEdge(edges, nedges, s, t);
- if (e == EV_UNDEF)
- {
- int* edge = &edges[nedges*4];
- edge[0] = s;
- edge[1] = t;
- edge[2] = l;
- edge[3] = r;
- return nedges++;
- }
- else
- {
- return EV_UNDEF;
- }
-}
-
-static void updateLeftFace(int* e, int s, int t, int f)
-{
- if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
- e[2] = f;
- else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
- e[3] = f;
-}
-
-static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
-{
- const float a1 = vcross2(a, b, d);
- const float a2 = vcross2(a, b, c);
- if (a1*a2 < 0.0f)
- {
- float a3 = vcross2(c, d, a);
- float a4 = a3 + a2 - a1;
- if (a3 * a4 < 0.0f)
- return 1;
- }
- return 0;
-}
-
-static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
-{
- for (int i = 0; i < nedges; ++i)
- {
- const int s0 = edges[i*4+0];
- const int t0 = edges[i*4+1];
- // Same or connected edges do not overlap.
- if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
- continue;
- if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
- return true;
- }
- return false;
-}
-
-static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
-{
- static const float EPS = 1e-5f;
-
- int* edge = &edges[e*4];
-
- // Cache s and t.
- int s,t;
- if (edge[2] == EV_UNDEF)
- {
- s = edge[0];
- t = edge[1];
- }
- else if (edge[3] == EV_UNDEF)
- {
- s = edge[1];
- t = edge[0];
- }
- else
- {
- // Edge already completed.
- return;
- }
-
- // Find best point on left of edge.
- int pt = npts;
- float c[3] = {0,0,0};
- float r = -1;
- for (int u = 0; u < npts; ++u)
- {
- if (u == s || u == t) continue;
- if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
- {
- if (r < 0)
- {
- // The circle is not updated yet, do it now.
- pt = u;
- circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
- continue;
- }
- const float d = vdist2(c, &pts[u*3]);
- const float tol = 0.001f;
- if (d > r*(1+tol))
- {
- // Outside current circumcircle, skip.
- continue;
- }
- else if (d < r*(1-tol))
- {
- // Inside safe circumcircle, update circle.
- pt = u;
- circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
- }
- else
- {
- // Inside epsilon circum circle, do extra tests to make sure the edge is valid.
- // s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
- if (overlapEdges(pts, edges, nedges, s,u))
- continue;
- if (overlapEdges(pts, edges, nedges, t,u))
- continue;
- // Edge is valid.
- pt = u;
- circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
- }
- }
- }
-
- // Add new triangle or update edge info if s-t is on hull.
- if (pt < npts)
- {
- // Update face information of edge being completed.
- updateLeftFace(&edges[e*4], s, t, nfaces);
-
- // Add new edge or update face info of old edge.
- e = findEdge(edges, nedges, pt, s);
- if (e == EV_UNDEF)
- addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
- else
- updateLeftFace(&edges[e*4], pt, s, nfaces);
-
- // Add new edge or update face info of old edge.
- e = findEdge(edges, nedges, t, pt);
- if (e == EV_UNDEF)
- addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
- else
- updateLeftFace(&edges[e*4], t, pt, nfaces);
-
- nfaces++;
- }
- else
- {
- updateLeftFace(&edges[e*4], s, t, EV_HULL);
- }
-}
-
-static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
- const int nhull, const int* hull,
- rcIntArray& tris, rcIntArray& edges)
-{
- int nfaces = 0;
- int nedges = 0;
- const int maxEdges = npts*10;
- edges.resize(maxEdges*4);
-
- for (int i = 0, j = nhull-1; i < nhull; j=i++)
- addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
-
- int currentEdge = 0;
- while (currentEdge < nedges)
- {
- if (edges[currentEdge*4+2] == EV_UNDEF)
- completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
- if (edges[currentEdge*4+3] == EV_UNDEF)
- completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
- currentEdge++;
- }
-
- // Create tris
- tris.resize(nfaces*4);
- for (int i = 0; i < nfaces*4; ++i)
- tris[i] = -1;
-
- for (int i = 0; i < nedges; ++i)
- {
- const int* e = &edges[i*4];
- if (e[3] >= 0)
- {
- // Left face
- int* t = &tris[e[3]*4];
- if (t[0] == -1)
- {
- t[0] = e[0];
- t[1] = e[1];
- }
- else if (t[0] == e[1])
- t[2] = e[0];
- else if (t[1] == e[0])
- t[2] = e[1];
- }
- if (e[2] >= 0)
- {
- // Right
- int* t = &tris[e[2]*4];
- if (t[0] == -1)
- {
- t[0] = e[1];
- t[1] = e[0];
- }
- else if (t[0] == e[0])
- t[2] = e[1];
- else if (t[1] == e[1])
- t[2] = e[0];
- }
- }
-
- for (int i = 0; i < tris.size()/4; ++i)
- {
- int* t = &tris[i*4];
- if (t[0] == -1 || t[1] == -1 || t[2] == -1)
- {
- ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
- t[0] = tris[tris.size()-4];
- t[1] = tris[tris.size()-3];
- t[2] = tris[tris.size()-2];
- t[3] = tris[tris.size()-1];
- tris.resize(tris.size()-4);
- --i;
- }
- }
-}
-
-// Calculate minimum extend of the polygon.
-static float polyMinExtent(const float* verts, const int nverts)
-{
- float minDist = FLT_MAX;
- for (int i = 0; i < nverts; i++)
- {
- const int ni = (i+1) % nverts;
- const float* p1 = &verts[i*3];
- const float* p2 = &verts[ni*3];
- float maxEdgeDist = 0;
- for (int j = 0; j < nverts; j++)
- {
- if (j == i || j == ni) continue;
- float d = distancePtSeg2d(&verts[j*3], p1,p2);
- maxEdgeDist = rcMax(maxEdgeDist, d);
- }
- minDist = rcMin(minDist, maxEdgeDist);
- }
- return rcSqrt(minDist);
-}
-
-// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
-inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
-inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
-
-static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
-{
- int start = 0, left = 1, right = nhull-1;
-
- // Start from an ear with shortest perimeter.
- // This tends to favor well formed triangles as starting point.
- float dmin = 0;
- for (int i = 0; i < nhull; i++)
- {
- int pi = prev(i, nhull);
- int ni = next(i, nhull);
- const float* pv = &verts[hull[pi]*3];
- const float* cv = &verts[hull[i]*3];
- const float* nv = &verts[hull[ni]*3];
- const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
- if (d < dmin)
- {
- start = i;
- left = ni;
- right = pi;
- dmin = d;
- }
- }
-
- // Add first triangle
- tris.push(hull[start]);
- tris.push(hull[left]);
- tris.push(hull[right]);
- tris.push(0);
-
- // Triangulate the polygon by moving left or right,
- // depending on which triangle has shorter perimeter.
- // This heuristic was chose emprically, since it seems
- // handle tesselated straight edges well.
- while (next(left, nhull) != right)
- {
- // Check to see if se should advance left or right.
- int nleft = next(left, nhull);
- int nright = prev(right, nhull);
-
- const float* cvleft = &verts[hull[left]*3];
- const float* nvleft = &verts[hull[nleft]*3];
- const float* cvright = &verts[hull[right]*3];
- const float* nvright = &verts[hull[nright]*3];
- const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
- const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
-
- if (dleft < dright)
- {
- tris.push(hull[left]);
- tris.push(hull[nleft]);
- tris.push(hull[right]);
- tris.push(0);
- left = nleft;
- }
- else
- {
- tris.push(hull[left]);
- tris.push(hull[nright]);
- tris.push(hull[right]);
- tris.push(0);
- right = nright;
- }
- }
-}
-
-
-inline float getJitterX(const int i)
-{
- return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
-}
-
-inline float getJitterY(const int i)
-{
- return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
-}
-
-static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
- const float sampleDist, const float sampleMaxError,
- const int heightSearchRadius, const rcCompactHeightfield& chf,
- const rcHeightPatch& hp, float* verts, int& nverts,
- rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
-{
- static const int MAX_VERTS = 127;
- static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
- static const int MAX_VERTS_PER_EDGE = 32;
- float edge[(MAX_VERTS_PER_EDGE+1)*3];
- int hull[MAX_VERTS];
- int nhull = 0;
-
- nverts = 0;
-
- for (int i = 0; i < nin; ++i)
- rcVcopy(&verts[i*3], &in[i*3]);
- nverts = nin;
-
- edges.resize(0);
- tris.resize(0);
-
- const float cs = chf.cs;
- const float ics = 1.0f/cs;
-
- // Calculate minimum extents of the polygon based on input data.
- float minExtent = polyMinExtent(verts, nverts);
-
- // Tessellate outlines.
- // This is done in separate pass in order to ensure
- // seamless height values across the ply boundaries.
- if (sampleDist > 0)
- {
- for (int i = 0, j = nin-1; i < nin; j=i++)
- {
- const float* vj = &in[j*3];
- const float* vi = &in[i*3];
- bool swapped = false;
- // Make sure the segments are always handled in same order
- // using lexological sort or else there will be seams.
- if (fabsf(vj[0]-vi[0]) < 1e-6f)
- {
- if (vj[2] > vi[2])
- {
- rcSwap(vj,vi);
- swapped = true;
- }
- }
- else
- {
- if (vj[0] > vi[0])
- {
- rcSwap(vj,vi);
- swapped = true;
- }
- }
- // Create samples along the edge.
- float dx = vi[0] - vj[0];
- float dy = vi[1] - vj[1];
- float dz = vi[2] - vj[2];
- float d = sqrtf(dx*dx + dz*dz);
- int nn = 1 + (int)floorf(d/sampleDist);
- if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
- if (nverts+nn >= MAX_VERTS)
- nn = MAX_VERTS-1-nverts;
-
- for (int k = 0; k <= nn; ++k)
- {
- float u = (float)k/(float)nn;
- float* pos = &edge[k*3];
- pos[0] = vj[0] + dx*u;
- pos[1] = vj[1] + dy*u;
- pos[2] = vj[2] + dz*u;
- pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
- }
- // Simplify samples.
- int idx[MAX_VERTS_PER_EDGE] = {0,nn};
- int nidx = 2;
- for (int k = 0; k < nidx-1; )
- {
- const int a = idx[k];
- const int b = idx[k+1];
- const float* va = &edge[a*3];
- const float* vb = &edge[b*3];
- // Find maximum deviation along the segment.
- float maxd = 0;
- int maxi = -1;
- for (int m = a+1; m < b; ++m)
- {
- float dev = distancePtSeg(&edge[m*3],va,vb);
- if (dev > maxd)
- {
- maxd = dev;
- maxi = m;
- }
- }
- // If the max deviation is larger than accepted error,
- // add new point, else continue to next segment.
- if (maxi != -1 && maxd > rcSqr(sampleMaxError))
- {
- for (int m = nidx; m > k; --m)
- idx[m] = idx[m-1];
- idx[k+1] = maxi;
- nidx++;
- }
- else
- {
- ++k;
- }
- }
-
- hull[nhull++] = j;
- // Add new vertices.
- if (swapped)
- {
- for (int k = nidx-2; k > 0; --k)
- {
- rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
- hull[nhull++] = nverts;
- nverts++;
- }
- }
- else
- {
- for (int k = 1; k < nidx-1; ++k)
- {
- rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
- hull[nhull++] = nverts;
- nverts++;
- }
- }
- }
- }
-
- // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
- if (minExtent < sampleDist*2)
- {
- triangulateHull(nverts, verts, nhull, hull, tris);
- return true;
- }
-
- // Tessellate the base mesh.
- // We're using the triangulateHull instead of delaunayHull as it tends to
- // create a bit better triangulation for long thing triangles when there
- // are no internal points.
- triangulateHull(nverts, verts, nhull, hull, tris);
-
- if (tris.size() == 0)
- {
- // Could not triangulate the poly, make sure there is some valid data there.
- ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
- return true;
- }
-
- if (sampleDist > 0)
- {
- // Create sample locations in a grid.
- float bmin[3], bmax[3];
- rcVcopy(bmin, in);
- rcVcopy(bmax, in);
- for (int i = 1; i < nin; ++i)
- {
- rcVmin(bmin, &in[i*3]);
- rcVmax(bmax, &in[i*3]);
- }
- int x0 = (int)floorf(bmin[0]/sampleDist);
- int x1 = (int)ceilf(bmax[0]/sampleDist);
- int z0 = (int)floorf(bmin[2]/sampleDist);
- int z1 = (int)ceilf(bmax[2]/sampleDist);
- samples.resize(0);
- for (int z = z0; z < z1; ++z)
- {
- for (int x = x0; x < x1; ++x)
- {
- float pt[3];
- pt[0] = x*sampleDist;
- pt[1] = (bmax[1]+bmin[1])*0.5f;
- pt[2] = z*sampleDist;
- // Make sure the samples are not too close to the edges.
- if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
- samples.push(x);
- samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
- samples.push(z);
- samples.push(0); // Not added
- }
- }
-
- // Add the samples starting from the one that has the most
- // error. The procedure stops when all samples are added
- // or when the max error is within treshold.
- const int nsamples = samples.size()/4;
- for (int iter = 0; iter < nsamples; ++iter)
- {
- if (nverts >= MAX_VERTS)
- break;
-
- // Find sample with most error.
- float bestpt[3] = {0,0,0};
- float bestd = 0;
- int besti = -1;
- for (int i = 0; i < nsamples; ++i)
- {
- const int* s = &samples[i*4];
- if (s[3]) continue; // skip added.
- float pt[3];
- // The sample location is jittered to get rid of some bad triangulations
- // which are cause by symmetrical data from the grid structure.
- pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
- pt[1] = s[1]*chf.ch;
- pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
- float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
- if (d < 0) continue; // did not hit the mesh.
- if (d > bestd)
- {
- bestd = d;
- besti = i;
- rcVcopy(bestpt,pt);
- }
- }
- // If the max error is within accepted threshold, stop tesselating.
- if (bestd <= sampleMaxError || besti == -1)
- break;
- // Mark sample as added.
- samples[besti*4+3] = 1;
- // Add the new sample point.
- rcVcopy(&verts[nverts*3],bestpt);
- nverts++;
-
- // Create new triangulation.
- // TODO: Incremental add instead of full rebuild.
- edges.resize(0);
- tris.resize(0);
- delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
- }
- }
-
- const int ntris = tris.size()/4;
- if (ntris > MAX_TRIS)
- {
- tris.resize(MAX_TRIS*4);
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
- }
-
- return true;
-}
-
-static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
- const unsigned short* poly, const int npoly,
- const unsigned short* verts, const int bs,
- rcHeightPatch& hp, rcIntArray& array)
-{
- // Note: Reads to the compact heightfield are offset by border size (bs)
- // since border size offset is already removed from the polymesh vertices.
-
- static const int offset[9*2] =
- {
- 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
- };
-
- // Find cell closest to a poly vertex
- int startCellX = 0, startCellY = 0, startSpanIndex = -1;
- int dmin = RC_UNSET_HEIGHT;
- for (int j = 0; j < npoly && dmin > 0; ++j)
- {
- for (int k = 0; k < 9 && dmin > 0; ++k)
- {
- const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
- const int ay = (int)verts[poly[j]*3+1];
- const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
- if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
- az < hp.ymin || az >= hp.ymin+hp.height)
- continue;
-
- const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
- for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
- {
- const rcCompactSpan& s = chf.spans[i];
- int d = rcAbs(ay - (int)s.y);
- if (d < dmin)
- {
- startCellX = ax;
- startCellY = az;
- startSpanIndex = i;
- dmin = d;
- }
- }
- }
- }
-
- rcAssert(startSpanIndex != -1);
- // Find center of the polygon
- int pcx = 0, pcy = 0;
- for (int j = 0; j < npoly; ++j)
- {
- pcx += (int)verts[poly[j]*3+0];
- pcy += (int)verts[poly[j]*3+2];
- }
- pcx /= npoly;
- pcy /= npoly;
-
- // Use seeds array as a stack for DFS
- array.resize(0);
- array.push(startCellX);
- array.push(startCellY);
- array.push(startSpanIndex);
-
- int dirs[] = { 0, 1, 2, 3 };
- memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
- // DFS to move to the center. Note that we need a DFS here and can not just move
- // directly towards the center without recording intermediate nodes, even though the polygons
- // are convex. In very rare we can get stuck due to contour simplification if we do not
- // record nodes.
- int cx = -1, cy = -1, ci = -1;
- while (true)
- {
- if (array.size() < 3)
- {
- ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
- break;
- }
-
- ci = array.pop();
- cy = array.pop();
- cx = array.pop();
-
- if (cx == pcx && cy == pcy)
- break;
-
- // If we are already at the correct X-position, prefer direction
- // directly towards the center in the Y-axis; otherwise prefer
- // direction in the X-axis
- int directDir;
- if (cx == pcx)
- directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
- else
- directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
-
- // Push the direct dir last so we start with this on next iteration
- rcSwap(dirs[directDir], dirs[3]);
-
- const rcCompactSpan& cs = chf.spans[ci];
- for (int i = 0; i < 4; i++)
- {
- int dir = dirs[i];
- if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
- continue;
-
- int newX = cx + rcGetDirOffsetX(dir);
- int newY = cy + rcGetDirOffsetY(dir);
-
- int hpx = newX - hp.xmin;
- int hpy = newY - hp.ymin;
- if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
- continue;
-
- if (hp.data[hpx+hpy*hp.width] != 0)
- continue;
-
- hp.data[hpx+hpy*hp.width] = 1;
- array.push(newX);
- array.push(newY);
- array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
- }
-
- rcSwap(dirs[directDir], dirs[3]);
- }
-
- array.resize(0);
- // getHeightData seeds are given in coordinates with borders
- array.push(cx+bs);
- array.push(cy+bs);
- array.push(ci);
-
- memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
- const rcCompactSpan& cs = chf.spans[ci];
- hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
-}
-
-
-static void push3(rcIntArray& queue, int v1, int v2, int v3)
-{
- queue.resize(queue.size() + 3);
- queue[queue.size() - 3] = v1;
- queue[queue.size() - 2] = v2;
- queue[queue.size() - 1] = v3;
-}
-
-static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
- const unsigned short* poly, const int npoly,
- const unsigned short* verts, const int bs,
- rcHeightPatch& hp, rcIntArray& queue,
- int region)
-{
- // Note: Reads to the compact heightfield are offset by border size (bs)
- // since border size offset is already removed from the polymesh vertices.
-
- queue.resize(0);
- // Set all heights to RC_UNSET_HEIGHT.
- memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
-
- bool empty = true;
-
- // We cannot sample from this poly if it was created from polys
- // of different regions. If it was then it could potentially be overlapping
- // with polys of that region and the heights sampled here could be wrong.
- if (region != RC_MULTIPLE_REGS)
- {
- // Copy the height from the same region, and mark region borders
- // as seed points to fill the rest.
- for (int hy = 0; hy < hp.height; hy++)
- {
- int y = hp.ymin + hy + bs;
- for (int hx = 0; hx < hp.width; hx++)
- {
- int x = hp.xmin + hx + bs;
- const rcCompactCell& c = chf.cells[x + y*chf.width];
- for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
- {
- const rcCompactSpan& s = chf.spans[i];
- if (s.reg == region)
- {
- // Store height
- hp.data[hx + hy*hp.width] = s.y;
- empty = false;
-
- // If any of the neighbours is not in same region,
- // add the current location as flood fill start
- bool border = false;
- for (int dir = 0; dir < 4; ++dir)
- {
- if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
- {
- const int ax = x + rcGetDirOffsetX(dir);
- const int ay = y + rcGetDirOffsetY(dir);
- const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
- const rcCompactSpan& as = chf.spans[ai];
- if (as.reg != region)
- {
- border = true;
- break;
- }
- }
- }
- if (border)
- push3(queue, x, y, i);
- break;
- }
- }
- }
- }
- }
-
- // if the polygon does not contain any points from the current region (rare, but happens)
- // or if it could potentially be overlapping polygons of the same region,
- // then use the center as the seed point.
- if (empty)
- seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
-
- static const int RETRACT_SIZE = 256;
- int head = 0;
-
- // We assume the seed is centered in the polygon, so a BFS to collect
- // height data will ensure we do not move onto overlapping polygons and
- // sample wrong heights.
- while (head*3 < queue.size())
- {
- int cx = queue[head*3+0];
- int cy = queue[head*3+1];
- int ci = queue[head*3+2];
- head++;
- if (head >= RETRACT_SIZE)
- {
- head = 0;
- if (queue.size() > RETRACT_SIZE*3)
- memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
- queue.resize(queue.size()-RETRACT_SIZE*3);
- }
-
- const rcCompactSpan& cs = chf.spans[ci];
- for (int dir = 0; dir < 4; ++dir)
- {
- if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
-
- const int ax = cx + rcGetDirOffsetX(dir);
- const int ay = cy + rcGetDirOffsetY(dir);
- const int hx = ax - hp.xmin - bs;
- const int hy = ay - hp.ymin - bs;
-
- if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
- continue;
-
- if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
- continue;
-
- const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
- const rcCompactSpan& as = chf.spans[ai];
-
- hp.data[hx + hy*hp.width] = as.y;
-
- push3(queue, ax, ay, ai);
- }
- }
-}
-
-static unsigned char getEdgeFlags(const float* va, const float* vb,
- const float* vpoly, const int npoly)
-{
- // Return true if edge (va,vb) is part of the polygon.
- static const float thrSqr = rcSqr(0.001f);
- for (int i = 0, j = npoly-1; i < npoly; j=i++)
- {
- if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
- distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
- return 1;
- }
- return 0;
-}
-
-static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
- const float* vpoly, const int npoly)
-{
- unsigned char flags = 0;
- flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
- flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
- flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
- return flags;
-}
-
-/// @par
-///
-/// See the #rcConfig documentation for more information on the configuration parameters.
-///
-/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
-bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
- const float sampleDist, const float sampleMaxError,
- rcPolyMeshDetail& dmesh)
-{
- rcAssert(ctx);
-
- rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
-
- if (mesh.nverts == 0 || mesh.npolys == 0)
- return true;
-
- const int nvp = mesh.nvp;
- const float cs = mesh.cs;
- const float ch = mesh.ch;
- const float* orig = mesh.bmin;
- const int borderSize = mesh.borderSize;
- const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
-
- rcIntArray edges(64);
- rcIntArray tris(512);
- rcIntArray arr(512);
- rcIntArray samples(512);
- float verts[256*3];
- rcHeightPatch hp;
- int nPolyVerts = 0;
- int maxhw = 0, maxhh = 0;
-
- rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
- if (!bounds)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
- return false;
- }
- rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
- if (!poly)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
- return false;
- }
-
- // Find max size for a polygon area.
- for (int i = 0; i < mesh.npolys; ++i)
- {
- const unsigned short* p = &mesh.polys[i*nvp*2];
- int& xmin = bounds[i*4+0];
- int& xmax = bounds[i*4+1];
- int& ymin = bounds[i*4+2];
- int& ymax = bounds[i*4+3];
- xmin = chf.width;
- xmax = 0;
- ymin = chf.height;
- ymax = 0;
- for (int j = 0; j < nvp; ++j)
- {
- if(p[j] == RC_MESH_NULL_IDX) break;
- const unsigned short* v = &mesh.verts[p[j]*3];
- xmin = rcMin(xmin, (int)v[0]);
- xmax = rcMax(xmax, (int)v[0]);
- ymin = rcMin(ymin, (int)v[2]);
- ymax = rcMax(ymax, (int)v[2]);
- nPolyVerts++;
- }
- xmin = rcMax(0,xmin-1);
- xmax = rcMin(chf.width,xmax+1);
- ymin = rcMax(0,ymin-1);
- ymax = rcMin(chf.height,ymax+1);
- if (xmin >= xmax || ymin >= ymax) continue;
- maxhw = rcMax(maxhw, xmax-xmin);
- maxhh = rcMax(maxhh, ymax-ymin);
- }
-
- hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
- if (!hp.data)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
- return false;
- }
-
- dmesh.nmeshes = mesh.npolys;
- dmesh.nverts = 0;
- dmesh.ntris = 0;
- dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
- if (!dmesh.meshes)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
- return false;
- }
-
- int vcap = nPolyVerts+nPolyVerts/2;
- int tcap = vcap*2;
-
- dmesh.nverts = 0;
- dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
- if (!dmesh.verts)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
- return false;
- }
- dmesh.ntris = 0;
- dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
- if (!dmesh.tris)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
- return false;
- }
-
- for (int i = 0; i < mesh.npolys; ++i)
- {
- const unsigned short* p = &mesh.polys[i*nvp*2];
-
- // Store polygon vertices for processing.
- int npoly = 0;
- for (int j = 0; j < nvp; ++j)
- {
- if(p[j] == RC_MESH_NULL_IDX) break;
- const unsigned short* v = &mesh.verts[p[j]*3];
- poly[j*3+0] = v[0]*cs;
- poly[j*3+1] = v[1]*ch;
- poly[j*3+2] = v[2]*cs;
- npoly++;
- }
-
- // Get the height data from the area of the polygon.
- hp.xmin = bounds[i*4+0];
- hp.ymin = bounds[i*4+2];
- hp.width = bounds[i*4+1]-bounds[i*4+0];
- hp.height = bounds[i*4+3]-bounds[i*4+2];
- getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
-
- // Build detail mesh.
- int nverts = 0;
- if (!buildPolyDetail(ctx, poly, npoly,
- sampleDist, sampleMaxError,
- heightSearchRadius, chf, hp,
- verts, nverts, tris,
- edges, samples))
- {
- return false;
- }
-
- // Move detail verts to world space.
- for (int j = 0; j < nverts; ++j)
- {
- verts[j*3+0] += orig[0];
- verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
- verts[j*3+2] += orig[2];
- }
- // Offset poly too, will be used to flag checking.
- for (int j = 0; j < npoly; ++j)
- {
- poly[j*3+0] += orig[0];
- poly[j*3+1] += orig[1];
- poly[j*3+2] += orig[2];
- }
-
- // Store detail submesh.
- const int ntris = tris.size()/4;
-
- dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
- dmesh.meshes[i*4+1] = (unsigned int)nverts;
- dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
- dmesh.meshes[i*4+3] = (unsigned int)ntris;
-
- // Store vertices, allocate more memory if necessary.
- if (dmesh.nverts+nverts > vcap)
- {
- while (dmesh.nverts+nverts > vcap)
- vcap += 256;
-
- float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
- if (!newv)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
- return false;
- }
- if (dmesh.nverts)
- memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
- rcFree(dmesh.verts);
- dmesh.verts = newv;
- }
- for (int j = 0; j < nverts; ++j)
- {
- dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
- dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
- dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
- dmesh.nverts++;
- }
-
- // Store triangles, allocate more memory if necessary.
- if (dmesh.ntris+ntris > tcap)
- {
- while (dmesh.ntris+ntris > tcap)
- tcap += 256;
- unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
- if (!newt)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
- return false;
- }
- if (dmesh.ntris)
- memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
- rcFree(dmesh.tris);
- dmesh.tris = newt;
- }
- for (int j = 0; j < ntris; ++j)
- {
- const int* t = &tris[j*4];
- dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
- dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
- dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
- dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
- dmesh.ntris++;
- }
- }
-
- return true;
-}
-
-/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
-bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
-{
- rcAssert(ctx);
-
- rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
-
- int maxVerts = 0;
- int maxTris = 0;
- int maxMeshes = 0;
-
- for (int i = 0; i < nmeshes; ++i)
- {
- if (!meshes[i]) continue;
- maxVerts += meshes[i]->nverts;
- maxTris += meshes[i]->ntris;
- maxMeshes += meshes[i]->nmeshes;
- }
-
- mesh.nmeshes = 0;
- mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
- if (!mesh.meshes)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
- return false;
- }
-
- mesh.ntris = 0;
- mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
- if (!mesh.tris)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
- return false;
- }
-
- mesh.nverts = 0;
- mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
- if (!mesh.verts)
- {
- ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
- return false;
- }
-
- // Merge datas.
- for (int i = 0; i < nmeshes; ++i)
- {
- rcPolyMeshDetail* dm = meshes[i];
- if (!dm) continue;
- for (int j = 0; j < dm->nmeshes; ++j)
- {
- unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
- unsigned int* src = &dm->meshes[j*4];
- dst[0] = (unsigned int)mesh.nverts+src[0];
- dst[1] = src[1];
- dst[2] = (unsigned int)mesh.ntris+src[2];
- dst[3] = src[3];
- mesh.nmeshes++;
- }
-
- for (int k = 0; k < dm->nverts; ++k)
- {
- rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
- mesh.nverts++;
- }
- for (int k = 0; k < dm->ntris; ++k)
- {
- mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
- mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
- mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
- mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
- mesh.ntris++;
- }
- }
-
- return true;
-}