Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/extern
diff options
context:
space:
mode:
Diffstat (limited to 'extern')
-rw-r--r--extern/libmv/CMakeLists.txt14
-rw-r--r--extern/libmv/SConscript5
-rwxr-xr-xextern/libmv/bundle.sh4
-rw-r--r--extern/libmv/libmv-capi.cpp5
-rw-r--r--extern/libmv/third_party/ldl/CMakeLists.txt5
-rw-r--r--extern/libmv/third_party/ldl/Doc/ChangeLog39
-rw-r--r--extern/libmv/third_party/ldl/Doc/lesser.txt504
-rw-r--r--extern/libmv/third_party/ldl/Include/ldl.h104
-rw-r--r--extern/libmv/third_party/ldl/README.libmv10
-rw-r--r--extern/libmv/third_party/ldl/README.txt136
-rw-r--r--extern/libmv/third_party/ldl/Source/ldl.c507
-rw-r--r--extern/libmv/third_party/ssba/COPYING.TXT165
-rw-r--r--extern/libmv/third_party/ssba/Geometry/v3d_cameramatrix.h204
-rw-r--r--extern/libmv/third_party/ssba/Geometry/v3d_distortion.h97
-rw-r--r--extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.cpp405
-rw-r--r--extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.h352
-rw-r--r--extern/libmv/third_party/ssba/Math/v3d_linear.h923
-rw-r--r--extern/libmv/third_party/ssba/Math/v3d_linear_utils.h391
-rw-r--r--extern/libmv/third_party/ssba/Math/v3d_mathutilities.h59
-rw-r--r--extern/libmv/third_party/ssba/Math/v3d_optimization.cpp955
-rw-r--r--extern/libmv/third_party/ssba/Math/v3d_optimization.h273
-rw-r--r--extern/libmv/third_party/ssba/README.TXT92
-rw-r--r--extern/libmv/third_party/ssba/README.libmv23
23 files changed, 0 insertions, 5272 deletions
diff --git a/extern/libmv/CMakeLists.txt b/extern/libmv/CMakeLists.txt
index 0fc90fdd9b9..200e20de91b 100644
--- a/extern/libmv/CMakeLists.txt
+++ b/extern/libmv/CMakeLists.txt
@@ -28,14 +28,11 @@
set(INC
.
- ../colamd/Include
third_party/ceres/include
)
set(INC_SYS
../Eigen3
- third_party/ssba
- third_party/ldl/Include
${PNG_INCLUDE_DIR}
${ZLIB_INCLUDE_DIRS}
)
@@ -83,9 +80,6 @@ set(SRC
third_party/gflags/gflags.cc
third_party/gflags/gflags_completions.cc
third_party/gflags/gflags_reporting.cc
- third_party/ldl/Source/ldl.c
- third_party/ssba/Geometry/v3d_metricbundle.cpp
- third_party/ssba/Math/v3d_optimization.cpp
libmv-capi.h
libmv/base/id_generator.h
@@ -143,16 +137,8 @@ set(SRC
third_party/gflags/gflags/gflags.h
third_party/gflags/mutex.h
third_party/gflags/util.h
- third_party/ldl/Include/ldl.h
third_party/msinttypes/inttypes.h
third_party/msinttypes/stdint.h
- third_party/ssba/Geometry/v3d_cameramatrix.h
- third_party/ssba/Geometry/v3d_distortion.h
- third_party/ssba/Geometry/v3d_metricbundle.h
- third_party/ssba/Math/v3d_linear.h
- third_party/ssba/Math/v3d_linear_utils.h
- third_party/ssba/Math/v3d_mathutilities.h
- third_party/ssba/Math/v3d_optimization.h
)
if(WIN32)
diff --git a/extern/libmv/SConscript b/extern/libmv/SConscript
index 8fd8c566e4d..a503730926d 100644
--- a/extern/libmv/SConscript
+++ b/extern/libmv/SConscript
@@ -22,9 +22,6 @@ src += env.Glob('libmv/simple_pipeline/*.cc')
src += env.Glob('libmv/tracking/*.cc')
src += env.Glob('third_party/fast/*.c')
src += env.Glob('third_party/gflags/*.cc')
-src += env.Glob('third_party/ldl/Source/*.c')
-src += env.Glob('third_party/ssba/Geometry/*.cpp')
-src += env.Glob('third_party/ssba/Math/*.cpp')
incs = '. ../Eigen3 third_party/ceres/include'
incs += ' ' + env['BF_PNG_INC']
@@ -41,8 +38,6 @@ else:
src += env.Glob("third_party/glog/src/*.cc")
incs += ' ./third_party/glog/src'
-incs += ' ./third_party/ssba ./third_party/ldl/Include ../colamd/Include'
-
env.BlenderLib ( libname = 'extern_libmv', sources=src, includes=Split(incs), defines=defs, libtype=['extern', 'player'], priority=[20,137] )
SConscript(['third_party/SConscript'])
diff --git a/extern/libmv/bundle.sh b/extern/libmv/bundle.sh
index 53487cf020e..6b26bd95157 100755
--- a/extern/libmv/bundle.sh
+++ b/extern/libmv/bundle.sh
@@ -130,8 +130,6 @@ set(INC
set(INC_SYS
../Eigen3
- third_party/ssba
- third_party/ldl/Include
\${PNG_INCLUDE_DIR}
\${ZLIB_INCLUDE_DIRS}
)
@@ -241,8 +239,6 @@ else:
src += env.Glob("third_party/glog/src/*.cc")
incs += ' ./third_party/glog/src'
-incs += ' ./third_party/ssba ./third_party/ldl/Include ../colamd/Include'
-
env.BlenderLib ( libname = 'extern_libmv', sources=src, includes=Split(incs), defines=defs, libtype=['extern', 'player'], priority=[20,137] )
SConscript(['third_party/SConscript'])
diff --git a/extern/libmv/libmv-capi.cpp b/extern/libmv/libmv-capi.cpp
index 4f00d7d68b4..945bc0c879e 100644
--- a/extern/libmv/libmv-capi.cpp
+++ b/extern/libmv/libmv-capi.cpp
@@ -38,8 +38,6 @@
#include "glog/logging.h"
#include "libmv/logging/logging.h"
-#include "Math/v3d_optimization.h"
-
#include "libmv/numeric/numeric.h"
#include "libmv/tracking/esm_region_tracker.h"
@@ -96,7 +94,6 @@ void libmv_initLogging(const char *argv0)
google::SetCommandLineOption("v", "0");
google::SetCommandLineOption("stderrthreshold", "7");
google::SetCommandLineOption("minloglevel", "7");
- V3D::optimizerVerbosenessLevel = 0;
}
void libmv_startDebugLogging(void)
@@ -105,7 +102,6 @@ void libmv_startDebugLogging(void)
google::SetCommandLineOption("v", "2");
google::SetCommandLineOption("stderrthreshold", "1");
google::SetCommandLineOption("minloglevel", "0");
- V3D::optimizerVerbosenessLevel = 1;
}
void libmv_setLoggingVerbosity(int verbosity)
@@ -114,7 +110,6 @@ void libmv_setLoggingVerbosity(int verbosity)
snprintf(val, sizeof(val), "%d", verbosity);
google::SetCommandLineOption("v", val);
- V3D::optimizerVerbosenessLevel = verbosity;
}
/* ************ Utility ************ */
diff --git a/extern/libmv/third_party/ldl/CMakeLists.txt b/extern/libmv/third_party/ldl/CMakeLists.txt
deleted file mode 100644
index db2d40e2612..00000000000
--- a/extern/libmv/third_party/ldl/CMakeLists.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-include_directories(../ufconfig)
-include_directories(Include)
-add_library(ldl Source/ldl.c)
-
-LIBMV_INSTALL_THIRD_PARTY_LIB(ldl)
diff --git a/extern/libmv/third_party/ldl/Doc/ChangeLog b/extern/libmv/third_party/ldl/Doc/ChangeLog
deleted file mode 100644
index 48c322d3e77..00000000000
--- a/extern/libmv/third_party/ldl/Doc/ChangeLog
+++ /dev/null
@@ -1,39 +0,0 @@
-May 31, 2007: version 2.0.0
-
- * C-callable 64-bit version added
-
- * ported to 64-bit MATLAB
-
- * subdirectories added (Source/, Include/, Lib/, Demo/, Doc/, MATLAB/)
-
-Dec 12, 2006: version 1.3.4
-
- * minor MATLAB cleanup
-
-Sept 11, 2006: version 1.3.1
-
- * The ldl m-file renamed to ldlsparse, to avoid name conflict with the
- new MATLAB ldl function (in MATLAB 7.3).
-
-Apr 30, 2006: version 1.3
-
- * requires AMD v2.0. ldlmain.c demo program modified, since AMD can now
- handle jumbled matrices. Minor change to Makefile.
-
-Aug 30, 2005:
-
- * Makefile changed to use ../UFconfig/UFconfig.mk. License changed to
- GNU LGPL.
-
-July 4, 2005:
-
- * user guide added. Since no changes to the code were made,
- the version number (1.1) and code release date (Apr 22, 2005)
- were left unchanged.
-
-Apr. 22, 2005: LDL v1.1 released.
-
- * No real changes were made. The code was revised so
- that each routine fits on a single page in the documentation.
-
-Dec 31, 2003: LDL v1.0 released.
diff --git a/extern/libmv/third_party/ldl/Doc/lesser.txt b/extern/libmv/third_party/ldl/Doc/lesser.txt
deleted file mode 100644
index 8add30ad590..00000000000
--- a/extern/libmv/third_party/ldl/Doc/lesser.txt
+++ /dev/null
@@ -1,504 +0,0 @@
- GNU LESSER GENERAL PUBLIC LICENSE
- Version 2.1, February 1999
-
- Copyright (C) 1991, 1999 Free Software Foundation, Inc.
- 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-[This is the first released version of the Lesser GPL. It also counts
- as the successor of the GNU Library Public License, version 2, hence
- the version number 2.1.]
-
- Preamble
-
- The licenses for most software are designed to take away your
-freedom to share and change it. By contrast, the GNU General Public
-Licenses are intended to guarantee your freedom to share and change
-free software--to make sure the software is free for all its users.
-
- This license, the Lesser General Public License, applies to some
-specially designated software packages--typically libraries--of the
-Free Software Foundation and other authors who decide to use it. You
-can use it too, but we suggest you first think carefully about whether
-this license or the ordinary General Public License is the better
-strategy to use in any particular case, based on the explanations below.
-
- When we speak of free software, we are referring to freedom of use,
-not price. Our General Public Licenses are designed to make sure that
-you have the freedom to distribute copies of free software (and charge
-for this service if you wish); that you receive source code or can get
-it if you want it; that you can change the software and use pieces of
-it in new free programs; and that you are informed that you can do
-these things.
-
- To protect your rights, we need to make restrictions that forbid
-distributors to deny you these rights or to ask you to surrender these
-rights. These restrictions translate to certain responsibilities for
-you if you distribute copies of the library or if you modify it.
-
- For example, if you distribute copies of the library, whether gratis
-or for a fee, you must give the recipients all the rights that we gave
-you. You must make sure that they, too, receive or can get the source
-code. If you link other code with the library, you must provide
-complete object files to the recipients, so that they can relink them
-with the library after making changes to the library and recompiling
-it. And you must show them these terms so they know their rights.
-
- We protect your rights with a two-step method: (1) we copyright the
-library, and (2) we offer you this license, which gives you legal
-permission to copy, distribute and/or modify the library.
-
- To protect each distributor, we want to make it very clear that
-there is no warranty for the free library. Also, if the library is
-modified by someone else and passed on, the recipients should know
-that what they have is not the original version, so that the original
-author's reputation will not be affected by problems that might be
-introduced by others.
-
- Finally, software patents pose a constant threat to the existence of
-any free program. We wish to make sure that a company cannot
-effectively restrict the users of a free program by obtaining a
-restrictive license from a patent holder. Therefore, we insist that
-any patent license obtained for a version of the library must be
-consistent with the full freedom of use specified in this license.
-
- Most GNU software, including some libraries, is covered by the
-ordinary GNU General Public License. This license, the GNU Lesser
-General Public License, applies to certain designated libraries, and
-is quite different from the ordinary General Public License. We use
-this license for certain libraries in order to permit linking those
-libraries into non-free programs.
-
- When a program is linked with a library, whether statically or using
-a shared library, the combination of the two is legally speaking a
-combined work, a derivative of the original library. The ordinary
-General Public License therefore permits such linking only if the
-entire combination fits its criteria of freedom. The Lesser General
-Public License permits more lax criteria for linking other code with
-the library.
-
- We call this license the "Lesser" General Public License because it
-does Less to protect the user's freedom than the ordinary General
-Public License. It also provides other free software developers Less
-of an advantage over competing non-free programs. These disadvantages
-are the reason we use the ordinary General Public License for many
-libraries. However, the Lesser license provides advantages in certain
-special circumstances.
-
- For example, on rare occasions, there may be a special need to
-encourage the widest possible use of a certain library, so that it becomes
-a de-facto standard. To achieve this, non-free programs must be
-allowed to use the library. A more frequent case is that a free
-library does the same job as widely used non-free libraries. In this
-case, there is little to gain by limiting the free library to free
-software only, so we use the Lesser General Public License.
-
- In other cases, permission to use a particular library in non-free
-programs enables a greater number of people to use a large body of
-free software. For example, permission to use the GNU C Library in
-non-free programs enables many more people to use the whole GNU
-operating system, as well as its variant, the GNU/Linux operating
-system.
-
- Although the Lesser General Public License is Less protective of the
-users' freedom, it does ensure that the user of a program that is
-linked with the Library has the freedom and the wherewithal to run
-that program using a modified version of the Library.
-
- The precise terms and conditions for copying, distribution and
-modification follow. Pay close attention to the difference between a
-"work based on the library" and a "work that uses the library". The
-former contains code derived from the library, whereas the latter must
-be combined with the library in order to run.
-
- GNU LESSER GENERAL PUBLIC LICENSE
- TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
-
- 0. This License Agreement applies to any software library or other
-program which contains a notice placed by the copyright holder or
-other authorized party saying it may be distributed under the terms of
-this Lesser General Public License (also called "this License").
-Each licensee is addressed as "you".
-
- A "library" means a collection of software functions and/or data
-prepared so as to be conveniently linked with application programs
-(which use some of those functions and data) to form executables.
-
- The "Library", below, refers to any such software library or work
-which has been distributed under these terms. A "work based on the
-Library" means either the Library or any derivative work under
-copyright law: that is to say, a work containing the Library or a
-portion of it, either verbatim or with modifications and/or translated
-straightforwardly into another language. (Hereinafter, translation is
-included without limitation in the term "modification".)
-
- "Source code" for a work means the preferred form of the work for
-making modifications to it. For a library, complete source code means
-all the source code for all modules it contains, plus any associated
-interface definition files, plus the scripts used to control compilation
-and installation of the library.
-
- Activities other than copying, distribution and modification are not
-covered by this License; they are outside its scope. The act of
-running a program using the Library is not restricted, and output from
-such a program is covered only if its contents constitute a work based
-on the Library (independent of the use of the Library in a tool for
-writing it). Whether that is true depends on what the Library does
-and what the program that uses the Library does.
-
- 1. You may copy and distribute verbatim copies of the Library's
-complete source code as you receive it, in any medium, provided that
-you conspicuously and appropriately publish on each copy an
-appropriate copyright notice and disclaimer of warranty; keep intact
-all the notices that refer to this License and to the absence of any
-warranty; and distribute a copy of this License along with the
-Library.
-
- You may charge a fee for the physical act of transferring a copy,
-and you may at your option offer warranty protection in exchange for a
-fee.
-
- 2. You may modify your copy or copies of the Library or any portion
-of it, thus forming a work based on the Library, and copy and
-distribute such modifications or work under the terms of Section 1
-above, provided that you also meet all of these conditions:
-
- a) The modified work must itself be a software library.
-
- b) You must cause the files modified to carry prominent notices
- stating that you changed the files and the date of any change.
-
- c) You must cause the whole of the work to be licensed at no
- charge to all third parties under the terms of this License.
-
- d) If a facility in the modified Library refers to a function or a
- table of data to be supplied by an application program that uses
- the facility, other than as an argument passed when the facility
- is invoked, then you must make a good faith effort to ensure that,
- in the event an application does not supply such function or
- table, the facility still operates, and performs whatever part of
- its purpose remains meaningful.
-
- (For example, a function in a library to compute square roots has
- a purpose that is entirely well-defined independent of the
- application. Therefore, Subsection 2d requires that any
- application-supplied function or table used by this function must
- be optional: if the application does not supply it, the square
- root function must still compute square roots.)
-
-These requirements apply to the modified work as a whole. If
-identifiable sections of that work are not derived from the Library,
-and can be reasonably considered independent and separate works in
-themselves, then this License, and its terms, do not apply to those
-sections when you distribute them as separate works. But when you
-distribute the same sections as part of a whole which is a work based
-on the Library, the distribution of the whole must be on the terms of
-this License, whose permissions for other licensees extend to the
-entire whole, and thus to each and every part regardless of who wrote
-it.
-
-Thus, it is not the intent of this section to claim rights or contest
-your rights to work written entirely by you; rather, the intent is to
-exercise the right to control the distribution of derivative or
-collective works based on the Library.
-
-In addition, mere aggregation of another work not based on the Library
-with the Library (or with a work based on the Library) on a volume of
-a storage or distribution medium does not bring the other work under
-the scope of this License.
-
- 3. You may opt to apply the terms of the ordinary GNU General Public
-License instead of this License to a given copy of the Library. To do
-this, you must alter all the notices that refer to this License, so
-that they refer to the ordinary GNU General Public License, version 2,
-instead of to this License. (If a newer version than version 2 of the
-ordinary GNU General Public License has appeared, then you can specify
-that version instead if you wish.) Do not make any other change in
-these notices.
-
- Once this change is made in a given copy, it is irreversible for
-that copy, so the ordinary GNU General Public License applies to all
-subsequent copies and derivative works made from that copy.
-
- This option is useful when you wish to copy part of the code of
-the Library into a program that is not a library.
-
- 4. You may copy and distribute the Library (or a portion or
-derivative of it, under Section 2) in object code or executable form
-under the terms of Sections 1 and 2 above provided that you accompany
-it with the complete corresponding machine-readable source code, which
-must be distributed under the terms of Sections 1 and 2 above on a
-medium customarily used for software interchange.
-
- If distribution of object code is made by offering access to copy
-from a designated place, then offering equivalent access to copy the
-source code from the same place satisfies the requirement to
-distribute the source code, even though third parties are not
-compelled to copy the source along with the object code.
-
- 5. A program that contains no derivative of any portion of the
-Library, but is designed to work with the Library by being compiled or
-linked with it, is called a "work that uses the Library". Such a
-work, in isolation, is not a derivative work of the Library, and
-therefore falls outside the scope of this License.
-
- However, linking a "work that uses the Library" with the Library
-creates an executable that is a derivative of the Library (because it
-contains portions of the Library), rather than a "work that uses the
-library". The executable is therefore covered by this License.
-Section 6 states terms for distribution of such executables.
-
- When a "work that uses the Library" uses material from a header file
-that is part of the Library, the object code for the work may be a
-derivative work of the Library even though the source code is not.
-Whether this is true is especially significant if the work can be
-linked without the Library, or if the work is itself a library. The
-threshold for this to be true is not precisely defined by law.
-
- If such an object file uses only numerical parameters, data
-structure layouts and accessors, and small macros and small inline
-functions (ten lines or less in length), then the use of the object
-file is unrestricted, regardless of whether it is legally a derivative
-work. (Executables containing this object code plus portions of the
-Library will still fall under Section 6.)
-
- Otherwise, if the work is a derivative of the Library, you may
-distribute the object code for the work under the terms of Section 6.
-Any executables containing that work also fall under Section 6,
-whether or not they are linked directly with the Library itself.
-
- 6. As an exception to the Sections above, you may also combine or
-link a "work that uses the Library" with the Library to produce a
-work containing portions of the Library, and distribute that work
-under terms of your choice, provided that the terms permit
-modification of the work for the customer's own use and reverse
-engineering for debugging such modifications.
-
- You must give prominent notice with each copy of the work that the
-Library is used in it and that the Library and its use are covered by
-this License. You must supply a copy of this License. If the work
-during execution displays copyright notices, you must include the
-copyright notice for the Library among them, as well as a reference
-directing the user to the copy of this License. Also, you must do one
-of these things:
-
- a) Accompany the work with the complete corresponding
- machine-readable source code for the Library including whatever
- changes were used in the work (which must be distributed under
- Sections 1 and 2 above); and, if the work is an executable linked
- with the Library, with the complete machine-readable "work that
- uses the Library", as object code and/or source code, so that the
- user can modify the Library and then relink to produce a modified
- executable containing the modified Library. (It is understood
- that the user who changes the contents of definitions files in the
- Library will not necessarily be able to recompile the application
- to use the modified definitions.)
-
- b) Use a suitable shared library mechanism for linking with the
- Library. A suitable mechanism is one that (1) uses at run time a
- copy of the library already present on the user's computer system,
- rather than copying library functions into the executable, and (2)
- will operate properly with a modified version of the library, if
- the user installs one, as long as the modified version is
- interface-compatible with the version that the work was made with.
-
- c) Accompany the work with a written offer, valid for at
- least three years, to give the same user the materials
- specified in Subsection 6a, above, for a charge no more
- than the cost of performing this distribution.
-
- d) If distribution of the work is made by offering access to copy
- from a designated place, offer equivalent access to copy the above
- specified materials from the same place.
-
- e) Verify that the user has already received a copy of these
- materials or that you have already sent this user a copy.
-
- For an executable, the required form of the "work that uses the
-Library" must include any data and utility programs needed for
-reproducing the executable from it. However, as a special exception,
-the materials to be distributed need not include anything that is
-normally distributed (in either source or binary form) with the major
-components (compiler, kernel, and so on) of the operating system on
-which the executable runs, unless that component itself accompanies
-the executable.
-
- It may happen that this requirement contradicts the license
-restrictions of other proprietary libraries that do not normally
-accompany the operating system. Such a contradiction means you cannot
-use both them and the Library together in an executable that you
-distribute.
-
- 7. You may place library facilities that are a work based on the
-Library side-by-side in a single library together with other library
-facilities not covered by this License, and distribute such a combined
-library, provided that the separate distribution of the work based on
-the Library and of the other library facilities is otherwise
-permitted, and provided that you do these two things:
-
- a) Accompany the combined library with a copy of the same work
- based on the Library, uncombined with any other library
- facilities. This must be distributed under the terms of the
- Sections above.
-
- b) Give prominent notice with the combined library of the fact
- that part of it is a work based on the Library, and explaining
- where to find the accompanying uncombined form of the same work.
-
- 8. You may not copy, modify, sublicense, link with, or distribute
-the Library except as expressly provided under this License. Any
-attempt otherwise to copy, modify, sublicense, link with, or
-distribute the Library is void, and will automatically terminate your
-rights under this License. However, parties who have received copies,
-or rights, from you under this License will not have their licenses
-terminated so long as such parties remain in full compliance.
-
- 9. You are not required to accept this License, since you have not
-signed it. However, nothing else grants you permission to modify or
-distribute the Library or its derivative works. These actions are
-prohibited by law if you do not accept this License. Therefore, by
-modifying or distributing the Library (or any work based on the
-Library), you indicate your acceptance of this License to do so, and
-all its terms and conditions for copying, distributing or modifying
-the Library or works based on it.
-
- 10. Each time you redistribute the Library (or any work based on the
-Library), the recipient automatically receives a license from the
-original licensor to copy, distribute, link with or modify the Library
-subject to these terms and conditions. You may not impose any further
-restrictions on the recipients' exercise of the rights granted herein.
-You are not responsible for enforcing compliance by third parties with
-this License.
-
- 11. If, as a consequence of a court judgment or allegation of patent
-infringement or for any other reason (not limited to patent issues),
-conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot
-distribute so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you
-may not distribute the Library at all. For example, if a patent
-license would not permit royalty-free redistribution of the Library by
-all those who receive copies directly or indirectly through you, then
-the only way you could satisfy both it and this License would be to
-refrain entirely from distribution of the Library.
-
-If any portion of this section is held invalid or unenforceable under any
-particular circumstance, the balance of the section is intended to apply,
-and the section as a whole is intended to apply in other circumstances.
-
-It is not the purpose of this section to induce you to infringe any
-patents or other property right claims or to contest validity of any
-such claims; this section has the sole purpose of protecting the
-integrity of the free software distribution system which is
-implemented by public license practices. Many people have made
-generous contributions to the wide range of software distributed
-through that system in reliance on consistent application of that
-system; it is up to the author/donor to decide if he or she is willing
-to distribute software through any other system and a licensee cannot
-impose that choice.
-
-This section is intended to make thoroughly clear what is believed to
-be a consequence of the rest of this License.
-
- 12. If the distribution and/or use of the Library is restricted in
-certain countries either by patents or by copyrighted interfaces, the
-original copyright holder who places the Library under this License may add
-an explicit geographical distribution limitation excluding those countries,
-so that distribution is permitted only in or among countries not thus
-excluded. In such case, this License incorporates the limitation as if
-written in the body of this License.
-
- 13. The Free Software Foundation may publish revised and/or new
-versions of the Lesser General Public License from time to time.
-Such new versions will be similar in spirit to the present version,
-but may differ in detail to address new problems or concerns.
-
-Each version is given a distinguishing version number. If the Library
-specifies a version number of this License which applies to it and
-"any later version", you have the option of following the terms and
-conditions either of that version or of any later version published by
-the Free Software Foundation. If the Library does not specify a
-license version number, you may choose any version ever published by
-the Free Software Foundation.
-
- 14. If you wish to incorporate parts of the Library into other free
-programs whose distribution conditions are incompatible with these,
-write to the author to ask for permission. For software which is
-copyrighted by the Free Software Foundation, write to the Free
-Software Foundation; we sometimes make exceptions for this. Our
-decision will be guided by the two goals of preserving the free status
-of all derivatives of our free software and of promoting the sharing
-and reuse of software generally.
-
- NO WARRANTY
-
- 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
-WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
-EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
-OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
-KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
-LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
-THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
-WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
-AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
-FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
-CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
-LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
-RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
-FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
-SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
-DAMAGES.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Libraries
-
- If you develop a new library, and you want it to be of the greatest
-possible use to the public, we recommend making it free software that
-everyone can redistribute and change. You can do so by permitting
-redistribution under these terms (or, alternatively, under the terms of the
-ordinary General Public License).
-
- To apply these terms, attach the following notices to the library. It is
-safest to attach them to the start of each source file to most effectively
-convey the exclusion of warranty; and each file should have at least the
-"copyright" line and a pointer to where the full notice is found.
-
- <one line to give the library's name and a brief idea of what it does.>
- Copyright (C) <year> <name of author>
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-
-Also add information on how to contact you by electronic and paper mail.
-
-You should also get your employer (if you work as a programmer) or your
-school, if any, to sign a "copyright disclaimer" for the library, if
-necessary. Here is a sample; alter the names:
-
- Yoyodyne, Inc., hereby disclaims all copyright interest in the
- library `Frob' (a library for tweaking knobs) written by James Random Hacker.
-
- <signature of Ty Coon>, 1 April 1990
- Ty Coon, President of Vice
-
-That's all there is to it!
-
-
diff --git a/extern/libmv/third_party/ldl/Include/ldl.h b/extern/libmv/third_party/ldl/Include/ldl.h
deleted file mode 100644
index 5840be322f7..00000000000
--- a/extern/libmv/third_party/ldl/Include/ldl.h
+++ /dev/null
@@ -1,104 +0,0 @@
-/* ========================================================================== */
-/* === ldl.h: include file for the LDL package ============================= */
-/* ========================================================================== */
-
-/* LDL Copyright (c) Timothy A Davis,
- * University of Florida. All Rights Reserved. See README for the License.
- */
-
-#include "UFconfig.h"
-
-#ifdef LDL_LONG
-#define LDL_int UF_long
-#define LDL_ID UF_long_id
-
-#define LDL_symbolic ldl_l_symbolic
-#define LDL_numeric ldl_l_numeric
-#define LDL_lsolve ldl_l_lsolve
-#define LDL_dsolve ldl_l_dsolve
-#define LDL_ltsolve ldl_l_ltsolve
-#define LDL_perm ldl_l_perm
-#define LDL_permt ldl_l_permt
-#define LDL_valid_perm ldl_l_valid_perm
-#define LDL_valid_matrix ldl_l_valid_matrix
-
-#else
-#define LDL_int int
-#define LDL_ID "%d"
-
-#define LDL_symbolic ldl_symbolic
-#define LDL_numeric ldl_numeric
-#define LDL_lsolve ldl_lsolve
-#define LDL_dsolve ldl_dsolve
-#define LDL_ltsolve ldl_ltsolve
-#define LDL_perm ldl_perm
-#define LDL_permt ldl_permt
-#define LDL_valid_perm ldl_valid_perm
-#define LDL_valid_matrix ldl_valid_matrix
-
-#endif
-
-/* ========================================================================== */
-/* === int version ========================================================== */
-/* ========================================================================== */
-
-void ldl_symbolic (int n, int Ap [ ], int Ai [ ], int Lp [ ],
- int Parent [ ], int Lnz [ ], int Flag [ ], int P [ ], int Pinv [ ]) ;
-
-int ldl_numeric (int n, int Ap [ ], int Ai [ ], double Ax [ ],
- int Lp [ ], int Parent [ ], int Lnz [ ], int Li [ ], double Lx [ ],
- double D [ ], double Y [ ], int Pattern [ ], int Flag [ ],
- int P [ ], int Pinv [ ]) ;
-
-void ldl_lsolve (int n, double X [ ], int Lp [ ], int Li [ ],
- double Lx [ ]) ;
-
-void ldl_dsolve (int n, double X [ ], double D [ ]) ;
-
-void ldl_ltsolve (int n, double X [ ], int Lp [ ], int Li [ ],
- double Lx [ ]) ;
-
-void ldl_perm (int n, double X [ ], double B [ ], int P [ ]) ;
-void ldl_permt (int n, double X [ ], double B [ ], int P [ ]) ;
-
-int ldl_valid_perm (int n, int P [ ], int Flag [ ]) ;
-int ldl_valid_matrix ( int n, int Ap [ ], int Ai [ ]) ;
-
-/* ========================================================================== */
-/* === long version ========================================================= */
-/* ========================================================================== */
-
-void ldl_l_symbolic (UF_long n, UF_long Ap [ ], UF_long Ai [ ], UF_long Lp [ ],
- UF_long Parent [ ], UF_long Lnz [ ], UF_long Flag [ ], UF_long P [ ],
- UF_long Pinv [ ]) ;
-
-UF_long ldl_l_numeric (UF_long n, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ],
- UF_long Lp [ ], UF_long Parent [ ], UF_long Lnz [ ], UF_long Li [ ],
- double Lx [ ], double D [ ], double Y [ ], UF_long Pattern [ ],
- UF_long Flag [ ], UF_long P [ ], UF_long Pinv [ ]) ;
-
-void ldl_l_lsolve (UF_long n, double X [ ], UF_long Lp [ ], UF_long Li [ ],
- double Lx [ ]) ;
-
-void ldl_l_dsolve (UF_long n, double X [ ], double D [ ]) ;
-
-void ldl_l_ltsolve (UF_long n, double X [ ], UF_long Lp [ ], UF_long Li [ ],
- double Lx [ ]) ;
-
-void ldl_l_perm (UF_long n, double X [ ], double B [ ], UF_long P [ ]) ;
-void ldl_l_permt (UF_long n, double X [ ], double B [ ], UF_long P [ ]) ;
-
-UF_long ldl_l_valid_perm (UF_long n, UF_long P [ ], UF_long Flag [ ]) ;
-UF_long ldl_l_valid_matrix ( UF_long n, UF_long Ap [ ], UF_long Ai [ ]) ;
-
-/* ========================================================================== */
-/* === LDL version ========================================================== */
-/* ========================================================================== */
-
-#define LDL_DATE "Nov 1, 2007"
-#define LDL_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
-#define LDL_MAIN_VERSION 2
-#define LDL_SUB_VERSION 0
-#define LDL_SUBSUB_VERSION 1
-#define LDL_VERSION LDL_VERSION_CODE(LDL_MAIN_VERSION,LDL_SUB_VERSION)
-
diff --git a/extern/libmv/third_party/ldl/README.libmv b/extern/libmv/third_party/ldl/README.libmv
deleted file mode 100644
index 64ece48a390..00000000000
--- a/extern/libmv/third_party/ldl/README.libmv
+++ /dev/null
@@ -1,10 +0,0 @@
-Project: LDL
-URL: http://www.cise.ufl.edu/research/sparse/ldl/
-License: LGPL2.1
-Upstream version: 2.0.1 (despite the ChangeLog saying 2.0.0)
-
-Local modifications:
-
- * Deleted everything except ldl.c, ldl.h, the license, the ChangeLog, and the
- README.
-
diff --git a/extern/libmv/third_party/ldl/README.txt b/extern/libmv/third_party/ldl/README.txt
deleted file mode 100644
index 7be8dd1f001..00000000000
--- a/extern/libmv/third_party/ldl/README.txt
+++ /dev/null
@@ -1,136 +0,0 @@
-LDL Version 2.0: a sparse LDL' factorization and solve package.
- Written in C, with both a C and MATLAB mexFunction interface.
-
-These routines are not terrifically fast (they do not use dense matrix kernels),
-but the code is very short and concise. The purpose is to illustrate the
-algorithms in a very concise and readable manner, primarily for educational
-purposes. Although the code is very concise, this package is slightly faster
-than the built-in sparse Cholesky factorization in MATLAB 6.5 (chol), when
-using the same input permutation.
-
-Requires UFconfig, in the ../UFconfig directory relative to this directory.
-
-Quick start (Unix, or Windows with Cygwin):
-
- To compile, test, and install LDL, you may wish to first obtain a copy of
- AMD v2.0 from http://www.cise.ufl.edu/research/sparse, and place it in the
- ../AMD directory, relative to this directory. Next, type "make", which
- will compile the LDL library and three demo main programs (one of which
- requires AMD). It will also compile the LDL MATLAB mexFunction (if you
- have MATLAB). Typing "make clean" will remove non-essential files.
- AMD v2.0 or later is required. Its use is optional.
-
-Quick start (for MATLAB users);
-
- To compile, test, and install the LDL mexFunctions (ldlsparse and
- ldlsymbol), start MATLAB in this directory and type ldl_install.
- This works on any system supported by MATLAB.
-
---------------------------------------------------------------------------------
-
-LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
-
-LDL License:
-
- Your use or distribution of LDL or any modified version of
- LDL implies that you agree to this License.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
-
-Availability:
-
- http://www.cise.ufl.edu/research/sparse/ldl
-
-Acknowledgements:
-
- This work was supported by the National Science Foundation, under
- grant CCR-0203270.
-
- Portions of this work were done while on sabbatical at Stanford University
- and Lawrence Berkeley National Laboratory (with funding from the SciDAC
- program). I would like to thank Gene Golub, Esmond Ng, and Horst Simon
- for making this sabbatical possible. I would like to thank Pete Stewart
- for his comments on a draft of this software and paper.
-
---------------------------------------------------------------------------------
-Files and directories in this distribution:
---------------------------------------------------------------------------------
-
- Documentation, and compiling:
-
- README.txt this file
- Makefile for compiling LDL
- ChangeLog changes since V1.0 (Dec 31, 2003)
- License license
- lesser.txt the GNU LGPL license
-
- ldl_userguide.pdf user guide in PDF
- ldl_userguide.ps user guide in postscript
- ldl_userguide.tex user guide in Latex
- ldl.bib bibliography for user guide
-
- The LDL library itself:
-
- ldl.c the C-callable routines
- ldl.h include file for any code that calls LDL
-
- A simple C main program that demonstrates how to use LDL:
-
- ldlsimple.c a stand-alone C program, uses the basic features of LDL
- ldlsimple.out output of ldlsimple
-
- ldllsimple.c long integer version of ldlsimple.c
-
- Demo C program, for testing LDL and providing an example of its use
-
- ldlmain.c a stand-alone C main program that uses and tests LDL
- Matrix a directory containing matrices used by ldlmain.c
- ldlmain.out output of ldlmain
- ldlamd.out output of ldlamd (ldlmain.c compiled with AMD)
- ldllamd.out output of ldllamd (ldlmain.c compiled with AMD, long)
-
- MATLAB-related, not required for use in a regular C program
-
- Contents.m a list of the MATLAB-callable routines
- ldl.m MATLAB help file for the LDL mexFunction
- ldldemo.m MATLAB demo of how to use the LDL mexFunction
- ldldemo.out diary output of ldldemo
- ldltest.m to test the LDL mexFunction
- ldltest.out diary output of ldltest
- ldlmex.c the LDL mexFunction for MATLAB
- ldlrow.m the numerical algorithm that LDL is based on
- ldlmain2.m compiles and runs ldlmain.c as a MATLAB mexFunction
- ldlmain2.out output of ldlmain2.m
- ldlsymbolmex.c symbolic factorization using LDL (see SYMBFACT, ETREE)
- ldlsymbol.m help file for the LDLSYMBOL mexFunction
-
- ldl_install.m compile, install, and test LDL functions
- ldl_make.m compile LDL (ldlsparse and ldlsymbol)
-
- ldlsparse.m help for ldlsparse
-
-See ldl.c for a description of how to use the code from a C program. Type
-"help ldl" in MATLAB for information on how to use LDL in a MATLAB program.
diff --git a/extern/libmv/third_party/ldl/Source/ldl.c b/extern/libmv/third_party/ldl/Source/ldl.c
deleted file mode 100644
index a9b35c846ef..00000000000
--- a/extern/libmv/third_party/ldl/Source/ldl.c
+++ /dev/null
@@ -1,507 +0,0 @@
-/* ========================================================================== */
-/* === ldl.c: sparse LDL' factorization and solve package =================== */
-/* ========================================================================== */
-
-/* LDL: a simple set of routines for sparse LDL' factorization. These routines
- * are not terrifically fast (they do not use dense matrix kernels), but the
- * code is very short. The purpose is to illustrate the algorithms in a very
- * concise manner, primarily for educational purposes. Although the code is
- * very concise, this package is slightly faster than the built-in sparse
- * Cholesky factorization in MATLAB 7.0 (chol), when using the same input
- * permutation.
- *
- * The routines compute the LDL' factorization of a real sparse symmetric
- * matrix A (or PAP' if a permutation P is supplied), and solve upper
- * and lower triangular systems with the resulting L and D factors. If A is
- * positive definite then the factorization will be accurate. A can be
- * indefinite (with negative values on the diagonal D), but in this case no
- * guarantee of accuracy is provided, since no numeric pivoting is performed.
- *
- * The n-by-n sparse matrix A is in compressed-column form. The nonzero values
- * in column j are stored in Ax [Ap [j] ... Ap [j+1]-1], with corresponding row
- * indices in Ai [Ap [j] ... Ap [j+1]-1]. Ap [0] = 0 is required, and thus
- * nz = Ap [n] is the number of nonzeros in A. Ap is an int array of size n+1.
- * The int array Ai and the double array Ax are of size nz. This data structure
- * is identical to the one used by MATLAB, except for the following
- * generalizations. The row indices in each column of A need not be in any
- * particular order, although they must be in the range 0 to n-1. Duplicate
- * entries can be present; any duplicates are summed. That is, if row index i
- * appears twice in a column j, then the value of A (i,j) is the sum of the two
- * entries. The data structure used here for the input matrix A is more
- * flexible than MATLAB's, which requires sorted columns with no duplicate
- * entries.
- *
- * Only the diagonal and upper triangular part of A (or PAP' if a permutation
- * P is provided) is accessed. The lower triangular parts of the matrix A or
- * PAP' can be present, but they are ignored.
- *
- * The optional input permutation is provided as an array P of length n. If
- * P [k] = j, the row and column j of A is the kth row and column of PAP'.
- * If P is present then the factorization is LDL' = PAP' or L*D*L' = A(P,P) in
- * 0-based MATLAB notation. If P is not present (a null pointer) then no
- * permutation is performed, and the factorization is LDL' = A.
- *
- * The lower triangular matrix L is stored in the same compressed-column
- * form (an int Lp array of size n+1, an int Li array of size Lp [n], and a
- * double array Lx of the same size as Li). It has a unit diagonal, which is
- * not stored. The row indices in each column of L are always returned in
- * ascending order, with no duplicate entries. This format is compatible with
- * MATLAB, except that it would be more convenient for MATLAB to include the
- * unit diagonal of L. Doing so here would add additional complexity to the
- * code, and is thus omitted in the interest of keeping this code short and
- * readable.
- *
- * The elimination tree is held in the Parent [0..n-1] array. It is normally
- * not required by the user, but it is required by ldl_numeric. The diagonal
- * matrix D is held as an array D [0..n-1] of size n.
- *
- * --------------------
- * C-callable routines:
- * --------------------
- *
- * ldl_symbolic: Given the pattern of A, computes the Lp and Parent arrays
- * required by ldl_numeric. Takes time proportional to the number of
- * nonzeros in L. Computes the inverse Pinv of P if P is provided.
- * Also returns Lnz, the count of nonzeros in each column of L below
- * the diagonal (this is not required by ldl_numeric).
- * ldl_numeric: Given the pattern and numerical values of A, the Lp array,
- * the Parent array, and P and Pinv if applicable, computes the
- * pattern and numerical values of L and D.
- * ldl_lsolve: Solves Lx=b for a dense vector b.
- * ldl_dsolve: Solves Dx=b for a dense vector b.
- * ldl_ltsolve: Solves L'x=b for a dense vector b.
- * ldl_perm: Computes x=Pb for a dense vector b.
- * ldl_permt: Computes x=P'b for a dense vector b.
- * ldl_valid_perm: checks the validity of a permutation vector
- * ldl_valid_matrix: checks the validity of the sparse matrix A
- *
- * ----------------------------
- * Limitations of this package:
- * ----------------------------
- *
- * In the interest of keeping this code simple and readable, ldl_symbolic and
- * ldl_numeric assume their inputs are valid. You can check your own inputs
- * prior to calling these routines with the ldl_valid_perm and ldl_valid_matrix
- * routines. Except for the two ldl_valid_* routines, no routine checks to see
- * if the array arguments are present (non-NULL). Like all C routines, no
- * routine can determine if the arrays are long enough and don't overlap.
- *
- * The ldl_numeric does check the numerical factorization, however. It returns
- * n if the factorization is successful. If D (k,k) is zero, then k is
- * returned, and L is only partially computed.
- *
- * No pivoting to control fill-in is performed, which is often critical for
- * obtaining good performance. I recommend that you compute the permutation P
- * using AMD or SYMAMD (approximate minimum degree ordering routines), or an
- * appropriate graph-partitioning based ordering. See the ldldemo.m routine for
- * an example in MATLAB, and the ldlmain.c stand-alone C program for examples of
- * how to find P. Routines for manipulating compressed-column matrices are
- * available in UMFPACK. AMD, SYMAMD, UMFPACK, and this LDL package are all
- * available at http://www.cise.ufl.edu/research/sparse.
- *
- * -------------------------
- * Possible simplifications:
- * -------------------------
- *
- * These routines could be made even simpler with a few additional assumptions.
- * If no input permutation were performed, the caller would have to permute the
- * matrix first, but the computation of Pinv, and the use of P and Pinv could be
- * removed. If only the diagonal and upper triangular part of A or PAP' are
- * present, then the tests in the "if (i < k)" statement in ldl_symbolic and
- * "if (i <= k)" in ldl_numeric, are always true, and could be removed (i can
- * equal k in ldl_symbolic, but then the body of the if statement would
- * correctly do no work since Flag [k] == k). If we could assume that no
- * duplicate entries are present, then the statement Y [i] += Ax [p] could be
- * replaced with Y [i] = Ax [p] in ldl_numeric.
- *
- * --------------------------
- * Description of the method:
- * --------------------------
- *
- * LDL computes the symbolic factorization by finding the pattern of L one row
- * at a time. It does this based on the following theory. Consider a sparse
- * system Lx=b, where L, x, and b, are all sparse, and where L comes from a
- * Cholesky (or LDL') factorization. The elimination tree (etree) of L is
- * defined as follows. The parent of node j is the smallest k > j such that
- * L (k,j) is nonzero. Node j has no parent if column j of L is completely zero
- * below the diagonal (j is a root of the etree in this case). The nonzero
- * pattern of x is the union of the paths from each node i to the root, for
- * each nonzero b (i). To compute the numerical solution to Lx=b, we can
- * traverse the columns of L corresponding to nonzero values of x. This
- * traversal does not need to be done in the order 0 to n-1. It can be done in
- * any "topological" order, such that x (i) is computed before x (j) if i is a
- * descendant of j in the elimination tree.
- *
- * The row-form of the LDL' factorization is shown in the MATLAB function
- * ldlrow.m in this LDL package. Note that row k of L is found via a sparse
- * triangular solve of L (1:k-1, 1:k-1) \ A (1:k-1, k), to use 1-based MATLAB
- * notation. Thus, we can start with the nonzero pattern of the kth column of
- * A (above the diagonal), follow the paths up to the root of the etree of the
- * (k-1)-by-(k-1) leading submatrix of L, and obtain the pattern of the kth row
- * of L. Note that we only need the leading (k-1)-by-(k-1) submatrix of L to
- * do this. The elimination tree can be constructed as we go.
- *
- * The symbolic factorization does the same thing, except that it discards the
- * pattern of L as it is computed. It simply counts the number of nonzeros in
- * each column of L and then constructs the Lp index array when it's done. The
- * symbolic factorization does not need to do this in topological order.
- * Compare ldl_symbolic with the first part of ldl_numeric, and note that the
- * while (len > 0) loop is not present in ldl_symbolic.
- *
- * LDL Version 1.3, Copyright (c) 2006 by Timothy A Davis,
- * University of Florida. All Rights Reserved. Developed while on sabbatical
- * at Stanford University and Lawrence Berkeley National Laboratory. Refer to
- * the README file for the License. Available at
- * http://www.cise.ufl.edu/research/sparse.
- */
-
-#include "ldl.h"
-
-/* ========================================================================== */
-/* === ldl_symbolic ========================================================= */
-/* ========================================================================== */
-
-/* The input to this routine is a sparse matrix A, stored in column form, and
- * an optional permutation P. The output is the elimination tree
- * and the number of nonzeros in each column of L. Parent [i] = k if k is the
- * parent of i in the tree. The Parent array is required by ldl_numeric.
- * Lnz [k] gives the number of nonzeros in the kth column of L, excluding the
- * diagonal.
- *
- * One workspace vector (Flag) of size n is required.
- *
- * If P is NULL, then it is ignored. The factorization will be LDL' = A.
- * Pinv is not computed. In this case, neither P nor Pinv are required by
- * ldl_numeric.
- *
- * If P is not NULL, then it is assumed to be a valid permutation. If
- * row and column j of A is the kth pivot, the P [k] = j. The factorization
- * will be LDL' = PAP', or A (p,p) in MATLAB notation. The inverse permutation
- * Pinv is computed, where Pinv [j] = k if P [k] = j. In this case, both P
- * and Pinv are required as inputs to ldl_numeric.
- *
- * The floating-point operation count of the subsequent call to ldl_numeric
- * is not returned, but could be computed after ldl_symbolic is done. It is
- * the sum of (Lnz [k]) * (Lnz [k] + 2) for k = 0 to n-1.
- */
-
-void LDL_symbolic
-(
- LDL_int n, /* A and L are n-by-n, where n >= 0 */
- LDL_int Ap [ ], /* input of size n+1, not modified */
- LDL_int Ai [ ], /* input of size nz=Ap[n], not modified */
- LDL_int Lp [ ], /* output of size n+1, not defined on input */
- LDL_int Parent [ ], /* output of size n, not defined on input */
- LDL_int Lnz [ ], /* output of size n, not defined on input */
- LDL_int Flag [ ], /* workspace of size n, not defn. on input or output */
- LDL_int P [ ], /* optional input of size n */
- LDL_int Pinv [ ] /* optional output of size n (used if P is not NULL) */
-)
-{
- LDL_int i, k, p, kk, p2 ;
- if (P)
- {
- /* If P is present then compute Pinv, the inverse of P */
- for (k = 0 ; k < n ; k++)
- {
- Pinv [P [k]] = k ;
- }
- }
- for (k = 0 ; k < n ; k++)
- {
- /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
- Parent [k] = -1 ; /* parent of k is not yet known */
- Flag [k] = k ; /* mark node k as visited */
- Lnz [k] = 0 ; /* count of nonzeros in column k of L */
- kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */
- p2 = Ap [kk+1] ;
- for (p = Ap [kk] ; p < p2 ; p++)
- {
- /* A (i,k) is nonzero (original or permuted A) */
- i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ;
- if (i < k)
- {
- /* follow path from i to root of etree, stop at flagged node */
- for ( ; Flag [i] != k ; i = Parent [i])
- {
- /* find parent of i if not yet determined */
- if (Parent [i] == -1) Parent [i] = k ;
- Lnz [i]++ ; /* L (k,i) is nonzero */
- Flag [i] = k ; /* mark i as visited */
- }
- }
- }
- }
- /* construct Lp index array from Lnz column counts */
- Lp [0] = 0 ;
- for (k = 0 ; k < n ; k++)
- {
- Lp [k+1] = Lp [k] + Lnz [k] ;
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_numeric ========================================================== */
-/* ========================================================================== */
-
-/* Given a sparse matrix A (the arguments n, Ap, Ai, and Ax) and its symbolic
- * analysis (Lp and Parent, and optionally P and Pinv), compute the numeric LDL'
- * factorization of A or PAP'. The outputs of this routine are arguments Li,
- * Lx, and D. It also requires three size-n workspaces (Y, Pattern, and Flag).
- */
-
-LDL_int LDL_numeric /* returns n if successful, k if D (k,k) is zero */
-(
- LDL_int n, /* A and L are n-by-n, where n >= 0 */
- LDL_int Ap [ ], /* input of size n+1, not modified */
- LDL_int Ai [ ], /* input of size nz=Ap[n], not modified */
- double Ax [ ], /* input of size nz=Ap[n], not modified */
- LDL_int Lp [ ], /* input of size n+1, not modified */
- LDL_int Parent [ ], /* input of size n, not modified */
- LDL_int Lnz [ ], /* output of size n, not defn. on input */
- LDL_int Li [ ], /* output of size lnz=Lp[n], not defined on input */
- double Lx [ ], /* output of size lnz=Lp[n], not defined on input */
- double D [ ], /* output of size n, not defined on input */
- double Y [ ], /* workspace of size n, not defn. on input or output */
- LDL_int Pattern [ ],/* workspace of size n, not defn. on input or output */
- LDL_int Flag [ ], /* workspace of size n, not defn. on input or output */
- LDL_int P [ ], /* optional input of size n */
- LDL_int Pinv [ ] /* optional input of size n */
-)
-{
- double yi, l_ki ;
- LDL_int i, k, p, kk, p2, len, top ;
- for (k = 0 ; k < n ; k++)
- {
- /* compute nonzero Pattern of kth row of L, in topological order */
- Y [k] = 0.0 ; /* Y(0:k) is now all zero */
- top = n ; /* stack for pattern is empty */
- Flag [k] = k ; /* mark node k as visited */
- Lnz [k] = 0 ; /* count of nonzeros in column k of L */
- kk = (P) ? (P [k]) : (k) ; /* kth original, or permuted, column */
- p2 = Ap [kk+1] ;
- for (p = Ap [kk] ; p < p2 ; p++)
- {
- i = (Pinv) ? (Pinv [Ai [p]]) : (Ai [p]) ; /* get A(i,k) */
- if (i <= k)
- {
- Y [i] += Ax [p] ; /* scatter A(i,k) into Y (sum duplicates) */
- for (len = 0 ; Flag [i] != k ; i = Parent [i])
- {
- Pattern [len++] = i ; /* L(k,i) is nonzero */
- Flag [i] = k ; /* mark i as visited */
- }
- while (len > 0) Pattern [--top] = Pattern [--len] ;
- }
- }
- /* compute numerical values kth row of L (a sparse triangular solve) */
- D [k] = Y [k] ; /* get D(k,k) and clear Y(k) */
- Y [k] = 0.0 ;
- for ( ; top < n ; top++)
- {
- i = Pattern [top] ; /* Pattern [top:n-1] is pattern of L(:,k) */
- yi = Y [i] ; /* get and clear Y(i) */
- Y [i] = 0.0 ;
- p2 = Lp [i] + Lnz [i] ;
- for (p = Lp [i] ; p < p2 ; p++)
- {
- Y [Li [p]] -= Lx [p] * yi ;
- }
- l_ki = yi / D [i] ; /* the nonzero entry L(k,i) */
- D [k] -= l_ki * yi ;
- Li [p] = k ; /* store L(k,i) in column form of L */
- Lx [p] = l_ki ;
- Lnz [i]++ ; /* increment count of nonzeros in col i */
- }
- if (D [k] == 0.0) return (k) ; /* failure, D(k,k) is zero */
- }
- return (n) ; /* success, diagonal of D is all nonzero */
-}
-
-
-/* ========================================================================== */
-/* === ldl_lsolve: solve Lx=b ============================================== */
-/* ========================================================================== */
-
-void LDL_lsolve
-(
- LDL_int n, /* L is n-by-n, where n >= 0 */
- double X [ ], /* size n. right-hand-side on input, soln. on output */
- LDL_int Lp [ ], /* input of size n+1, not modified */
- LDL_int Li [ ], /* input of size lnz=Lp[n], not modified */
- double Lx [ ] /* input of size lnz=Lp[n], not modified */
-)
-{
- LDL_int j, p, p2 ;
- for (j = 0 ; j < n ; j++)
- {
- p2 = Lp [j+1] ;
- for (p = Lp [j] ; p < p2 ; p++)
- {
- X [Li [p]] -= Lx [p] * X [j] ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_dsolve: solve Dx=b ============================================== */
-/* ========================================================================== */
-
-void LDL_dsolve
-(
- LDL_int n, /* D is n-by-n, where n >= 0 */
- double X [ ], /* size n. right-hand-side on input, soln. on output */
- double D [ ] /* input of size n, not modified */
-)
-{
- LDL_int j ;
- for (j = 0 ; j < n ; j++)
- {
- X [j] /= D [j] ;
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_ltsolve: solve L'x=b ============================================ */
-/* ========================================================================== */
-
-void LDL_ltsolve
-(
- LDL_int n, /* L is n-by-n, where n >= 0 */
- double X [ ], /* size n. right-hand-side on input, soln. on output */
- LDL_int Lp [ ], /* input of size n+1, not modified */
- LDL_int Li [ ], /* input of size lnz=Lp[n], not modified */
- double Lx [ ] /* input of size lnz=Lp[n], not modified */
-)
-{
- int j, p, p2 ;
- for (j = n-1 ; j >= 0 ; j--)
- {
- p2 = Lp [j+1] ;
- for (p = Lp [j] ; p < p2 ; p++)
- {
- X [j] -= Lx [p] * X [Li [p]] ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_perm: permute a vector, x=Pb ===================================== */
-/* ========================================================================== */
-
-void LDL_perm
-(
- LDL_int n, /* size of X, B, and P */
- double X [ ], /* output of size n. */
- double B [ ], /* input of size n. */
- LDL_int P [ ] /* input permutation array of size n. */
-)
-{
- LDL_int j ;
- for (j = 0 ; j < n ; j++)
- {
- X [j] = B [P [j]] ;
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_permt: permute a vector, x=P'b =================================== */
-/* ========================================================================== */
-
-void LDL_permt
-(
- LDL_int n, /* size of X, B, and P */
- double X [ ], /* output of size n. */
- double B [ ], /* input of size n. */
- LDL_int P [ ] /* input permutation array of size n. */
-)
-{
- LDL_int j ;
- for (j = 0 ; j < n ; j++)
- {
- X [P [j]] = B [j] ;
- }
-}
-
-
-/* ========================================================================== */
-/* === ldl_valid_perm: check if a permutation vector is valid =============== */
-/* ========================================================================== */
-
-LDL_int LDL_valid_perm /* returns 1 if valid, 0 otherwise */
-(
- LDL_int n,
- LDL_int P [ ], /* input of size n, a permutation of 0:n-1 */
- LDL_int Flag [ ] /* workspace of size n */
-)
-{
- LDL_int j, k ;
- if (n < 0 || !Flag)
- {
- return (0) ; /* n must be >= 0, and Flag must be present */
- }
- if (!P)
- {
- return (1) ; /* If NULL, P is assumed to be the identity perm. */
- }
- for (j = 0 ; j < n ; j++)
- {
- Flag [j] = 0 ; /* clear the Flag array */
- }
- for (k = 0 ; k < n ; k++)
- {
- j = P [k] ;
- if (j < 0 || j >= n || Flag [j] != 0)
- {
- return (0) ; /* P is not valid */
- }
- Flag [j] = 1 ;
- }
- return (1) ; /* P is valid */
-}
-
-
-/* ========================================================================== */
-/* === ldl_valid_matrix: check if a sparse matrix is valid ================== */
-/* ========================================================================== */
-
-/* This routine checks to see if a sparse matrix A is valid for input to
- * ldl_symbolic and ldl_numeric. It returns 1 if the matrix is valid, 0
- * otherwise. A is in sparse column form. The numerical values in column j
- * are stored in Ax [Ap [j] ... Ap [j+1]-1], with row indices in
- * Ai [Ap [j] ... Ap [j+1]-1]. The Ax array is not checked.
- */
-
-LDL_int LDL_valid_matrix
-(
- LDL_int n,
- LDL_int Ap [ ],
- LDL_int Ai [ ]
-)
-{
- LDL_int j, p ;
- if (n < 0 || !Ap || !Ai || Ap [0] != 0)
- {
- return (0) ; /* n must be >= 0, and Ap and Ai must be present */
- }
- for (j = 0 ; j < n ; j++)
- {
- if (Ap [j] > Ap [j+1])
- {
- return (0) ; /* Ap must be monotonically nondecreasing */
- }
- }
- for (p = 0 ; p < Ap [n] ; p++)
- {
- if (Ai [p] < 0 || Ai [p] >= n)
- {
- return (0) ; /* row indices must be in the range 0 to n-1 */
- }
- }
- return (1) ; /* matrix is valid */
-}
diff --git a/extern/libmv/third_party/ssba/COPYING.TXT b/extern/libmv/third_party/ssba/COPYING.TXT
deleted file mode 100644
index fc8a5de7edf..00000000000
--- a/extern/libmv/third_party/ssba/COPYING.TXT
+++ /dev/null
@@ -1,165 +0,0 @@
- GNU LESSER GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-
- This version of the GNU Lesser General Public License incorporates
-the terms and conditions of version 3 of the GNU General Public
-License, supplemented by the additional permissions listed below.
-
- 0. Additional Definitions.
-
- As used herein, "this License" refers to version 3 of the GNU Lesser
-General Public License, and the "GNU GPL" refers to version 3 of the GNU
-General Public License.
-
- "The Library" refers to a covered work governed by this License,
-other than an Application or a Combined Work as defined below.
-
- An "Application" is any work that makes use of an interface provided
-by the Library, but which is not otherwise based on the Library.
-Defining a subclass of a class defined by the Library is deemed a mode
-of using an interface provided by the Library.
-
- A "Combined Work" is a work produced by combining or linking an
-Application with the Library. The particular version of the Library
-with which the Combined Work was made is also called the "Linked
-Version".
-
- The "Minimal Corresponding Source" for a Combined Work means the
-Corresponding Source for the Combined Work, excluding any source code
-for portions of the Combined Work that, considered in isolation, are
-based on the Application, and not on the Linked Version.
-
- The "Corresponding Application Code" for a Combined Work means the
-object code and/or source code for the Application, including any data
-and utility programs needed for reproducing the Combined Work from the
-Application, but excluding the System Libraries of the Combined Work.
-
- 1. Exception to Section 3 of the GNU GPL.
-
- You may convey a covered work under sections 3 and 4 of this License
-without being bound by section 3 of the GNU GPL.
-
- 2. Conveying Modified Versions.
-
- If you modify a copy of the Library, and, in your modifications, a
-facility refers to a function or data to be supplied by an Application
-that uses the facility (other than as an argument passed when the
-facility is invoked), then you may convey a copy of the modified
-version:
-
- a) under this License, provided that you make a good faith effort to
- ensure that, in the event an Application does not supply the
- function or data, the facility still operates, and performs
- whatever part of its purpose remains meaningful, or
-
- b) under the GNU GPL, with none of the additional permissions of
- this License applicable to that copy.
-
- 3. Object Code Incorporating Material from Library Header Files.
-
- The object code form of an Application may incorporate material from
-a header file that is part of the Library. You may convey such object
-code under terms of your choice, provided that, if the incorporated
-material is not limited to numerical parameters, data structure
-layouts and accessors, or small macros, inline functions and templates
-(ten or fewer lines in length), you do both of the following:
-
- a) Give prominent notice with each copy of the object code that the
- Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the object code with a copy of the GNU GPL and this license
- document.
-
- 4. Combined Works.
-
- You may convey a Combined Work under terms of your choice that,
-taken together, effectively do not restrict modification of the
-portions of the Library contained in the Combined Work and reverse
-engineering for debugging such modifications, if you also do each of
-the following:
-
- a) Give prominent notice with each copy of the Combined Work that
- the Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the Combined Work with a copy of the GNU GPL and this license
- document.
-
- c) For a Combined Work that displays copyright notices during
- execution, include the copyright notice for the Library among
- these notices, as well as a reference directing the user to the
- copies of the GNU GPL and this license document.
-
- d) Do one of the following:
-
- 0) Convey the Minimal Corresponding Source under the terms of this
- License, and the Corresponding Application Code in a form
- suitable for, and under terms that permit, the user to
- recombine or relink the Application with a modified version of
- the Linked Version to produce a modified Combined Work, in the
- manner specified by section 6 of the GNU GPL for conveying
- Corresponding Source.
-
- 1) Use a suitable shared library mechanism for linking with the
- Library. A suitable mechanism is one that (a) uses at run time
- a copy of the Library already present on the user's computer
- system, and (b) will operate properly with a modified version
- of the Library that is interface-compatible with the Linked
- Version.
-
- e) Provide Installation Information, but only if you would otherwise
- be required to provide such information under section 6 of the
- GNU GPL, and only to the extent that such information is
- necessary to install and execute a modified version of the
- Combined Work produced by recombining or relinking the
- Application with a modified version of the Linked Version. (If
- you use option 4d0, the Installation Information must accompany
- the Minimal Corresponding Source and Corresponding Application
- Code. If you use option 4d1, you must provide the Installation
- Information in the manner specified by section 6 of the GNU GPL
- for conveying Corresponding Source.)
-
- 5. Combined Libraries.
-
- You may place library facilities that are a work based on the
-Library side by side in a single library together with other library
-facilities that are not Applications and are not covered by this
-License, and convey such a combined library under terms of your
-choice, if you do both of the following:
-
- a) Accompany the combined library with a copy of the same work based
- on the Library, uncombined with any other library facilities,
- conveyed under the terms of this License.
-
- b) Give prominent notice with the combined library that part of it
- is a work based on the Library, and explaining where to find the
- accompanying uncombined form of the same work.
-
- 6. Revised Versions of the GNU Lesser General Public License.
-
- The Free Software Foundation may publish revised and/or new versions
-of the GNU Lesser General Public License from time to time. Such new
-versions will be similar in spirit to the present version, but may
-differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Library as you received it specifies that a certain numbered version
-of the GNU Lesser General Public License "or any later version"
-applies to it, you have the option of following the terms and
-conditions either of that published version or of any later version
-published by the Free Software Foundation. If the Library as you
-received it does not specify a version number of the GNU Lesser
-General Public License, you may choose any version of the GNU Lesser
-General Public License ever published by the Free Software Foundation.
-
- If the Library as you received it specifies that a proxy can decide
-whether future versions of the GNU Lesser General Public License shall
-apply, that proxy's public statement of acceptance of any version is
-permanent authorization for you to choose that version for the
-Library.
diff --git a/extern/libmv/third_party/ssba/Geometry/v3d_cameramatrix.h b/extern/libmv/third_party/ssba/Geometry/v3d_cameramatrix.h
deleted file mode 100644
index 448ae9714e5..00000000000
--- a/extern/libmv/third_party/ssba/Geometry/v3d_cameramatrix.h
+++ /dev/null
@@ -1,204 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_CAMERA_MATRIX_H
-#define V3D_CAMERA_MATRIX_H
-
-#include "Math/v3d_linear.h"
-#include "Geometry/v3d_distortion.h"
-
-namespace V3D
-{
-
- struct CameraMatrix
- {
- CameraMatrix()
- {
- makeIdentityMatrix(_K);
- makeIdentityMatrix(_R);
- makeZeroVector(_T);
- this->updateCachedValues(true, true);
- }
-
- CameraMatrix(double f, double cx, double cy)
- {
- makeIdentityMatrix(_K);
- _K[0][0] = f;
- _K[1][1] = f;
- _K[0][2] = cx;
- _K[1][2] = cy;
- makeIdentityMatrix(_R);
- makeZeroVector(_T);
- this->updateCachedValues(true, true);
- }
-
- CameraMatrix(Matrix3x3d const& K,
- Matrix3x3d const& R,
- Vector3d const& T)
- : _K(K), _R(R), _T(T)
- {
- this->updateCachedValues(true, true);
- }
-
- void setIntrinsic(Matrix3x3d const& K) { _K = K; this->updateCachedValues(true, false); }
- void setRotation(Matrix3x3d const& R) { _R = R; this->updateCachedValues(false, true); }
- void setTranslation(Vector3d const& T) { _T = T; this->updateCachedValues(false, true); }
-
- template <typename Mat>
- void setOrientation(Mat const& RT)
- {
- _R[0][0] = RT[0][0]; _R[0][1] = RT[0][1]; _R[0][2] = RT[0][2];
- _R[1][0] = RT[1][0]; _R[1][1] = RT[1][1]; _R[1][2] = RT[1][2];
- _R[2][0] = RT[2][0]; _R[2][1] = RT[2][1]; _R[2][2] = RT[2][2];
- _T[0] = RT[0][3]; _T[1] = RT[1][3]; _T[2] = RT[2][3];
- this->updateCachedValues(false, true);
- }
-
- Matrix3x3d const& getIntrinsic() const { return _K; }
- Matrix3x3d const& getRotation() const { return _R; }
- Vector3d const& getTranslation() const { return _T; }
-
- Matrix3x4d getOrientation() const
- {
- Matrix3x4d RT;
- RT[0][0] = _R[0][0]; RT[0][1] = _R[0][1]; RT[0][2] = _R[0][2];
- RT[1][0] = _R[1][0]; RT[1][1] = _R[1][1]; RT[1][2] = _R[1][2];
- RT[2][0] = _R[2][0]; RT[2][1] = _R[2][1]; RT[2][2] = _R[2][2];
- RT[0][3] = _T[0]; RT[1][3] = _T[1]; RT[2][3] = _T[2];
- return RT;
- }
-
- Matrix3x4d getProjection() const
- {
- Matrix3x4d const RT = this->getOrientation();
- return _K * RT;
- }
-
- double getFocalLength() const { return _K[0][0]; }
- double getAspectRatio() const { return _K[1][1] / _K[0][0]; }
-
- Vector2d getPrincipalPoint() const
- {
- Vector2d pp;
- pp[0] = _K[0][2];
- pp[1] = _K[1][2];
- return pp;
- }
-
- Vector2d projectPoint(Vector3d const& X) const
- {
- Vector3d q = _K*(_R*X + _T);
- Vector2d res;
- res[0] = q[0]/q[2]; res[1] = q[1]/q[2];
- return res;
- }
-
- template <typename Distortion>
- Vector2d projectPoint(Distortion const& distortion, Vector3d const& X) const
- {
- Vector3d XX = _R*X + _T;
- Vector2d p;
- p[0] = XX[0] / XX[2];
- p[1] = XX[1] / XX[2];
- p = distortion(p);
-
- Vector2d res;
- res[0] = _K[0][0] * p[0] + _K[0][1] * p[1] + _K[0][2];
- res[1] = _K[1][1] * p[1] + _K[1][2];
- return res;
- }
-
- Vector3d unprojectPixel(Vector2d const &p, double depth = 1) const
- {
- Vector3d pp;
- pp[0] = p[0]; pp[1] = p[1]; pp[2] = 1.0;
- Vector3d ray = _invK * pp;
- ray[0] *= depth/ray[2];
- ray[1] *= depth/ray[2];
- ray[2] = depth;
- ray = _Rt * ray;
- return _center + ray;
- }
-
- Vector3d transformPointIntoCameraSpace(Vector3d const& p) const
- {
- return _R*p + _T;
- }
-
- Vector3d transformPointFromCameraSpace(Vector3d const& p) const
- {
- return _Rt*(p-_T);
- }
-
- Vector3d transformDirectionFromCameraSpace(Vector3d const& dir) const
- {
- return _Rt*dir;
- }
-
- Vector3d const& cameraCenter() const
- {
- return _center;
- }
-
- Vector3d opticalAxis() const
- {
- return this->transformDirectionFromCameraSpace(makeVector3(0.0, 0.0, 1.0));
- }
-
- Vector3d upVector() const
- {
- return this->transformDirectionFromCameraSpace(makeVector3(0.0, 1.0, 0.0));
- }
-
- Vector3d rightVector() const
- {
- return this->transformDirectionFromCameraSpace(makeVector3(1.0, 0.0, 0.0));
- }
-
- Vector3d getRay(Vector2d const& p) const
- {
- Vector3d pp = makeVector3(p[0], p[1], 1.0);
- Vector3d ray = _invK * pp;
- ray = _Rt * ray;
- normalizeVector(ray);
- return ray;
- }
-
- protected:
- void updateCachedValues(bool intrinsic, bool orientation)
- {
- if (intrinsic) _invK = invertedMatrix(_K);
-
- if (orientation)
- {
- makeTransposedMatrix(_R, _Rt);
- _center = _Rt * (-1.0 * _T);
- }
- }
-
- Matrix3x3d _K, _R;
- Vector3d _T;
- Matrix3x3d _invK, _Rt;
- Vector3d _center;
- }; // end struct CameraMatrix
-
-} // end namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Geometry/v3d_distortion.h b/extern/libmv/third_party/ssba/Geometry/v3d_distortion.h
deleted file mode 100644
index d0816558314..00000000000
--- a/extern/libmv/third_party/ssba/Geometry/v3d_distortion.h
+++ /dev/null
@@ -1,97 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_DISTORTION_H
-#define V3D_DISTORTION_H
-
-#include "Math/v3d_linear.h"
-#include "Math/v3d_linear_utils.h"
-
-namespace V3D
-{
-
- struct StdDistortionFunction
- {
- double k1, k2, p1, p2;
-
- StdDistortionFunction()
- : k1(0), k2(0), p1(0), p2(0)
- { }
-
- Vector2d operator()(Vector2d const& xu) const
- {
- double const r2 = xu[0]*xu[0] + xu[1]*xu[1];
- double const r4 = r2*r2;
- double const kr = 1 + k1*r2 + k2*r4;
-
- Vector2d xd;
- xd[0] = kr * xu[0] + 2*p1*xu[0]*xu[1] + p2*(r2 + 2*xu[0]*xu[0]);
- xd[1] = kr * xu[1] + 2*p2*xu[0]*xu[1] + p1*(r2 + 2*xu[1]*xu[1]);
- return xd;
- }
-
- Matrix2x2d derivativeWrtRadialParameters(Vector2d const& xu) const
- {
- double const r2 = xu[0]*xu[0] + xu[1]*xu[1];
- double const r4 = r2*r2;
- //double const kr = 1 + k1*r2 + k2*r4;
-
- Matrix2x2d deriv;
-
- deriv[0][0] = xu[0] * r2; // d xd/d k1
- deriv[0][1] = xu[0] * r4; // d xd/d k2
- deriv[1][0] = xu[1] * r2; // d yd/d k1
- deriv[1][1] = xu[1] * r4; // d yd/d k2
- return deriv;
- }
-
- Matrix2x2d derivativeWrtTangentialParameters(Vector2d const& xu) const
- {
- double const r2 = xu[0]*xu[0] + xu[1]*xu[1];
- //double const r4 = r2*r2;
- //double const kr = 1 + k1*r2 + k2*r4;
-
- Matrix2x2d deriv;
- deriv[0][0] = 2*xu[0]*xu[1]; // d xd/d p1
- deriv[0][1] = r2 + 2*xu[0]*xu[0]; // d xd/d p2
- deriv[1][0] = r2 + 2*xu[1]*xu[1]; // d yd/d p1
- deriv[1][1] = deriv[0][0]; // d yd/d p2
- return deriv;
- }
-
- Matrix2x2d derivativeWrtUndistortedPoint(Vector2d const& xu) const
- {
- double const r2 = xu[0]*xu[0] + xu[1]*xu[1];
- double const r4 = r2*r2;
- double const kr = 1 + k1*r2 + k2*r4;
- double const dkr = 2*k1 + 4*k2*r2;
-
- Matrix2x2d deriv;
- deriv[0][0] = kr + xu[0] * xu[0] * dkr + 2*p1*xu[1] + 6*p2*xu[0]; // d xd/d xu
- deriv[0][1] = xu[0] * xu[1] * dkr + 2*p1*xu[0] + 2*p2*xu[1]; // d xd/d yu
- deriv[1][0] = deriv[0][1]; // d yd/d xu
- deriv[1][1] = kr + xu[1] * xu[1] * dkr + 6*p1*xu[1] + 2*p2*xu[0]; // d yd/d yu
- return deriv;
- }
- }; // end struct StdDistortionFunction
-
-} // end namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.cpp b/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.cpp
deleted file mode 100644
index 7eb2dfac5d9..00000000000
--- a/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.cpp
+++ /dev/null
@@ -1,405 +0,0 @@
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#include "Geometry/v3d_metricbundle.h"
-
-#if defined(V3DLIB_ENABLE_SUITESPARSE)
-
-namespace
-{
-
- typedef V3D::InlineMatrix<double, 2, 4> Matrix2x4d;
- typedef V3D::InlineMatrix<double, 4, 2> Matrix4x2d;
- typedef V3D::InlineMatrix<double, 2, 6> Matrix2x6d;
-
-} // end namespace <>
-
-namespace V3D
-{
-
- void
- MetricBundleOptimizerBase::updateParametersA(VectorArray<double> const& deltaAi)
- {
- Vector3d T, omega;
- Matrix3x3d R0, dR;
-
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- {
- T = _cams[i].getTranslation();
- T[0] += deltaAi[i][0];
- T[1] += deltaAi[i][1];
- T[2] += deltaAi[i][2];
- _cams[i].setTranslation(T);
-
- // Create incremental rotation using Rodriguez formula.
- R0 = _cams[i].getRotation();
- omega[0] = deltaAi[i][3];
- omega[1] = deltaAi[i][4];
- omega[2] = deltaAi[i][5];
- createRotationMatrixRodriguez(omega, dR);
- _cams[i].setRotation(dR * R0);
- } // end for (i)
- } // end MetricBundleOptimizerBase::updateParametersA()
-
- void
- MetricBundleOptimizerBase::updateParametersB(VectorArray<double> const& deltaBj)
- {
- for (int j = _nNonvaryingB; j < _nParametersB; ++j)
- {
- _Xs[j][0] += deltaBj[j][0];
- _Xs[j][1] += deltaBj[j][1];
- _Xs[j][2] += deltaBj[j][2];
- }
- } // end MetricBundleOptimizerBase::updateParametersB()
-
- void
- MetricBundleOptimizerBase::poseDerivatives(int i, int j, Vector3d& XX,
- Matrix3x6d& d_dRT, Matrix3x3d& d_dX) const
- {
- XX = _cams[i].transformPointIntoCameraSpace(_Xs[j]);
-
- // See Frank Dellaerts bundle adjustment tutorial.
- // d(dR * R0 * X + t)/d omega = -[R0 * X]_x
- Matrix3x3d J;
- makeCrossProductMatrix(XX - _cams[i].getTranslation(), J);
- scaleMatrixIP(-1.0, J);
-
- // Now the transformation from world coords into camera space is xx = Rx + T
- // Hence the derivative of x wrt. T is just the identity matrix.
- makeIdentityMatrix(d_dRT);
- copyMatrixSlice(J, 0, 0, 3, 3, d_dRT, 0, 3);
-
- // The derivative of Rx+T wrt x is just R.
- copyMatrix(_cams[i].getRotation(), d_dX);
- } // end MetricBundleOptimizerBase::poseDerivatives()
-
-
-//----------------------------------------------------------------------
-
- void
- StdMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
- Matrix<double>& Bk,
- Matrix<double>& Ck,
- int i, int j, int k)
- {
- Vector3d XX;
- Matrix3x6d d_dRT;
- Matrix3x3d d_dX;
- this->poseDerivatives(i, j, XX, d_dRT, d_dX);
-
- double const f = _cams[i].getFocalLength();
- double const ar = _cams[i].getAspectRatio();
-
- Matrix2x3d dp_dX;
- double const bx = f / (XX[2] * XX[2]);
- double const by = ar * bx;
- dp_dX[0][0] = bx * XX[2]; dp_dX[0][1] = 0; dp_dX[0][2] = -bx * XX[0];
- dp_dX[1][0] = 0; dp_dX[1][1] = by * XX[2]; dp_dX[1][2] = -by * XX[1];
-
- multiply_A_B(dp_dX, d_dRT, Ak);
- multiply_A_B(dp_dX, d_dX, Bk);
- } // end StdMetricBundleOptimizer::fillJacobians()
-
- //----------------------------------------------------------------------
-
- void
- CommonInternalsMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
- Matrix<double>& Bk,
- Matrix<double>& Ck,
- int i, int j, int k)
- {
- double const focalLength = _K[0][0];
-
- Vector3d XX;
- Matrix3x6d dXX_dRT;
- Matrix3x3d dXX_dX;
- this->poseDerivatives(i, j, XX, dXX_dRT, dXX_dX);
-
- Vector2d xu; // undistorted image point
- xu[0] = XX[0] / XX[2];
- xu[1] = XX[1] / XX[2];
-
- Vector2d const xd = _distortion(xu); // distorted image point
-
- Matrix2x2d dp_dxd;
- dp_dxd[0][0] = focalLength; dp_dxd[0][1] = 0;
- dp_dxd[1][0] = 0; dp_dxd[1][1] = _cachedAspectRatio * focalLength;
-
- {
- // First, lets do the derivative wrt the structure and motion parameters.
- Matrix2x3d dxu_dXX;
- dxu_dXX[0][0] = 1.0f / XX[2]; dxu_dXX[0][1] = 0; dxu_dXX[0][2] = -XX[0]/(XX[2]*XX[2]);
- dxu_dXX[1][0] = 0; dxu_dXX[1][1] = 1.0f / XX[2]; dxu_dXX[1][2] = -XX[1]/(XX[2]*XX[2]);
-
- Matrix2x2d dxd_dxu = _distortion.derivativeWrtUndistortedPoint(xu);
-
- Matrix2x2d dp_dxu = dp_dxd * dxd_dxu;
- Matrix2x3d dp_dXX = dp_dxu * dxu_dXX;
-
- multiply_A_B(dp_dXX, dXX_dRT, Ak);
- multiply_A_B(dp_dXX, dXX_dX, Bk);
- } // end scope
-
- switch (_mode)
- {
- case FULL_BUNDLE_FOCAL_AND_RADIAL_K1:
- {
- // Focal length.
- Ck[0][0] = xd[0];
- Ck[1][0] = xd[1];
-
- // For radial, k1 only.
- Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
- Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
- Ck[0][1] = d_dk1k2[0][0];
- Ck[1][1] = d_dk1k2[1][0];
- break;
- }
- case FULL_BUNDLE_FOCAL_AND_RADIAL:
- {
- // Focal length.
- Ck[0][0] = xd[0];
- Ck[1][0] = xd[1];
-
- // Radial k1 and k2.
- Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
- Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
- copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ck, 0, 1);
- break;
- }
- case FULL_BUNDLE_RADIAL_TANGENTIAL:
- {
- Matrix2x2d dxd_dp1p2 = _distortion.derivativeWrtTangentialParameters(xu);
- Matrix2x2d d_dp1p2 = dp_dxd * dxd_dp1p2;
- copyMatrixSlice(d_dp1p2, 0, 0, 2, 2, Ck, 0, 5);
- // No break here!
- }
- case FULL_BUNDLE_RADIAL:
- {
- Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
- Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
- copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ck, 0, 3);
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH_PP:
- {
- Ck[0][1] = 1; Ck[0][2] = 0;
- Ck[1][1] = 0; Ck[1][2] = 1;
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH:
- {
- Ck[0][0] = xd[0];
- Ck[1][0] = xd[1];
- }
- case FULL_BUNDLE_METRIC:
- {
- }
- } // end switch
- } // end CommonInternalsMetricBundleOptimizer::fillJacobians()
-
- void
- CommonInternalsMetricBundleOptimizer::updateParametersC(Vector<double> const& deltaC)
- {
- switch (_mode)
- {
- case FULL_BUNDLE_FOCAL_AND_RADIAL_K1:
- {
- _K[0][0] += deltaC[0];
- _K[1][1] = _cachedAspectRatio * _K[0][0];
- _distortion.k1 += deltaC[1];
- break;
- }
- case FULL_BUNDLE_FOCAL_AND_RADIAL:
- {
- _K[0][0] += deltaC[0];
- _K[1][1] = _cachedAspectRatio * _K[0][0];
- _distortion.k1 += deltaC[1];
- _distortion.k2 += deltaC[2];
- break;
- }
- case FULL_BUNDLE_RADIAL_TANGENTIAL:
- {
- _distortion.p1 += deltaC[5];
- _distortion.p2 += deltaC[6];
- // No break here!
- }
- case FULL_BUNDLE_RADIAL:
- {
- _distortion.k1 += deltaC[3];
- _distortion.k2 += deltaC[4];
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH_PP:
- {
- _K[0][2] += deltaC[1];
- _K[1][2] += deltaC[2];
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH:
- {
- _K[0][0] += deltaC[0];
- _K[1][1] = _cachedAspectRatio * _K[0][0];
- }
- case FULL_BUNDLE_METRIC:
- {
- }
- } // end switch
- } // end CommonInternalsMetricBundleOptimizer::updateParametersC()
-
- //----------------------------------------------------------------------
-
- void
- VaryingInternalsMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
- Matrix<double>& Bk,
- Matrix<double>& Ck,
- int i, int j, int k)
- {
- Vector3d XX;
- Matrix3x6d dXX_dRT;
- Matrix3x3d dXX_dX;
- this->poseDerivatives(i, j, XX, dXX_dRT, dXX_dX);
-
- Vector2d xu; // undistorted image point
- xu[0] = XX[0] / XX[2];
- xu[1] = XX[1] / XX[2];
-
- Vector2d const xd = _distortions[i](xu); // distorted image point
-
- double const focalLength = _cams[i].getFocalLength();
- double const aspectRatio = _cams[i].getAspectRatio();
-
- Matrix2x2d dp_dxd;
- dp_dxd[0][0] = focalLength; dp_dxd[0][1] = 0;
- dp_dxd[1][0] = 0; dp_dxd[1][1] = aspectRatio * focalLength;
-
- {
- // First, lets do the derivative wrt the structure and motion parameters.
- Matrix2x3d dxu_dXX;
- dxu_dXX[0][0] = 1.0f / XX[2]; dxu_dXX[0][1] = 0; dxu_dXX[0][2] = -XX[0]/(XX[2]*XX[2]);
- dxu_dXX[1][0] = 0; dxu_dXX[1][1] = 1.0f / XX[2]; dxu_dXX[1][2] = -XX[1]/(XX[2]*XX[2]);
-
- Matrix2x2d dxd_dxu = _distortions[i].derivativeWrtUndistortedPoint(xu);
-
- Matrix2x2d dp_dxu = dp_dxd * dxd_dxu;
- Matrix2x3d dp_dXX = dp_dxu * dxu_dXX;
-
- Matrix2x6d dp_dRT;
-
- multiply_A_B(dp_dXX, dXX_dRT, dp_dRT);
- copyMatrixSlice(dp_dRT, 0, 0, 2, 6, Ak, 0, 0);
- multiply_A_B(dp_dXX, dXX_dX, Bk);
- } // end scope
-
- switch (_mode)
- {
- case FULL_BUNDLE_RADIAL_TANGENTIAL:
- {
- Matrix2x2d dxd_dp1p2 = _distortions[i].derivativeWrtTangentialParameters(xu);
- Matrix2x2d d_dp1p2 = dp_dxd * dxd_dp1p2;
- copyMatrixSlice(d_dp1p2, 0, 0, 2, 2, Ak, 0, 11);
- // No break here!
- }
- case FULL_BUNDLE_RADIAL:
- {
- Matrix2x2d dxd_dk1k2 = _distortions[i].derivativeWrtRadialParameters(xu);
- Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
- copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ak, 0, 9);
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH_PP:
- {
- Ak[0][7] = 1; Ak[0][8] = 0;
- Ak[1][7] = 0; Ak[1][8] = 1;
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH:
- {
- Ak[0][6] = xd[0];
- Ak[1][6] = xd[1];
- }
- case FULL_BUNDLE_METRIC:
- {
- }
- } // end switch
- } // end VaryingInternalsMetricBundleOptimizer::fillJacobians()
-
- void
- VaryingInternalsMetricBundleOptimizer::updateParametersA(VectorArray<double> const& deltaAi)
- {
- Vector3d T, omega;
- Matrix3x3d R0, dR, K;
-
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- {
- Vector<double> const& deltaA = deltaAi[i];
-
- T = _cams[i].getTranslation();
- T[0] += deltaA[0];
- T[1] += deltaA[1];
- T[2] += deltaA[2];
- _cams[i].setTranslation(T);
-
- // Create incremental rotation using Rodriguez formula.
- R0 = _cams[i].getRotation();
- omega[0] = deltaA[3];
- omega[1] = deltaA[4];
- omega[2] = deltaA[5];
- createRotationMatrixRodriguez(omega, dR);
- _cams[i].setRotation(dR * R0);
-
- K = _cams[i].getIntrinsic();
-
- switch (_mode)
- {
- case FULL_BUNDLE_RADIAL_TANGENTIAL:
- {
- _distortions[i].p1 += deltaA[11];
- _distortions[i].p2 += deltaA[12];
- // No break here!
- }
- case FULL_BUNDLE_RADIAL:
- {
- _distortions[i].k1 += deltaA[9];
- _distortions[i].k2 += deltaA[10];
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH_PP:
- {
- K[0][2] += deltaA[7];
- K[1][2] += deltaA[8];
- // No break here!
- }
- case FULL_BUNDLE_FOCAL_LENGTH:
- {
- double const ar = K[1][1] / K[0][0];
- K[0][0] += deltaA[6];
- K[1][1] = ar * K[0][0];
- }
- case FULL_BUNDLE_METRIC:
- {
- }
- } // end switch
- _cams[i].setIntrinsic(K);
- } // end for (i)
- } // end VaryingInternalsMetricBundleOptimizer::updateParametersC()
-
-} // end namespace V3D
-
-#endif // defined(V3DLIB_ENABLE_SUITESPARSE)
diff --git a/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.h b/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.h
deleted file mode 100644
index 339e174ed9e..00000000000
--- a/extern/libmv/third_party/ssba/Geometry/v3d_metricbundle.h
+++ /dev/null
@@ -1,352 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_METRICBUNDLE_H
-#define V3D_METRICBUNDLE_H
-
-# if defined(V3DLIB_ENABLE_SUITESPARSE)
-
-#include "Math/v3d_optimization.h"
-#include "Math/v3d_linear.h"
-#include "Math/v3d_linear_utils.h"
-#include "Geometry/v3d_cameramatrix.h"
-#include "Geometry/v3d_distortion.h"
-
-namespace V3D
-{
-
- // This structure provides some helper functions common to all metric BAs
- struct MetricBundleOptimizerBase : public SparseLevenbergOptimizer
- {
- typedef SparseLevenbergOptimizer Base;
-
- MetricBundleOptimizerBase(double inlierThreshold,
- vector<CameraMatrix>& cams,
- vector<Vector3d >& Xs,
- vector<Vector2d > const& measurements,
- vector<int> const& corrspondingView,
- vector<int> const& corrspondingPoint,
- int nAddParamsA, int nParamsC)
- : SparseLevenbergOptimizer(2, cams.size(), 6+nAddParamsA, Xs.size(), 3, nParamsC,
- corrspondingView, corrspondingPoint),
- _cams(cams), _Xs(Xs), _measurements(measurements),
- _savedTranslations(cams.size()), _savedRotations(cams.size()),
- _savedXs(Xs.size()),
- _inlierThreshold(inlierThreshold), _cachedParamLength(0.0)
- {
- // Since we assume that BA does not alter the inputs too much,
- // we compute the overall length of the parameter vector in advance
- // and return that value as the result of getParameterLength().
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- {
- _cachedParamLength += sqrNorm_L2(_cams[i].getTranslation());
- _cachedParamLength += 3.0; // Assume eye(3) for R.
- }
- for (int j = _nNonvaryingB; j < _nParametersB; ++j)
- _cachedParamLength += sqrNorm_L2(_Xs[j]);
-
- _cachedParamLength = sqrt(_cachedParamLength);
- }
-
- // Huber robust cost function.
- virtual void fillWeights(VectorArray<double> const& residual, Vector<double>& w)
- {
- for (unsigned int k = 0; k < w.size(); ++k)
- {
- Vector<double> const& r = residual[k];
- double const e = norm_L2(r);
- w[k] = (e < _inlierThreshold) ? 1.0 : sqrt(_inlierThreshold / e);
- } // end for (k)
- }
-
- virtual double getParameterLength() const
- {
- return _cachedParamLength;
- }
-
- virtual void updateParametersA(VectorArray<double> const& deltaAi);
- virtual void updateParametersB(VectorArray<double> const& deltaBj);
- virtual void updateParametersC(Vector<double> const& deltaC)
- {
- (void)deltaC;
- }
-
- virtual void saveAllParameters()
- {
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- {
- _savedTranslations[i] = _cams[i].getTranslation();
- _savedRotations[i] = _cams[i].getRotation();
- }
- _savedXs = _Xs;
- }
-
- virtual void restoreAllParameters()
- {
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- {
- _cams[i].setTranslation(_savedTranslations[i]);
- _cams[i].setRotation(_savedRotations[i]);
- }
- _Xs = _savedXs;
- }
-
- protected:
- typedef InlineMatrix<double, 3, 6> Matrix3x6d;
-
- void poseDerivatives(int i, int j, Vector3d& XX,
- Matrix3x6d& d_dRT, Matrix3x3d& d_dX) const;
-
- vector<CameraMatrix>& _cams;
- vector<Vector3d>& _Xs;
-
- vector<Vector2d> const& _measurements;
-
- vector<Vector3d> _savedTranslations;
- vector<Matrix3x3d> _savedRotations;
- vector<Vector3d> _savedXs;
-
- double const _inlierThreshold;
- double _cachedParamLength;
- }; // end struct MetricBundleOptimizerBase
-
- struct StdMetricBundleOptimizer : public MetricBundleOptimizerBase
- {
- typedef MetricBundleOptimizerBase Base;
-
- StdMetricBundleOptimizer(double inlierThreshold,
- vector<CameraMatrix>& cams,
- vector<Vector3d >& Xs,
- vector<Vector2d > const& measurements,
- vector<int> const& corrspondingView,
- vector<int> const& corrspondingPoint)
- : MetricBundleOptimizerBase(inlierThreshold, cams, Xs, measurements,
- corrspondingView, corrspondingPoint, 0, 0)
- { }
-
- virtual void evalResidual(VectorArray<double>& e)
- {
- for (unsigned int k = 0; k < e.count(); ++k)
- {
- int const i = _correspondingParamA[k];
- int const j = _correspondingParamB[k];
-
- Vector2d const q = _cams[i].projectPoint(_Xs[j]);
- e[k][0] = q[0] - _measurements[k][0];
- e[k][1] = q[1] - _measurements[k][1];
- }
- }
-
- virtual void fillJacobians(Matrix<double>& Ak, Matrix<double>& Bk, Matrix<double>& Ck,
- int i, int j, int k);
- }; // end struct StdMetricBundleOptimizer
-
-//----------------------------------------------------------------------
-
- enum
- {
- FULL_BUNDLE_METRIC = 0,
- FULL_BUNDLE_FOCAL_LENGTH = 1, // f
- FULL_BUNDLE_FOCAL_LENGTH_PP = 2, // f, cx, cy
- FULL_BUNDLE_RADIAL = 3, // f, cx, cy, k1, k2
- FULL_BUNDLE_RADIAL_TANGENTIAL = 4, // f, cx, cy, k1, k2, p1, p2
- FULL_BUNDLE_FOCAL_AND_RADIAL_K1 = 5, // f, k1
- FULL_BUNDLE_FOCAL_AND_RADIAL = 6, // f, k1, k2
- };
-
- struct CommonInternalsMetricBundleOptimizer : public MetricBundleOptimizerBase
- {
- static int globalParamDimensionFromMode(int mode)
- {
- switch (mode)
- {
- case FULL_BUNDLE_METRIC: return 0;
- case FULL_BUNDLE_FOCAL_LENGTH: return 1;
- case FULL_BUNDLE_FOCAL_LENGTH_PP: return 3;
- case FULL_BUNDLE_RADIAL: return 5;
- case FULL_BUNDLE_RADIAL_TANGENTIAL: return 7;
- case FULL_BUNDLE_FOCAL_AND_RADIAL_K1: return 2;
- case FULL_BUNDLE_FOCAL_AND_RADIAL: return 3;
- }
- return 0;
- }
-
- typedef MetricBundleOptimizerBase Base;
-
- CommonInternalsMetricBundleOptimizer(int mode,
- double inlierThreshold,
- Matrix3x3d& K,
- StdDistortionFunction& distortion,
- vector<CameraMatrix>& cams,
- vector<Vector3d >& Xs,
- vector<Vector2d > const& measurements,
- vector<int> const& corrspondingView,
- vector<int> const& corrspondingPoint)
- : MetricBundleOptimizerBase(inlierThreshold, cams, Xs, measurements,
- corrspondingView, corrspondingPoint,
- 0, globalParamDimensionFromMode(mode)),
- _mode(mode), _K(K), _distortion(distortion)
- {
- _cachedAspectRatio = K[1][1] / K[0][0];
- }
-
- Vector2d projectPoint(Vector3d const& X, int i) const
- {
- Vector3d const XX = _cams[i].transformPointIntoCameraSpace(X);
- Vector2d p;
- p[0] = XX[0] / XX[2];
- p[1] = XX[1] / XX[2];
- p = _distortion(p);
- Vector2d res;
- res[0] = _K[0][0] * p[0] + _K[0][1] * p[1] + _K[0][2];
- res[1] = _K[1][1] * p[1] + _K[1][2];
- return res;
- }
-
- virtual void evalResidual(VectorArray<double>& e)
- {
- for (unsigned int k = 0; k < e.count(); ++k)
- {
- int const i = _correspondingParamA[k];
- int const j = _correspondingParamB[k];
-
- Vector2d const q = this->projectPoint(_Xs[j], i);
- e[k][0] = q[0] - _measurements[k][0];
- e[k][1] = q[1] - _measurements[k][1];
- }
- }
-
- virtual void fillJacobians(Matrix<double>& Ak, Matrix<double>& Bk, Matrix<double>& Ck,
- int i, int j, int k);
-
- virtual void updateParametersC(Vector<double> const& deltaC);
-
- virtual void saveAllParameters()
- {
- Base::saveAllParameters();
- _savedK = _K;
- _savedDistortion = _distortion;
- }
-
- virtual void restoreAllParameters()
- {
- Base::restoreAllParameters();
- _K = _savedK;
- _distortion = _savedDistortion;
- }
-
- protected:
- int _mode;
- Matrix3x3d& _K;
- StdDistortionFunction& _distortion;
-
- Matrix3x3d _savedK;
- StdDistortionFunction _savedDistortion;
- double _cachedAspectRatio;
- }; // end struct CommonInternalsMetricBundleOptimizer
-
-//----------------------------------------------------------------------
-
- struct VaryingInternalsMetricBundleOptimizer : public MetricBundleOptimizerBase
- {
- static int extParamDimensionFromMode(int mode)
- {
- switch (mode)
- {
- case FULL_BUNDLE_METRIC: return 0;
- case FULL_BUNDLE_FOCAL_LENGTH: return 1;
- case FULL_BUNDLE_FOCAL_LENGTH_PP: return 3;
- case FULL_BUNDLE_RADIAL: return 5;
- case FULL_BUNDLE_RADIAL_TANGENTIAL: return 7;
- case FULL_BUNDLE_FOCAL_AND_RADIAL_K1: return 2;
- case FULL_BUNDLE_FOCAL_AND_RADIAL: return 3;
- }
- return 0;
- }
-
- typedef MetricBundleOptimizerBase Base;
-
- VaryingInternalsMetricBundleOptimizer(int mode,
- double inlierThreshold,
- std::vector<StdDistortionFunction>& distortions,
- vector<CameraMatrix>& cams,
- vector<Vector3d >& Xs,
- vector<Vector2d > const& measurements,
- vector<int> const& corrspondingView,
- vector<int> const& corrspondingPoint)
- : MetricBundleOptimizerBase(inlierThreshold, cams, Xs, measurements,
- corrspondingView, corrspondingPoint,
- extParamDimensionFromMode(mode), 0),
- _mode(mode), _distortions(distortions),
- _savedKs(cams.size()), _savedDistortions(cams.size())
- { }
-
- Vector2d projectPoint(Vector3d const& X, int i) const
- {
- return _cams[i].projectPoint(_distortions[i], X);
- }
-
- virtual void evalResidual(VectorArray<double>& e)
- {
- for (unsigned int k = 0; k < e.count(); ++k)
- {
- int const i = _correspondingParamA[k];
- int const j = _correspondingParamB[k];
-
- Vector2d const q = this->projectPoint(_Xs[j], i);
- e[k][0] = q[0] - _measurements[k][0];
- e[k][1] = q[1] - _measurements[k][1];
- }
- }
-
- virtual void fillJacobians(Matrix<double>& Ak, Matrix<double>& Bk, Matrix<double>& Ck,
- int i, int j, int k);
-
- virtual void updateParametersA(VectorArray<double> const& deltaAi);
-
- virtual void saveAllParameters()
- {
- Base::saveAllParameters();
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- _savedKs[i] = _cams[i].getIntrinsic();
- std::copy(_distortions.begin(), _distortions.end(), _savedDistortions.begin());
- }
-
- virtual void restoreAllParameters()
- {
- Base::restoreAllParameters();
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- _cams[i].setIntrinsic(_savedKs[i]);
- std::copy(_savedDistortions.begin(), _savedDistortions.end(), _distortions.begin());
- }
-
- protected:
- int _mode;
- std::vector<StdDistortionFunction>& _distortions;
-
- std::vector<Matrix3x3d> _savedKs;
- std::vector<StdDistortionFunction> _savedDistortions;
- }; // end struct VaryingInternalsMetricBundleOptimizer
-
-} // end namespace V3D
-
-# endif
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Math/v3d_linear.h b/extern/libmv/third_party/ssba/Math/v3d_linear.h
deleted file mode 100644
index 7d6e898169c..00000000000
--- a/extern/libmv/third_party/ssba/Math/v3d_linear.h
+++ /dev/null
@@ -1,923 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_LINEAR_H
-#define V3D_LINEAR_H
-
-#include <cassert>
-#include <algorithm>
-#include <vector>
-#include <cmath>
-
-namespace V3D
-{
- using namespace std;
-
- //! Unboxed vector type
- template <typename Elem, int Size>
- struct InlineVectorBase
- {
- typedef Elem value_type;
- typedef Elem element_type;
-
- typedef Elem const * const_iterator;
- typedef Elem * iterator;
-
- static unsigned int size() { return Size; }
-
- Elem& operator[](unsigned int i) { return _vec[i]; }
- Elem operator[](unsigned int i) const { return _vec[i]; }
-
- Elem& operator()(unsigned int i) { return _vec[i-1]; }
- Elem operator()(unsigned int i) const { return _vec[i-1]; }
-
- const_iterator begin() const { return _vec; }
- iterator begin() { return _vec; }
- const_iterator end() const { return _vec + Size; }
- iterator end() { return _vec + Size; }
-
- void newsize(unsigned int sz) const
- {
- assert(sz == Size);
- }
-
- protected:
- Elem _vec[Size];
- };
-
- //! Boxed (heap allocated) vector.
- template <typename Elem>
- struct VectorBase
- {
- typedef Elem value_type;
- typedef Elem element_type;
-
- typedef Elem const * const_iterator;
- typedef Elem * iterator;
-
- VectorBase()
- : _size(0), _ownsVec(true), _vec(0)
- { }
-
- VectorBase(unsigned int size)
- : _size(size), _ownsVec(true), _vec(0)
- {
- if (size > 0) _vec = new Elem[size];
- }
-
- VectorBase(unsigned int size, Elem * values)
- : _size(size), _ownsVec(false), _vec(values)
- { }
-
- VectorBase(VectorBase<Elem> const& a)
- : _size(0), _ownsVec(true), _vec(0)
- {
- _size = a._size;
- if (_size == 0) return;
- _vec = new Elem[_size];
- std::copy(a._vec, a._vec + _size, _vec);
- }
-
- ~VectorBase() { if (_ownsVec && _vec != 0) delete [] _vec; }
-
- VectorBase& operator=(VectorBase<Elem> const& a)
- {
- if (this == &a) return *this;
-
- this->newsize(a._size);
- std::copy(a._vec, a._vec + _size, _vec);
- return *this;
- }
-
- unsigned int size() const { return _size; }
-
- VectorBase<Elem>& newsize(unsigned int sz)
- {
- if (sz == _size) return *this;
- assert(_ownsVec);
-
- __destroy();
- _size = sz;
- if (_size > 0) _vec = new Elem[_size];
-
- return *this;
- }
-
-
- Elem& operator[](unsigned int i) { return _vec[i]; }
- Elem operator[](unsigned int i) const { return _vec[i]; }
-
- Elem& operator()(unsigned int i) { return _vec[i-1]; }
- Elem operator()(unsigned int i) const { return _vec[i-1]; }
-
- const_iterator begin() const { return _vec; }
- iterator begin() { return _vec; }
- const_iterator end() const { return _vec + _size; }
- iterator end() { return _vec + _size; }
-
- protected:
- void __destroy()
- {
- assert(_ownsVec);
-
- if (_vec != 0) delete [] _vec;
- _size = 0;
- _vec = 0;
- }
-
- unsigned int _size;
- bool _ownsVec;
- Elem * _vec;
- };
-
- template <typename Elem, int Rows, int Cols>
- struct InlineMatrixBase
- {
- typedef Elem value_type;
- typedef Elem element_type;
-
- typedef Elem * iterator;
- typedef Elem const * const_iterator;
-
- static unsigned int num_rows() { return Rows; }
- static unsigned int num_cols() { return Cols; }
-
- Elem * operator[](unsigned int row) { return _m[row]; }
- Elem const * operator[](unsigned int row) const { return _m[row]; }
-
- Elem& operator()(unsigned int row, unsigned int col) { return _m[row-1][col-1]; }
- Elem operator()(unsigned int row, unsigned int col) const { return _m[row-1][col-1]; }
-
- template <typename Vec>
- void getRowSlice(unsigned int row, unsigned int first, unsigned int last, Vec& dst) const
- {
- for (unsigned int c = first; c < last; ++c) dst[c-first] = _m[row][c];
- }
-
- template <typename Vec>
- void getColumnSlice(unsigned int first, unsigned int len, unsigned int col, Vec& dst) const
- {
- for (unsigned int r = 0; r < len; ++r) dst[r] = _m[r+first][col];
- }
-
- void newsize(unsigned int rows, unsigned int cols) const
- {
- assert(rows == Rows && cols == Cols);
- }
-
- const_iterator begin() const { return &_m[0][0]; }
- iterator begin() { return &_m[0][0]; }
- const_iterator end() const { return &_m[0][0] + Rows*Cols; }
- iterator end() { return &_m[0][0] + Rows*Cols; }
-
- protected:
- Elem _m[Rows][Cols];
- };
-
- template <typename Elem>
- struct MatrixBase
- {
- typedef Elem value_type;
- typedef Elem element_type;
-
- typedef Elem const * const_iterator;
- typedef Elem * iterator;
-
- MatrixBase()
- : _rows(0), _cols(0), _ownsData(true), _m(0)
- { }
-
- MatrixBase(unsigned int rows, unsigned int cols)
- : _rows(rows), _cols(cols), _ownsData(true), _m(0)
- {
- if (_rows * _cols == 0) return;
- _m = new Elem[rows*cols];
- }
-
- MatrixBase(unsigned int rows, unsigned int cols, Elem * values)
- : _rows(rows), _cols(cols), _ownsData(false), _m(values)
- { }
-
- MatrixBase(MatrixBase<Elem> const& a)
- : _ownsData(true), _m(0)
- {
- _rows = a._rows; _cols = a._cols;
- if (_rows * _cols == 0) return;
- _m = new Elem[_rows*_cols];
- std::copy(a._m, a._m+_rows*_cols, _m);
- }
-
- ~MatrixBase()
- {
- if (_ownsData && _m != 0) delete [] _m;
- }
-
- MatrixBase& operator=(MatrixBase<Elem> const& a)
- {
- if (this == &a) return *this;
-
- this->newsize(a.num_rows(), a.num_cols());
-
- std::copy(a._m, a._m+_rows*_cols, _m);
- return *this;
- }
-
- void newsize(unsigned int rows, unsigned int cols)
- {
- if (rows == _rows && cols == _cols) return;
-
- assert(_ownsData);
-
- __destroy();
-
- _rows = rows;
- _cols = cols;
- if (_rows * _cols == 0) return;
- _m = new Elem[rows*cols];
- }
-
- unsigned int num_rows() const { return _rows; }
- unsigned int num_cols() const { return _cols; }
-
- Elem * operator[](unsigned int row) { return _m + row*_cols; }
- Elem const * operator[](unsigned int row) const { return _m + row*_cols; }
-
- Elem& operator()(unsigned int row, unsigned int col) { return _m[(row-1)*_cols + col-1]; }
- Elem operator()(unsigned int row, unsigned int col) const { return _m[(row-1)*_cols + col-1]; }
-
- const_iterator begin() const { return _m; }
- iterator begin() { return _m; }
- const_iterator end() const { return _m + _rows*_cols; }
- iterator end() { return _m + _rows*_cols; }
-
- template <typename Vec>
- void getRowSlice(unsigned int row, unsigned int first, unsigned int last, Vec& dst) const
- {
- Elem const * v = (*this)[row];
- for (unsigned int c = first; c < last; ++c) dst[c-first] = v[c];
- }
-
- template <typename Vec>
- void getColumnSlice(unsigned int first, unsigned int len, unsigned int col, Vec& dst) const
- {
- for (unsigned int r = 0; r < len; ++r) dst[r] = _m[r+first][col];
- }
-
- protected:
- void __destroy()
- {
- assert(_ownsData);
- if (_m != 0) delete [] _m;
- _m = 0;
- _rows = _cols = 0;
- }
-
- unsigned int _rows, _cols;
- bool _ownsData;
- Elem * _m;
- };
-
- template <typename T>
- struct CCS_Matrix
- {
- CCS_Matrix()
- : _rows(0), _cols(0)
- { }
-
- CCS_Matrix(int const rows, int const cols, vector<pair<int, int> > const& nonZeros)
- : _rows(rows), _cols(cols)
- {
- this->initialize(nonZeros);
- }
-
- CCS_Matrix(CCS_Matrix const& b)
- : _rows(b._rows), _cols(b._cols),
- _colStarts(b._colStarts), _rowIdxs(b._rowIdxs), _destIdxs(b._destIdxs), _values(b._values)
- { }
-
- CCS_Matrix& operator=(CCS_Matrix const& b)
- {
- if (this == &b) return *this;
- _rows = b._rows;
- _cols = b._cols;
- _colStarts = b._colStarts;
- _rowIdxs = b._rowIdxs;
- _destIdxs = b._destIdxs;
- _values = b._values;
- return *this;
- }
-
- void create(int const rows, int const cols, vector<pair<int, int> > const& nonZeros)
- {
- _rows = rows;
- _cols = cols;
- this->initialize(nonZeros);
- }
-
- unsigned int num_rows() const { return _rows; }
- unsigned int num_cols() const { return _cols; }
-
- int getNonzeroCount() const { return _values.size(); }
-
- T const * getValues() const { return &_values[0]; }
- T * getValues() { return &_values[0]; }
-
- int const * getDestIndices() const { return &_destIdxs[0]; }
- int const * getColumnStarts() const { return &_colStarts[0]; }
- int const * getRowIndices() const { return &_rowIdxs[0]; }
-
- void getRowRange(unsigned int col, unsigned int& firstRow, unsigned int& lastRow) const
- {
- firstRow = _rowIdxs[_colStarts[col]];
- lastRow = _rowIdxs[_colStarts[col+1]-1]+1;
- }
-
- template <typename Vec>
- void getColumnSlice(unsigned int first, unsigned int len, unsigned int col, Vec& dst) const
- {
- unsigned int const last = first + len;
-
- for (int r = 0; r < len; ++r) dst[r] = 0; // Fill vector with zeros
-
- int const colStart = _colStarts[col];
- int const colEnd = _colStarts[col+1];
-
- int i = colStart;
- int r;
- // Skip rows less than the given start row
- while (i < colEnd && (r = _rowIdxs[i]) < first) ++i;
-
- // Copy elements until the final row
- while (i < colEnd && (r = _rowIdxs[i]) < last)
- {
- dst[r-first] = _values[i];
- ++i;
- }
- } // end getColumnSlice()
-
- int getColumnNonzeroCount(unsigned int col) const
- {
- int const colStart = _colStarts[col];
- int const colEnd = _colStarts[col+1];
- return colEnd - colStart;
- }
-
- template <typename VecA, typename VecB>
- void getSparseColumn(unsigned int col, VecA& rows, VecB& values) const
- {
- int const colStart = _colStarts[col];
- int const colEnd = _colStarts[col+1];
- int const nnz = colEnd - colStart;
-
- for (int i = 0; i < nnz; ++i)
- {
- rows[i] = _rowIdxs[colStart + i];
- values[i] = _values[colStart + i];
- }
- }
-
- protected:
- struct NonzeroInfo
- {
- int row, col, serial;
-
- // Sort wrt the column first
- bool operator<(NonzeroInfo const& rhs) const
- {
- if (col < rhs.col) return true;
- if (col > rhs.col) return false;
- return row < rhs.row;
- }
- };
-
- void initialize(std::vector<std::pair<int, int> > const& nonZeros)
- {
- using namespace std;
-
- int const nnz = nonZeros.size();
-
- _colStarts.resize(_cols + 1);
- _rowIdxs.resize(nnz);
-
- vector<NonzeroInfo> nz(nnz);
- for (int k = 0; k < nnz; ++k)
- {
- nz[k].row = nonZeros[k].first;
- nz[k].col = nonZeros[k].second;
- nz[k].serial = k;
- }
-
- // Sort in column major order
- std::sort(nz.begin(), nz.end());
-
- for (size_t k = 0; k < nnz; ++k) _rowIdxs[k] = nz[k].row;
-
- int curCol = -1;
- for (int k = 0; k < nnz; ++k)
- {
- NonzeroInfo const& el = nz[k];
- if (el.col != curCol)
- {
- // Update empty cols between
- for (int c = curCol+1; c < el.col; ++c) _colStarts[c] = k;
-
- curCol = el.col;
- _colStarts[curCol] = k;
- } // end if
- } // end for (k)
-
- // Update remaining columns
- for (int c = curCol+1; c <= _cols; ++c) _colStarts[c] = nnz;
-
- _destIdxs.resize(nnz);
- for (int k = 0; k < nnz; ++k) _destIdxs[nz[k].serial] = k;
-
- _values.resize(nnz);
- } // end initialize()
-
- int _rows, _cols;
- std::vector<int> _colStarts;
- std::vector<int> _rowIdxs;
- std::vector<int> _destIdxs;
- std::vector<T> _values;
- }; // end struct CCS_Matrix
-
-//----------------------------------------------------------------------
-
- template <typename Vec, typename Elem>
- inline void
- fillVector(Vec& v, Elem val)
- {
- // We do not use std::fill since we rely only on size() and operator[] member functions.
- for (unsigned int i = 0; i < v.size(); ++i) v[i] = val;
- }
-
- template <typename Vec>
- inline void
- makeZeroVector(Vec& v)
- {
- fillVector(v, 0);
- }
-
- template <typename VecA, typename VecB>
- inline void
- copyVector(VecA const& src, VecB& dst)
- {
- assert(src.size() == dst.size());
- // We do not use std::fill since we rely only on size() and operator[] member functions.
- for (unsigned int i = 0; i < src.size(); ++i) dst[i] = src[i];
- }
-
- template <typename VecA, typename VecB>
- inline void
- copyVectorSlice(VecA const& src, unsigned int srcStart, unsigned int srcLen,
- VecB& dst, unsigned int dstStart)
- {
- unsigned int const end = std::min(srcStart + srcLen, src.size());
- unsigned int const sz = dst.size();
- unsigned int i0, i1;
- for (i0 = srcStart, i1 = dstStart; i0 < end && i1 < sz; ++i0, ++i1) dst[i1] = src[i0];
- }
-
- template <typename Vec>
- inline typename Vec::value_type
- norm_L1(Vec const& v)
- {
- typename Vec::value_type res(0);
- for (unsigned int i = 0; i < v.size(); ++i) res += fabs(v[i]);
- return res;
- }
-
- template <typename Vec>
- inline typename Vec::value_type
- norm_Linf(Vec const& v)
- {
- typename Vec::value_type res(0);
- for (unsigned int i = 0; i < v.size(); ++i) res = std::max(res, fabs(v[i]));
- return res;
- }
-
- template <typename Vec>
- inline typename Vec::value_type
- norm_L2(Vec const& v)
- {
- typename Vec::value_type res(0);
- for (unsigned int i = 0; i < v.size(); ++i) res += v[i]*v[i];
- return sqrt((double)res);
- }
-
- template <typename Vec>
- inline typename Vec::value_type
- sqrNorm_L2(Vec const& v)
- {
- typename Vec::value_type res(0);
- for (unsigned int i = 0; i < v.size(); ++i) res += v[i]*v[i];
- return res;
- }
-
- template <typename Vec>
- inline void
- normalizeVector(Vec& v)
- {
- typename Vec::value_type norm(norm_L2(v));
- for (unsigned int i = 0; i < v.size(); ++i) v[i] /= norm;
- }
-
- template<typename VecA, typename VecB>
- inline typename VecA::value_type
- innerProduct(VecA const& a, VecB const& b)
- {
- assert(a.size() == b.size());
- typename VecA::value_type res(0);
- for (unsigned int i = 0; i < a.size(); ++i) res += a[i] * b[i];
- return res;
- }
-
- template <typename Elem, typename VecA, typename VecB>
- inline void
- scaleVector(Elem s, VecA const& v, VecB& dst)
- {
- for (unsigned int i = 0; i < v.size(); ++i) dst[i] = s * v[i];
- }
-
- template <typename Elem, typename Vec>
- inline void
- scaleVectorIP(Elem s, Vec& v)
- {
- typedef typename Vec::value_type Elem2;
- for (unsigned int i = 0; i < v.size(); ++i)
- v[i] = (Elem2)(v[i] * s);
- }
-
- template <typename VecA, typename VecB, typename VecC>
- inline void
- makeCrossProductVector(VecA const& v, VecB const& w, VecC& dst)
- {
- assert(v.size() == 3);
- assert(w.size() == 3);
- assert(dst.size() == 3);
- dst[0] = v[1]*w[2] - v[2]*w[1];
- dst[1] = v[2]*w[0] - v[0]*w[2];
- dst[2] = v[0]*w[1] - v[1]*w[0];
- }
-
- template <typename VecA, typename VecB, typename VecC>
- inline void
- addVectors(VecA const& v, VecB const& w, VecC& dst)
- {
- assert(v.size() == w.size());
- assert(v.size() == dst.size());
- for (unsigned int i = 0; i < v.size(); ++i) dst[i] = v[i] + w[i];
- }
-
- template <typename VecA, typename VecB, typename VecC>
- inline void
- subtractVectors(VecA const& v, VecB const& w, VecC& dst)
- {
- assert(v.size() == w.size());
- assert(v.size() == dst.size());
- for (unsigned int i = 0; i < v.size(); ++i) dst[i] = v[i] - w[i];
- }
-
- template <typename MatA, typename MatB>
- inline void
- copyMatrix(MatA const& src, MatB& dst)
- {
- unsigned int const rows = src.num_rows();
- unsigned int const cols = src.num_cols();
- assert(dst.num_rows() == rows);
- assert(dst.num_cols() == cols);
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) dst[r][c] = src[r][c];
- }
-
- template <typename MatA, typename MatB>
- inline void
- copyMatrixSlice(MatA const& src, unsigned int rowStart, unsigned int colStart, unsigned int rowLen, unsigned int colLen,
- MatB& dst, unsigned int dstRow, unsigned int dstCol)
- {
- unsigned int const rows = dst.num_rows();
- unsigned int const cols = dst.num_cols();
-
- unsigned int const rowEnd = std::min(rowStart + rowLen, src.num_rows());
- unsigned int const colEnd = std::min(colStart + colLen, src.num_cols());
-
- unsigned int c0, c1, r0, r1;
-
- for (c0 = colStart, c1 = dstCol; c0 < colEnd && c1 < cols; ++c0, ++c1)
- for (r0 = rowStart, r1 = dstRow; r0 < rowEnd && r1 < rows; ++r0, ++r1)
- dst[r1][c1] = src[r0][c0];
- }
-
- template <typename MatA, typename MatB>
- inline void
- makeTransposedMatrix(MatA const& src, MatB& dst)
- {
- unsigned int const rows = src.num_rows();
- unsigned int const cols = src.num_cols();
- assert(dst.num_cols() == rows);
- assert(dst.num_rows() == cols);
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) dst[c][r] = src[r][c];
- }
-
- template <typename Mat>
- inline void
- fillMatrix(Mat& m, typename Mat::value_type val)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) m[r][c] = val;
- }
-
- template <typename Mat>
- inline void
- makeZeroMatrix(Mat& m)
- {
- fillMatrix(m, 0);
- }
-
- template <typename Mat>
- inline void
- makeIdentityMatrix(Mat& m)
- {
- makeZeroMatrix(m);
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- unsigned int n = std::min(rows, cols);
- for (unsigned int i = 0; i < n; ++i)
- m[i][i] = 1;
- }
-
- template <typename Mat, typename Vec>
- inline void
- makeCrossProductMatrix(Vec const& v, Mat& m)
- {
- assert(v.size() == 3);
- assert(m.num_rows() == 3);
- assert(m.num_cols() == 3);
- m[0][0] = 0; m[0][1] = -v[2]; m[0][2] = v[1];
- m[1][0] = v[2]; m[1][1] = 0; m[1][2] = -v[0];
- m[2][0] = -v[1]; m[2][1] = v[0]; m[2][2] = 0;
- }
-
- template <typename Mat, typename Vec>
- inline void
- makeOuterProductMatrix(Vec const& v, Mat& m)
- {
- assert(m.num_cols() == m.num_rows());
- assert(v.size() == m.num_cols());
- unsigned const sz = v.size();
- for (unsigned r = 0; r < sz; ++r)
- for (unsigned c = 0; c < sz; ++c) m[r][c] = v[r]*v[c];
- }
-
- template <typename Mat, typename VecA, typename VecB>
- inline void
- makeOuterProductMatrix(VecA const& u, VecB const& v, Mat& m)
- {
- assert(m.num_cols() == m.num_rows());
- assert(u.size() == m.num_cols());
- assert(v.size() == m.num_cols());
- unsigned const sz = u.size();
- for (unsigned r = 0; r < sz; ++r)
- for (unsigned c = 0; c < sz; ++c) m[r][c] = u[r]*v[c];
- }
-
- template <typename MatA, typename MatB, typename MatC>
- void addMatrices(MatA const& a, MatB const& b, MatC& dst)
- {
- assert(a.num_cols() == b.num_cols());
- assert(a.num_rows() == b.num_rows());
- assert(dst.num_cols() == a.num_cols());
- assert(dst.num_rows() == a.num_rows());
-
- unsigned int const rows = a.num_rows();
- unsigned int const cols = a.num_cols();
-
- for (unsigned r = 0; r < rows; ++r)
- for (unsigned c = 0; c < cols; ++c) dst[r][c] = a[r][c] + b[r][c];
- }
-
- template <typename MatA, typename MatB>
- void addMatricesIP(MatA const& a, MatB& dst)
- {
- assert(dst.num_cols() == a.num_cols());
- assert(dst.num_rows() == a.num_rows());
-
- unsigned int const rows = a.num_rows();
- unsigned int const cols = a.num_cols();
-
- for (unsigned r = 0; r < rows; ++r)
- for (unsigned c = 0; c < cols; ++c) dst[r][c] += a[r][c];
- }
-
- template <typename MatA, typename MatB, typename MatC>
- void subtractMatrices(MatA const& a, MatB const& b, MatC& dst)
- {
- assert(a.num_cols() == b.num_cols());
- assert(a.num_rows() == b.num_rows());
- assert(dst.num_cols() == a.num_cols());
- assert(dst.num_rows() == a.num_rows());
-
- unsigned int const rows = a.num_rows();
- unsigned int const cols = a.num_cols();
-
- for (unsigned r = 0; r < rows; ++r)
- for (unsigned c = 0; c < cols; ++c) dst[r][c] = a[r][c] - b[r][c];
- }
-
- template <typename MatA, typename Elem, typename MatB>
- inline void
- makeScaledMatrix(MatA const& m, Elem scale, MatB& dst)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) dst[r][c] = m[r][c] * scale;
- }
-
- template <typename Mat, typename Elem>
- inline void
- scaleMatrixIP(Elem scale, Mat& m)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) m[r][c] *= scale;
- }
-
- template <typename Mat, typename VecA, typename VecB>
- inline void
- multiply_A_v(Mat const& m, VecA const& in, VecB& dst)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- assert(in.size() == cols);
- assert(dst.size() == rows);
-
- makeZeroVector(dst);
-
- for (unsigned int r = 0; r < rows; ++r)
- for (unsigned int c = 0; c < cols; ++c) dst[r] += m[r][c] * in[c];
- }
-
- template <typename Mat, typename VecA, typename VecB>
- inline void
- multiply_A_v_projective(Mat const& m, VecA const& in, VecB& dst)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- assert(in.size() == cols-1);
- assert(dst.size() == rows-1);
-
- typename VecB::value_type w = m(rows-1, cols-1);
- unsigned int r, i;
- for (i = 0; i < cols-1; ++i) w += m(rows-1, i) * in[i];
- for (r = 0; r < rows-1; ++r) dst[r] = m(r, cols-1);
- for (r = 0; r < rows-1; ++r)
- for (unsigned int c = 0; c < cols-1; ++c) dst[r] += m[r][c] * in[c];
- for (i = 0; i < rows-1; ++i) dst[i] /= w;
- }
-
- template <typename Mat, typename VecA, typename VecB>
- inline void
- multiply_A_v_affine(Mat const& m, VecA const& in, VecB& dst)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- assert(in.size() == cols-1);
- assert(dst.size() == rows);
-
- unsigned int r;
-
- for (r = 0; r < rows; ++r) dst[r] = m(r, cols-1);
- for (r = 0; r < rows; ++r)
- for (unsigned int c = 0; c < cols-1; ++c) dst[r] += m[r][c] * in[c];
- }
-
- template <typename Mat, typename VecA, typename VecB>
- inline void
- multiply_At_v(Mat const& m, VecA const& in, VecB& dst)
- {
- unsigned int const rows = m.num_rows();
- unsigned int const cols = m.num_cols();
- assert(in.size() == rows);
- assert(dst.size() == cols);
-
- makeZeroVector(dst);
- for (unsigned int c = 0; c < cols; ++c)
- for (unsigned int r = 0; r < rows; ++r) dst[c] += m[r][c] * in[r];
- }
-
- template <typename MatA, typename MatB>
- inline void
- multiply_At_A(MatA const& a, MatB& dst)
- {
- assert(dst.num_rows() == a.num_cols());
- assert(dst.num_cols() == a.num_cols());
-
- typedef typename MatB::value_type Elem;
-
- Elem accum;
- for (unsigned int r = 0; r < a.num_cols(); ++r)
- for (unsigned int c = 0; c < a.num_cols(); ++c)
- {
- accum = 0;
- for (unsigned int k = 0; k < a.num_rows(); ++k) accum += a[k][r] * a[k][c];
- dst[r][c] = accum;
- }
- }
-
- template <typename MatA, typename MatB, typename MatC>
- inline void
- multiply_A_B(MatA const& a, MatB const& b, MatC& dst)
- {
- assert(a.num_cols() == b.num_rows());
- assert(dst.num_rows() == a.num_rows());
- assert(dst.num_cols() == b.num_cols());
-
- typedef typename MatC::value_type Elem;
-
- Elem accum;
- for (unsigned int r = 0; r < a.num_rows(); ++r)
- for (unsigned int c = 0; c < b.num_cols(); ++c)
- {
- accum = 0;
- for (unsigned int k = 0; k < a.num_cols(); ++k) accum += a[r][k] * b[k][c];
- dst[r][c] = accum;
- }
- }
-
- template <typename MatA, typename MatB, typename MatC>
- inline void
- multiply_At_B(MatA const& a, MatB const& b, MatC& dst)
- {
- assert(a.num_rows() == b.num_rows());
- assert(dst.num_rows() == a.num_cols());
- assert(dst.num_cols() == b.num_cols());
-
- typedef typename MatC::value_type Elem;
-
- Elem accum;
- for (unsigned int r = 0; r < a.num_cols(); ++r)
- for (unsigned int c = 0; c < b.num_cols(); ++c)
- {
- accum = 0;
- for (unsigned int k = 0; k < a.num_rows(); ++k) accum += a[k][r] * b[k][c];
- dst[r][c] = accum;
- }
- }
-
- template <typename MatA, typename MatB, typename MatC>
- inline void
- multiply_A_Bt(MatA const& a, MatB const& b, MatC& dst)
- {
- assert(a.num_cols() == b.num_cols());
- assert(dst.num_rows() == a.num_rows());
- assert(dst.num_cols() == b.num_rows());
-
- typedef typename MatC::value_type Elem;
-
- Elem accum;
- for (unsigned int r = 0; r < a.num_rows(); ++r)
- for (unsigned int c = 0; c < b.num_rows(); ++c)
- {
- accum = 0;
- for (unsigned int k = 0; k < a.num_cols(); ++k) accum += a[r][k] * b[c][k];
- dst[r][c] = accum;
- }
- }
-
- template <typename Mat>
- inline void
- transposeMatrixIP(Mat& a)
- {
- assert(a.num_rows() == a.num_cols());
-
- for (unsigned int r = 0; r < a.num_rows(); ++r)
- for (unsigned int c = 0; c < r; ++c)
- std::swap(a[r][c], a[c][r]);
- }
-
-} // end namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Math/v3d_linear_utils.h b/extern/libmv/third_party/ssba/Math/v3d_linear_utils.h
deleted file mode 100644
index 969ec99694f..00000000000
--- a/extern/libmv/third_party/ssba/Math/v3d_linear_utils.h
+++ /dev/null
@@ -1,391 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_LINEAR_UTILS_H
-#define V3D_LINEAR_UTILS_H
-
-#include "Math/v3d_linear.h"
-
-#include <iostream>
-
-namespace V3D
-{
-
- template <typename Elem, int Size>
- struct InlineVector : public InlineVectorBase<Elem, Size>
- {
- }; // end struct InlineVector
-
- template <typename Elem>
- struct Vector : public VectorBase<Elem>
- {
- Vector()
- : VectorBase<Elem>()
- { }
-
- Vector(unsigned int size)
- : VectorBase<Elem>(size)
- { }
-
- Vector(unsigned int size, Elem * values)
- : VectorBase<Elem>(size, values)
- { }
-
- Vector(Vector<Elem> const& a)
- : VectorBase<Elem>(a)
- { }
-
- Vector<Elem>& operator=(Vector<Elem> const& a)
- {
- (VectorBase<Elem>::operator=)(a);
- return *this;
- }
-
- Vector<Elem>& operator+=(Vector<Elem> const& rhs)
- {
- addVectorsIP(rhs, *this);
- return *this;
- }
-
- Vector<Elem>& operator*=(Elem scale)
- {
- scaleVectorsIP(scale, *this);
- return *this;
- }
-
- Vector<Elem> operator+(Vector<Elem> const& rhs) const
- {
- Vector<Elem> res(this->size());
- addVectors(*this, rhs, res);
- return res;
- }
-
- Vector<Elem> operator-(Vector<Elem> const& rhs) const
- {
- Vector<Elem> res(this->size());
- subtractVectors(*this, rhs, res);
- return res;
- }
-
- Elem operator*(Vector<Elem> const& rhs) const
- {
- return innerProduct(*this, rhs);
- }
-
- }; // end struct Vector
-
- template <typename Elem, int Rows, int Cols>
- struct InlineMatrix : public InlineMatrixBase<Elem, Rows, Cols>
- {
- }; // end struct InlineMatrix
-
- template <typename Elem>
- struct Matrix : public MatrixBase<Elem>
- {
- Matrix()
- : MatrixBase<Elem>()
- { }
-
- Matrix(unsigned int rows, unsigned int cols)
- : MatrixBase<Elem>(rows, cols)
- { }
-
- Matrix(unsigned int rows, unsigned int cols, Elem * values)
- : MatrixBase<Elem>(rows, cols, values)
- { }
-
- Matrix(Matrix<Elem> const& a)
- : MatrixBase<Elem>(a)
- { }
-
- Matrix<Elem>& operator=(Matrix<Elem> const& a)
- {
- (MatrixBase<Elem>::operator=)(a);
- return *this;
- }
-
- Matrix<Elem>& operator+=(Matrix<Elem> const& rhs)
- {
- addMatricesIP(rhs, *this);
- return *this;
- }
-
- Matrix<Elem>& operator*=(Elem scale)
- {
- scaleMatrixIP(scale, *this);
- return *this;
- }
-
- Matrix<Elem> operator+(Matrix<Elem> const& rhs) const
- {
- Matrix<Elem> res(this->num_rows(), this->num_cols());
- addMatrices(*this, rhs, res);
- return res;
- }
-
- Matrix<Elem> operator-(Matrix<Elem> const& rhs) const
- {
- Matrix<Elem> res(this->num_rows(), this->num_cols());
- subtractMatrices(*this, rhs, res);
- return res;
- }
-
- }; // end struct Matrix
-
-//----------------------------------------------------------------------
-
- typedef InlineVector<float, 2> Vector2f;
- typedef InlineVector<double, 2> Vector2d;
- typedef InlineVector<float, 3> Vector3f;
- typedef InlineVector<double, 3> Vector3d;
- typedef InlineVector<float, 4> Vector4f;
- typedef InlineVector<double, 4> Vector4d;
-
- typedef InlineMatrix<float, 2, 2> Matrix2x2f;
- typedef InlineMatrix<double, 2, 2> Matrix2x2d;
- typedef InlineMatrix<float, 3, 3> Matrix3x3f;
- typedef InlineMatrix<double, 3, 3> Matrix3x3d;
- typedef InlineMatrix<float, 4, 4> Matrix4x4f;
- typedef InlineMatrix<double, 4, 4> Matrix4x4d;
-
- typedef InlineMatrix<float, 2, 3> Matrix2x3f;
- typedef InlineMatrix<double, 2, 3> Matrix2x3d;
- typedef InlineMatrix<float, 3, 4> Matrix3x4f;
- typedef InlineMatrix<double, 3, 4> Matrix3x4d;
-
- template <typename Elem>
- struct VectorArray
- {
- VectorArray(unsigned count, unsigned size)
- : _count(count), _size(size), _values(0), _vectors(0)
- {
- unsigned const nTotal = _count * _size;
- if (count > 0) _vectors = new Vector<Elem>[count];
- if (nTotal > 0) _values = new Elem[nTotal];
- for (unsigned i = 0; i < _count; ++i) new (&_vectors[i]) Vector<Elem>(_size, _values + i*_size);
- }
-
- VectorArray(unsigned count, unsigned size, Elem initVal)
- : _count(count), _size(size), _values(0), _vectors(0)
- {
- unsigned const nTotal = _count * _size;
- if (count > 0) _vectors = new Vector<Elem>[count];
- if (nTotal > 0) _values = new Elem[nTotal];
- for (unsigned i = 0; i < _count; ++i) new (&_vectors[i]) Vector<Elem>(_size, _values + i*_size);
- std::fill(_values, _values + nTotal, initVal);
- }
-
- ~VectorArray()
- {
- delete [] _values;
- delete [] _vectors;
- }
-
- unsigned count() const { return _count; }
- unsigned size() const { return _size; }
-
- //! Get the submatrix at position ix
- Vector<Elem> const& operator[](unsigned ix) const
- {
- return _vectors[ix];
- }
-
- //! Get the submatrix at position ix
- Vector<Elem>& operator[](unsigned ix)
- {
- return _vectors[ix];
- }
-
- protected:
- unsigned _count, _size;
- Elem * _values;
- Vector<Elem> * _vectors;
-
- private:
- VectorArray(VectorArray const&);
- void operator=(VectorArray const&);
- };
-
- template <typename Elem>
- struct MatrixArray
- {
- MatrixArray(unsigned count, unsigned nRows, unsigned nCols)
- : _count(count), _rows(nRows), _columns(nCols), _values(0), _matrices(0)
- {
- unsigned const nTotal = _count * _rows * _columns;
- if (count > 0) _matrices = new Matrix<Elem>[count];
- if (nTotal > 0) _values = new double[nTotal];
- for (unsigned i = 0; i < _count; ++i)
- new (&_matrices[i]) Matrix<Elem>(_rows, _columns, _values + i*(_rows*_columns));
- }
-
- ~MatrixArray()
- {
- delete [] _matrices;
- delete [] _values;
- }
-
- //! Get the submatrix at position ix
- Matrix<Elem> const& operator[](unsigned ix) const
- {
- return _matrices[ix];
- }
-
- //! Get the submatrix at position ix
- Matrix<Elem>& operator[](unsigned ix)
- {
- return _matrices[ix];
- }
-
- unsigned count() const { return _count; }
- unsigned num_rows() const { return _rows; }
- unsigned num_cols() const { return _columns; }
-
- protected:
- unsigned _count, _rows, _columns;
- double * _values;
- Matrix<Elem> * _matrices;
-
- private:
- MatrixArray(MatrixArray const&);
- void operator=(MatrixArray const&);
- };
-
-//----------------------------------------------------------------------
-
- template <typename Elem, int Size>
- inline InlineVector<Elem, Size>
- operator+(InlineVector<Elem, Size> const& v, InlineVector<Elem, Size> const& w)
- {
- InlineVector<Elem, Size> res;
- addVectors(v, w, res);
- return res;
- }
-
- template <typename Elem, int Size>
- inline InlineVector<Elem, Size>
- operator-(InlineVector<Elem, Size> const& v, InlineVector<Elem, Size> const& w)
- {
- InlineVector<Elem, Size> res;
- subtractVectors(v, w, res);
- return res;
- }
-
- template <typename Elem, int Size>
- inline InlineVector<Elem, Size>
- operator*(Elem scale, InlineVector<Elem, Size> const& v)
- {
- InlineVector<Elem, Size> res;
- scaleVector(scale, v, res);
- return res;
- }
-
- template <typename Elem, int Rows, int Cols>
- inline InlineVector<Elem, Rows>
- operator*(InlineMatrix<Elem, Rows, Cols> const& A, InlineVector<Elem, Cols> const& v)
- {
- InlineVector<Elem, Rows> res;
- multiply_A_v(A, v, res);
- return res;
- }
-
- template <typename Elem, int RowsA, int ColsA, int ColsB>
- inline InlineMatrix<Elem, RowsA, ColsB>
- operator*(InlineMatrix<Elem, RowsA, ColsA> const& A, InlineMatrix<Elem, ColsA, ColsB> const& B)
- {
- InlineMatrix<Elem, RowsA, ColsB> res;
- multiply_A_B(A, B, res);
- return res;
- }
-
- template <typename Elem, int Rows, int Cols>
- inline InlineMatrix<Elem, Cols, Rows>
- transposedMatrix(InlineMatrix<Elem, Rows, Cols> const& A)
- {
- InlineMatrix<Elem, Cols, Rows> At;
- makeTransposedMatrix(A, At);
- return At;
- }
-
- template <typename Elem>
- inline InlineMatrix<Elem, 3, 3>
- invertedMatrix(InlineMatrix<Elem, 3, 3> const& A)
- {
- Elem a = A[0][0], b = A[0][1], c = A[0][2];
- Elem d = A[1][0], e = A[1][1], f = A[1][2];
- Elem g = A[2][0], h = A[2][1], i = A[2][2];
-
- Elem const det = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h;
-
- InlineMatrix<Elem, 3, 3> res;
- res[0][0] = e*i-f*h; res[0][1] = c*h-b*i; res[0][2] = b*f-c*e;
- res[1][0] = f*g-d*i; res[1][1] = a*i-c*g; res[1][2] = c*d-a*f;
- res[2][0] = d*h-e*g; res[2][1] = b*g-a*h; res[2][2] = a*e-b*d;
-
- scaleMatrixIP(1.0/det, res);
- return res;
- }
-
- template <typename Elem>
- inline InlineVector<Elem, 2>
- makeVector2(Elem a, Elem b)
- {
- InlineVector<Elem, 2> res;
- res[0] = a; res[1] = b;
- return res;
- }
-
- template <typename Elem>
- inline InlineVector<Elem, 3>
- makeVector3(Elem a, Elem b, Elem c)
- {
- InlineVector<Elem, 3> res;
- res[0] = a; res[1] = b; res[2] = c;
- return res;
- }
-
- template <typename Vec>
- inline void
- displayVector(Vec const& v)
- {
- using namespace std;
-
- for (int r = 0; r < v.size(); ++r)
- cout << v[r] << " ";
- cout << endl;
- }
-
- template <typename Mat>
- inline void
- displayMatrix(Mat const& A)
- {
- using namespace std;
-
- for (int r = 0; r < A.num_rows(); ++r)
- {
- for (int c = 0; c < A.num_cols(); ++c)
- cout << A[r][c] << " ";
- cout << endl;
- }
- }
-
-} // end namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Math/v3d_mathutilities.h b/extern/libmv/third_party/ssba/Math/v3d_mathutilities.h
deleted file mode 100644
index 9e38b92a94b..00000000000
--- a/extern/libmv/third_party/ssba/Math/v3d_mathutilities.h
+++ /dev/null
@@ -1,59 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_MATH_UTILITIES_H
-#define V3D_MATH_UTILITIES_H
-
-#include "Math/v3d_linear.h"
-#include "Math/v3d_linear_utils.h"
-
-#include <vector>
-
-namespace V3D
-{
-
- template <typename Vec, typename Mat>
- inline void
- createRotationMatrixRodriguez(Vec const& omega, Mat& R)
- {
- assert(omega.size() == 3);
- assert(R.num_rows() == 3);
- assert(R.num_cols() == 3);
-
- double const theta = norm_L2(omega);
- makeIdentityMatrix(R);
- if (fabs(theta) > 1e-6)
- {
- Matrix3x3d J, J2;
- makeCrossProductMatrix(omega, J);
- multiply_A_B(J, J, J2);
- double const c1 = sin(theta)/theta;
- double const c2 = (1-cos(theta))/(theta*theta);
- for (int i = 0; i < 3; ++i)
- for (int j = 0; j < 3; ++j)
- R[i][j] += c1*J[i][j] + c2*J2[i][j];
- }
- } // end createRotationMatrixRodriguez()
-
- template <typename T> inline double sqr(T x) { return x*x; }
-
-} // namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/Math/v3d_optimization.cpp b/extern/libmv/third_party/ssba/Math/v3d_optimization.cpp
deleted file mode 100644
index 234815fcd1f..00000000000
--- a/extern/libmv/third_party/ssba/Math/v3d_optimization.cpp
+++ /dev/null
@@ -1,955 +0,0 @@
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#include "Math/v3d_optimization.h"
-
-#if defined(V3DLIB_ENABLE_SUITESPARSE)
-//# include "COLAMD/Include/colamd.h"
-# include "colamd.h"
-extern "C"
-{
-//# include "LDL/Include/ldl.h"
-# include "ldl.h"
-}
-#endif
-
-#include <iostream>
-#include <map>
-
-#define USE_BLOCK_REORDERING 1
-#define USE_MULTIPLICATIVE_UPDATE 1
-
-using namespace std;
-
-namespace
-{
-
- using namespace V3D;
-
- inline double
- squaredResidual(VectorArray<double> const& e)
- {
- int const N = e.count();
- int const M = e.size();
-
- double res = 0.0;
-
- for (int n = 0; n < N; ++n)
- for (int m = 0; m < M; ++m)
- res += e[n][m] * e[n][m];
-
- return res;
- } // end squaredResidual()
-
-} // end namespace <>
-
-namespace V3D
-{
-
- int optimizerVerbosenessLevel = 0;
-
-#if defined(V3DLIB_ENABLE_SUITESPARSE)
-
- void
- SparseLevenbergOptimizer::setupSparseJtJ()
- {
- int const nVaryingA = _nParametersA - _nNonvaryingA;
- int const nVaryingB = _nParametersB - _nNonvaryingB;
- int const nVaryingC = _paramDimensionC - _nNonvaryingC;
-
- int const bColumnStart = nVaryingA*_paramDimensionA;
- int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
- int const nColumns = cColumnStart + nVaryingC;
-
- _jointNonzerosW.clear();
- _jointIndexW.resize(_nMeasurements);
-#if 1
- {
- map<pair<int, int>, int> jointNonzeroMap;
- for (size_t k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k] - _nNonvaryingA;
- int const j = _correspondingParamB[k] - _nNonvaryingB;
- if (i >= 0 && j >= 0)
- {
- map<pair<int, int>, int>::const_iterator p = jointNonzeroMap.find(make_pair(i, j));
- if (p == jointNonzeroMap.end())
- {
- jointNonzeroMap.insert(make_pair(make_pair(i, j), _jointNonzerosW.size()));
- _jointIndexW[k] = _jointNonzerosW.size();
- _jointNonzerosW.push_back(make_pair(i, j));
- }
- else
- {
- _jointIndexW[k] = (*p).second;
- } // end if
- } // end if
- } // end for (k)
- } // end scope
-#else
- for (size_t k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k] - _nNonvaryingA;
- int const j = _correspondingParamB[k] - _nNonvaryingB;
- if (i >= 0 && j >= 0)
- {
- _jointIndexW[k] = _jointNonzerosW.size();
- _jointNonzerosW.push_back(make_pair(i, j));
- }
- } // end for (k)
-#endif
-
-#if defined(USE_BLOCK_REORDERING)
- int const bBlockColumnStart = nVaryingA;
- int const cBlockColumnStart = bBlockColumnStart + nVaryingB;
-
- int const nBlockColumns = cBlockColumnStart + ((nVaryingC > 0) ? 1 : 0);
-
- //cout << "nBlockColumns = " << nBlockColumns << endl;
-
- // For the column reordering we treat the columns belonging to one set
- // of parameters as one (logical) column.
-
- // Determine non-zeros of JtJ (we forget about the non-zero diagonal for now)
- // Only consider nonzeros of Ai^t * Bj induced by the measurements.
- vector<pair<int, int> > nz_blockJtJ(_jointNonzerosW.size());
- for (int k = 0; k < _jointNonzerosW.size(); ++k)
- {
- nz_blockJtJ[k].first = _jointNonzerosW[k].second + bBlockColumnStart;
- nz_blockJtJ[k].second = _jointNonzerosW[k].first;
- }
-
- if (nVaryingC > 0)
- {
- // We assume, that the global unknowns are linked to every other variable.
- for (int i = 0; i < nVaryingA; ++i)
- nz_blockJtJ.push_back(make_pair(cBlockColumnStart, i));
- for (int j = 0; j < nVaryingB; ++j)
- nz_blockJtJ.push_back(make_pair(cBlockColumnStart, j + bBlockColumnStart));
- } // end if
-
- int const nnzBlock = nz_blockJtJ.size();
-
- vector<int> permBlockJtJ(nBlockColumns + 1);
-
- if (nnzBlock > 0)
- {
-// cout << "nnzBlock = " << nnzBlock << endl;
-
- CCS_Matrix<int> blockJtJ(nBlockColumns, nBlockColumns, nz_blockJtJ);
-
-// cout << " nz_blockJtJ: " << endl;
-// for (size_t k = 0; k < nz_blockJtJ.size(); ++k)
-// cout << " " << nz_blockJtJ[k].first << ":" << nz_blockJtJ[k].second << endl;
-// cout << endl;
-
- int * colStarts = (int *)blockJtJ.getColumnStarts();
- int * rowIdxs = (int *)blockJtJ.getRowIndices();
-
-// cout << "blockJtJ_colStarts = ";
-// for (int k = 0; k <= nBlockColumns; ++k) cout << colStarts[k] << " ";
-// cout << endl;
-
-// cout << "blockJtJ_rowIdxs = ";
-// for (int k = 0; k < nnzBlock; ++k) cout << rowIdxs[k] << " ";
-// cout << endl;
-
- int stats[COLAMD_STATS];
- symamd(nBlockColumns, rowIdxs, colStarts, &permBlockJtJ[0], (double *) NULL, stats, &calloc, &free);
- if (optimizerVerbosenessLevel >= 2) symamd_report(stats);
- }
- else
- {
- for (int k = 0; k < permBlockJtJ.size(); ++k) permBlockJtJ[k] = k;
- } // end if
-
-// cout << "permBlockJtJ = ";
-// for (int k = 0; k < permBlockJtJ.size(); ++k)
-// cout << permBlockJtJ[k] << " ";
-// cout << endl;
-
- // From the determined symbolic permutation with logical variables, determine the actual ordering
- _perm_JtJ.resize(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC + 1);
-
- int curDstCol = 0;
- for (int k = 0; k < permBlockJtJ.size()-1; ++k)
- {
- int const srcCol = permBlockJtJ[k];
- if (srcCol < nVaryingA)
- {
- for (int n = 0; n < _paramDimensionA; ++n)
- _perm_JtJ[curDstCol + n] = srcCol*_paramDimensionA + n;
- curDstCol += _paramDimensionA;
- }
- else if (srcCol >= bBlockColumnStart && srcCol < cBlockColumnStart)
- {
- int const bStart = nVaryingA*_paramDimensionA;
- int const j = srcCol - bBlockColumnStart;
-
- for (int n = 0; n < _paramDimensionB; ++n)
- _perm_JtJ[curDstCol + n] = bStart + j*_paramDimensionB + n;
- curDstCol += _paramDimensionB;
- }
- else if (srcCol == cBlockColumnStart)
- {
- int const cStart = nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB;
-
- for (int n = 0; n < nVaryingC; ++n)
- _perm_JtJ[curDstCol + n] = cStart + n;
- curDstCol += nVaryingC;
- }
- else
- {
- cerr << "Should not reach " << __LINE__ << ":" << __LINE__ << "!" << endl;
- assert(false);
- }
- }
-#else
- vector<pair<int, int> > nz, nzL;
- this->serializeNonZerosJtJ(nz);
-
- for (int k = 0; k < nz.size(); ++k)
- {
- // Swap rows and columns, since serializeNonZerosJtJ() generates the
- // upper triangular part but symamd wants the lower triangle.
- nzL.push_back(make_pair(nz[k].second, nz[k].first));
- }
-
- _perm_JtJ.resize(nColumns+1);
-
- if (nzL.size() > 0)
- {
- CCS_Matrix<int> symbJtJ(nColumns, nColumns, nzL);
-
- int * colStarts = (int *)symbJtJ.getColumnStarts();
- int * rowIdxs = (int *)symbJtJ.getRowIndices();
-
-// cout << "symbJtJ_colStarts = ";
-// for (int k = 0; k <= nColumns; ++k) cout << colStarts[k] << " ";
-// cout << endl;
-
-// cout << "symbJtJ_rowIdxs = ";
-// for (int k = 0; k < nzL.size(); ++k) cout << rowIdxs[k] << " ";
-// cout << endl;
-
- int stats[COLAMD_STATS];
- symamd(nColumns, rowIdxs, colStarts, &_perm_JtJ[0], (double *) NULL, stats, &calloc, &free);
- if (optimizerVerbosenessLevel >= 2) symamd_report(stats);
- }
- else
- {
- for (int k = 0; k < _perm_JtJ.size(); ++k) _perm_JtJ[k] = k;
- } //// end if
-#endif
- _perm_JtJ.back() = _perm_JtJ.size() - 1;
-
-// cout << "_perm_JtJ = ";
-// for (int k = 0; k < _perm_JtJ.size(); ++k) cout << _perm_JtJ[k] << " ";
-// cout << endl;
-
- // Finally, compute the inverse of the full permutation.
- _invPerm_JtJ.resize(_perm_JtJ.size());
- for (size_t k = 0; k < _perm_JtJ.size(); ++k)
- _invPerm_JtJ[_perm_JtJ[k]] = k;
-
- vector<pair<int, int> > nz_JtJ;
- this->serializeNonZerosJtJ(nz_JtJ);
-
- for (int k = 0; k < nz_JtJ.size(); ++k)
- {
- int const i = nz_JtJ[k].first;
- int const j = nz_JtJ[k].second;
-
- int pi = _invPerm_JtJ[i];
- int pj = _invPerm_JtJ[j];
- // Swap values if in lower triangular part
- if (pi > pj) std::swap(pi, pj);
- nz_JtJ[k].first = pi;
- nz_JtJ[k].second = pj;
- }
-
- int const nnz = nz_JtJ.size();
-
-// cout << "nz_JtJ = ";
-// for (int k = 0; k < nnz; ++k) cout << nz_JtJ[k].first << ":" << nz_JtJ[k].second << " ";
-// cout << endl;
-
- _JtJ.create(nColumns, nColumns, nz_JtJ);
-
-// cout << "_colStart_JtJ = ";
-// for (int k = 0; k < _JtJ.num_cols(); ++k) cout << _JtJ.getColumnStarts()[k] << " ";
-// cout << endl;
-
-// cout << "_rowIdxs_JtJ = ";
-// for (int k = 0; k < nnz; ++k) cout << _JtJ.getRowIndices()[k] << " ";
-// cout << endl;
-
- vector<int> workFlags(nColumns);
-
- _JtJ_Lp.resize(nColumns+1);
- _JtJ_Parent.resize(nColumns);
- _JtJ_Lnz.resize(nColumns);
-
- ldl_symbolic(nColumns, (int *)_JtJ.getColumnStarts(), (int *)_JtJ.getRowIndices(),
- &_JtJ_Lp[0], &_JtJ_Parent[0], &_JtJ_Lnz[0],
- &workFlags[0], NULL, NULL);
-
- if (optimizerVerbosenessLevel >= 1)
- cout << "SparseLevenbergOptimizer: Nonzeros in LDL decomposition: " << _JtJ_Lp[nColumns] << endl;
-
- } // end SparseLevenbergOptimizer::setupSparseJtJ()
-
- void
- SparseLevenbergOptimizer::serializeNonZerosJtJ(vector<pair<int, int> >& dst) const
- {
- int const nVaryingA = _nParametersA - _nNonvaryingA;
- int const nVaryingB = _nParametersB - _nNonvaryingB;
- int const nVaryingC = _paramDimensionC - _nNonvaryingC;
-
- int const bColumnStart = nVaryingA*_paramDimensionA;
- int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
-
- dst.clear();
-
- // Add the diagonal block matrices (only the upper triangular part).
-
- // Ui submatrices of JtJ
- for (int i = 0; i < nVaryingA; ++i)
- {
- int const i0 = i * _paramDimensionA;
-
- for (int c = 0; c < _paramDimensionA; ++c)
- for (int r = 0; r <= c; ++r)
- dst.push_back(make_pair(i0 + r, i0 + c));
- }
-
- // Vj submatrices of JtJ
- for (int j = 0; j < nVaryingB; ++j)
- {
- int const j0 = j*_paramDimensionB + bColumnStart;
-
- for (int c = 0; c < _paramDimensionB; ++c)
- for (int r = 0; r <= c; ++r)
- dst.push_back(make_pair(j0 + r, j0 + c));
- }
-
- // Z submatrix of JtJ
- for (int c = 0; c < nVaryingC; ++c)
- for (int r = 0; r <= c; ++r)
- dst.push_back(make_pair(cColumnStart + r, cColumnStart + c));
-
- // Add the elements i and j linked by an observation k
- // W submatrix of JtJ
- for (size_t n = 0; n < _jointNonzerosW.size(); ++n)
- {
- int const i0 = _jointNonzerosW[n].first;
- int const j0 = _jointNonzerosW[n].second;
- int const r0 = i0*_paramDimensionA;
- int const c0 = j0*_paramDimensionB + bColumnStart;
-
- for (int r = 0; r < _paramDimensionA; ++r)
- for (int c = 0; c < _paramDimensionB; ++c)
- dst.push_back(make_pair(r0 + r, c0 + c));
- } // end for (n)
-
- if (nVaryingC > 0)
- {
- // Finally, add the dense columns linking i (resp. j) with the global parameters.
- // X submatrix of JtJ
- for (int i = 0; i < nVaryingA; ++i)
- {
- int const i0 = i*_paramDimensionA;
-
- for (int r = 0; r < _paramDimensionA; ++r)
- for (int c = 0; c < nVaryingC; ++c)
- dst.push_back(make_pair(i0 + r, cColumnStart + c));
- }
-
- // Y submatrix of JtJ
- for (int j = 0; j < nVaryingB; ++j)
- {
- int const j0 = j*_paramDimensionB + bColumnStart;
-
- for (int r = 0; r < _paramDimensionB; ++r)
- for (int c = 0; c < nVaryingC; ++c)
- dst.push_back(make_pair(j0 + r, cColumnStart + c));
- }
- } // end if
- } // end SparseLevenbergOptimizer::serializeNonZerosJtJ()
-
- void
- SparseLevenbergOptimizer::fillSparseJtJ(MatrixArray<double> const& Ui,
- MatrixArray<double> const& Vj,
- MatrixArray<double> const& Wn,
- Matrix<double> const& Z,
- Matrix<double> const& X,
- Matrix<double> const& Y)
- {
- int const nVaryingA = _nParametersA - _nNonvaryingA;
- int const nVaryingB = _nParametersB - _nNonvaryingB;
- int const nVaryingC = _paramDimensionC - _nNonvaryingC;
-
- int const bColumnStart = nVaryingA*_paramDimensionA;
- int const cColumnStart = bColumnStart + nVaryingB*_paramDimensionB;
-
- int const nCols = _JtJ.num_cols();
- int const nnz = _JtJ.getNonzeroCount();
-
- // The following has to replicate the procedure as in serializeNonZerosJtJ()
-
- int serial = 0;
-
- double * values = _JtJ.getValues();
- int const * destIdxs = _JtJ.getDestIndices();
-
- // Add the diagonal block matrices (only the upper triangular part).
-
- // Ui submatrices of JtJ
- for (int i = 0; i < nVaryingA; ++i)
- {
- int const i0 = i * _paramDimensionA;
-
- for (int c = 0; c < _paramDimensionA; ++c)
- for (int r = 0; r <= c; ++r, ++serial)
- values[destIdxs[serial]] = Ui[i][r][c];
- }
-
- // Vj submatrices of JtJ
- for (int j = 0; j < nVaryingB; ++j)
- {
- int const j0 = j*_paramDimensionB + bColumnStart;
-
- for (int c = 0; c < _paramDimensionB; ++c)
- for (int r = 0; r <= c; ++r, ++serial)
- values[destIdxs[serial]] = Vj[j][r][c];
- }
-
- // Z submatrix of JtJ
- for (int c = 0; c < nVaryingC; ++c)
- for (int r = 0; r <= c; ++r, ++serial)
- values[destIdxs[serial]] = Z[r][c];
-
- // Add the elements i and j linked by an observation k
- // W submatrix of JtJ
- for (size_t n = 0; n < _jointNonzerosW.size(); ++n)
- {
- for (int r = 0; r < _paramDimensionA; ++r)
- for (int c = 0; c < _paramDimensionB; ++c, ++serial)
- values[destIdxs[serial]] = Wn[n][r][c];
- } // end for (k)
-
- if (nVaryingC > 0)
- {
- // Finally, add the dense columns linking i (resp. j) with the global parameters.
- // X submatrix of JtJ
- for (int i = 0; i < nVaryingA; ++i)
- {
- int const r0 = i * _paramDimensionA;
- for (int r = 0; r < _paramDimensionA; ++r)
- for (int c = 0; c < nVaryingC; ++c, ++serial)
- values[destIdxs[serial]] = X[r0+r][c];
- }
-
- // Y submatrix of JtJ
- for (int j = 0; j < nVaryingB; ++j)
- {
- int const r0 = j * _paramDimensionB;
- for (int r = 0; r < _paramDimensionB; ++r)
- for (int c = 0; c < nVaryingC; ++c, ++serial)
- values[destIdxs[serial]] = Y[r0+r][c];
- }
- } // end if
- } // end SparseLevenbergOptimizer::fillSparseJtJ()
-
- void
- SparseLevenbergOptimizer::minimize()
- {
- status = LEVENBERG_OPTIMIZER_TIMEOUT;
- bool computeDerivatives = true;
-
- int const nVaryingA = _nParametersA - _nNonvaryingA;
- int const nVaryingB = _nParametersB - _nNonvaryingB;
- int const nVaryingC = _paramDimensionC - _nNonvaryingC;
-
- if (nVaryingA == 0 && nVaryingB == 0 && nVaryingC == 0)
- {
- // No degrees of freedom, nothing to optimize.
- status = LEVENBERG_OPTIMIZER_CONVERGED;
- return;
- }
-
- this->setupSparseJtJ();
-
- Vector<double> weights(_nMeasurements);
-
- MatrixArray<double> Ak(_nMeasurements, _measurementDimension, _paramDimensionA);
- MatrixArray<double> Bk(_nMeasurements, _measurementDimension, _paramDimensionB);
- MatrixArray<double> Ck(_nMeasurements, _measurementDimension, _paramDimensionC);
-
- MatrixArray<double> Ui(nVaryingA, _paramDimensionA, _paramDimensionA);
- MatrixArray<double> Vj(nVaryingB, _paramDimensionB, _paramDimensionB);
-
- // Wn = Ak^t*Bk
- MatrixArray<double> Wn(_jointNonzerosW.size(), _paramDimensionA, _paramDimensionB);
-
- Matrix<double> Z(nVaryingC, nVaryingC);
-
- // X = A^t*C
- Matrix<double> X(nVaryingA*_paramDimensionA, nVaryingC);
- // Y = B^t*C
- Matrix<double> Y(nVaryingB*_paramDimensionB, nVaryingC);
-
- VectorArray<double> residuals(_nMeasurements, _measurementDimension);
- VectorArray<double> residuals2(_nMeasurements, _measurementDimension);
-
- VectorArray<double> diagUi(nVaryingA, _paramDimensionA);
- VectorArray<double> diagVj(nVaryingB, _paramDimensionB);
- Vector<double> diagZ(nVaryingC);
-
- VectorArray<double> At_e(nVaryingA, _paramDimensionA);
- VectorArray<double> Bt_e(nVaryingB, _paramDimensionB);
- Vector<double> Ct_e(nVaryingC);
-
- Vector<double> Jt_e(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
-
- Vector<double> delta(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
- Vector<double> deltaPerm(nVaryingA*_paramDimensionA + nVaryingB*_paramDimensionB + nVaryingC);
-
- VectorArray<double> deltaAi(_nParametersA, _paramDimensionA);
- VectorArray<double> deltaBj(_nParametersB, _paramDimensionB);
- Vector<double> deltaC(_paramDimensionC);
-
- double err = 0.0;
-
- for (currentIteration = 0; currentIteration < maxIterations; ++currentIteration)
- {
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: currentIteration: " << currentIteration << endl;
- if (computeDerivatives)
- {
- this->evalResidual(residuals);
- this->fillWeights(residuals, weights);
- for (int k = 0; k < _nMeasurements; ++k)
- scaleVectorIP(weights[k], residuals[k]);
-
- err = squaredResidual(residuals);
-
- if (optimizerVerbosenessLevel >= 1) cout << "SparseLevenbergOptimizer: |residual|^2 = " << err << endl;
- if (optimizerVerbosenessLevel >= 2) cout << "SparseLevenbergOptimizer: lambda = " << lambda << endl;
-
- for (int k = 0; k < residuals.count(); ++k) scaleVectorIP(-1.0, residuals[k]);
-
- this->setupJacobianGathering();
- this->fillAllJacobians(weights, Ak, Bk, Ck);
-
- // Compute the different parts of J^t*e
- if (nVaryingA > 0)
- {
- for (int i = 0; i < nVaryingA; ++i) makeZeroVector(At_e[i]);
-
- Vector<double> tmp(_paramDimensionA);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k] - _nNonvaryingA;
- if (i < 0) continue;
- multiply_At_v(Ak[k], residuals[k], tmp);
- addVectors(tmp, At_e[i], At_e[i]);
- } // end for (k)
- } // end if
-
- if (nVaryingB > 0)
- {
- for (int j = 0; j < nVaryingB; ++j) makeZeroVector(Bt_e[j]);
-
- Vector<double> tmp(_paramDimensionB);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const j = _correspondingParamB[k] - _nNonvaryingB;
- if (j < 0) continue;
- multiply_At_v(Bk[k], residuals[k], tmp);
- addVectors(tmp, Bt_e[j], Bt_e[j]);
- } // end for (k)
- } // end if
-
- if (nVaryingC > 0)
- {
- makeZeroVector(Ct_e);
-
- Vector<double> tmp(_paramDimensionC);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- multiply_At_v(Ck[k], residuals[k], tmp);
- for (int l = 0; l < nVaryingC; ++l) Ct_e[l] += tmp[_nNonvaryingC + l];
- }
- } // end if
-
- int pos = 0;
- for (int i = 0; i < nVaryingA; ++i)
- for (int l = 0; l < _paramDimensionA; ++l, ++pos)
- Jt_e[pos] = At_e[i][l];
- for (int j = 0; j < nVaryingB; ++j)
- for (int l = 0; l < _paramDimensionB; ++l, ++pos)
- Jt_e[pos] = Bt_e[j][l];
- for (int l = 0; l < nVaryingC; ++l, ++pos)
- Jt_e[pos] = Ct_e[l];
-
-// cout << "Jt_e = ";
-// for (int k = 0; k < Jt_e.size(); ++k) cout << Jt_e[k] << " ";
-// cout << endl;
-
- if (this->applyGradientStoppingCriteria(norm_Linf(Jt_e)))
- {
- status = LEVENBERG_OPTIMIZER_CONVERGED;
- goto end;
- }
-
- // The lhs J^t*J consists of several parts:
- // [ U W X ]
- // J^t*J = [ W^t V Y ]
- // [ X^t Y^t Z ],
- // where U, V and W are block-sparse matrices (due to the sparsity of A and B).
- // X, Y and Z contain only a few columns (the number of global parameters).
-
- if (nVaryingA > 0)
- {
- // Compute Ui
- Matrix<double> U(_paramDimensionA, _paramDimensionA);
-
- for (int i = 0; i < nVaryingA; ++i) makeZeroMatrix(Ui[i]);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k] - _nNonvaryingA;
- if (i < 0) continue;
- multiply_At_A(Ak[k], U);
- addMatricesIP(U, Ui[i]);
- } // end for (k)
- } // end if
-
- if (nVaryingB > 0)
- {
- // Compute Vj
- Matrix<double> V(_paramDimensionB, _paramDimensionB);
-
- for (int j = 0; j < nVaryingB; ++j) makeZeroMatrix(Vj[j]);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const j = _correspondingParamB[k] - _nNonvaryingB;
- if (j < 0) continue;
- multiply_At_A(Bk[k], V);
- addMatricesIP(V, Vj[j]);
- } // end for (k)
- } // end if
-
- if (nVaryingC > 0)
- {
- Matrix<double> ZZ(_paramDimensionC, _paramDimensionC);
- Matrix<double> Zsum(_paramDimensionC, _paramDimensionC);
-
- makeZeroMatrix(Zsum);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- multiply_At_A(Ck[k], ZZ);
- addMatricesIP(ZZ, Zsum);
- } // end for (k)
-
- // Ignore the non-varying parameters
- for (int i = 0; i < nVaryingC; ++i)
- for (int j = 0; j < nVaryingC; ++j)
- Z[i][j] = Zsum[i+_nNonvaryingC][j+_nNonvaryingC];
- } // end if
-
- if (nVaryingA > 0 && nVaryingB > 0)
- {
- for (int n = 0; n < Wn.count(); ++n) makeZeroMatrix(Wn[n]);
-
- Matrix<double> W(_paramDimensionA, _paramDimensionB);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const n = _jointIndexW[k];
- if (n >= 0)
- {
- int const i0 = _jointNonzerosW[n].first;
- int const j0 = _jointNonzerosW[n].second;
-
- multiply_At_B(Ak[k], Bk[k], W);
- addMatricesIP(W, Wn[n]);
- } // end if
- } // end for (k)
- } // end if
-
- if (nVaryingA > 0 && nVaryingC > 0)
- {
- Matrix<double> XX(_paramDimensionA, _paramDimensionC);
-
- makeZeroMatrix(X);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k] - _nNonvaryingA;
- // Ignore the non-varying parameters
- if (i < 0) continue;
-
- multiply_At_B(Ak[k], Ck[k], XX);
-
- for (int r = 0; r < _paramDimensionA; ++r)
- for (int c = 0; c < nVaryingC; ++c)
- X[r+i*_paramDimensionA][c] += XX[r][c+_nNonvaryingC];
- } // end for (k)
- } // end if
-
- if (nVaryingB > 0 && nVaryingC > 0)
- {
- Matrix<double> YY(_paramDimensionB, _paramDimensionC);
-
- makeZeroMatrix(Y);
-
- for (int k = 0; k < _nMeasurements; ++k)
- {
- int const j = _correspondingParamB[k] - _nNonvaryingB;
- // Ignore the non-varying parameters
- if (j < 0) continue;
-
- multiply_At_B(Bk[k], Ck[k], YY);
-
- for (int r = 0; r < _paramDimensionB; ++r)
- for (int c = 0; c < nVaryingC; ++c)
- Y[r+j*_paramDimensionB][c] += YY[r][c+_nNonvaryingC];
- } // end for (k)
- } // end if
-
- if (currentIteration == 0)
- {
- // Initialize lambda as tau*max(JtJ[i][i])
- double maxEl = -1e30;
- if (nVaryingA > 0)
- {
- for (int i = 0; i < nVaryingA; ++i)
- for (int l = 0; l < _paramDimensionA; ++l)
- maxEl = std::max(maxEl, Ui[i][l][l]);
- }
- if (nVaryingB > 0)
- {
- for (int j = 0; j < nVaryingB; ++j)
- for (int l = 0; l < _paramDimensionB; ++l)
- maxEl = std::max(maxEl, Vj[j][l][l]);
- }
- if (nVaryingC > 0)
- {
- for (int l = 0; l < nVaryingC; ++l)
- maxEl = std::max(maxEl, Z[l][l]);
- }
-
- lambda = tau * maxEl;
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: initial lambda = " << lambda << endl;
- } // end if (currentIteration == 0)
- } // end if (computeDerivatives)
-
- for (int i = 0; i < nVaryingA; ++i)
- {
- for (int l = 0; l < _paramDimensionA; ++l) diagUi[i][l] = Ui[i][l][l];
- } // end for (i)
-
- for (int j = 0; j < nVaryingB; ++j)
- {
- for (int l = 0; l < _paramDimensionB; ++l) diagVj[j][l] = Vj[j][l][l];
- } // end for (j)
-
- for (int l = 0; l < nVaryingC; ++l) diagZ[l] = Z[l][l];
-
- // Augment the diagonals with lambda (either by the standard additive update or by multiplication).
-#if !defined(USE_MULTIPLICATIVE_UPDATE)
- for (int i = 0; i < nVaryingA; ++i)
- for (unsigned l = 0; l < _paramDimensionA; ++l)
- Ui[i][l][l] += lambda;
-
- for (int j = 0; j < nVaryingB; ++j)
- for (unsigned l = 0; l < _paramDimensionB; ++l)
- Vj[j][l][l] += lambda;
-
- for (unsigned l = 0; l < nVaryingC; ++l)
- Z[l][l] += lambda;
-#else
- for (int i = 0; i < nVaryingA; ++i)
- for (unsigned l = 0; l < _paramDimensionA; ++l)
- Ui[i][l][l] = std::max(Ui[i][l][l] * (1.0 + lambda), 1e-15);
-
- for (int j = 0; j < nVaryingB; ++j)
- for (unsigned l = 0; l < _paramDimensionB; ++l)
- Vj[j][l][l] = std::max(Vj[j][l][l] * (1.0 + lambda), 1e-15);
-
- for (unsigned l = 0; l < nVaryingC; ++l)
- Z[l][l] = std::max(Z[l][l] * (1.0 + lambda), 1e-15);
-#endif
-
- this->fillSparseJtJ(Ui, Vj, Wn, Z, X, Y);
-
- bool success = true;
- double rho = 0.0;
- {
- int const nCols = _JtJ_Parent.size();
- int const nnz = _JtJ.getNonzeroCount();
- int const lnz = _JtJ_Lp.back();
-
- vector<int> Li(lnz);
- vector<double> Lx(lnz);
- vector<double> D(nCols), Y(nCols);
- vector<int> workPattern(nCols), workFlag(nCols);
-
- int * colStarts = (int *)_JtJ.getColumnStarts();
- int * rowIdxs = (int *)_JtJ.getRowIndices();
- double * values = _JtJ.getValues();
-
- int const d = ldl_numeric(nCols, colStarts, rowIdxs, values,
- &_JtJ_Lp[0], &_JtJ_Parent[0], &_JtJ_Lnz[0],
- &Li[0], &Lx[0], &D[0],
- &Y[0], &workPattern[0], &workFlag[0],
- NULL, NULL);
-
- if (d == nCols)
- {
- ldl_perm(nCols, &deltaPerm[0], &Jt_e[0], &_perm_JtJ[0]);
- ldl_lsolve(nCols, &deltaPerm[0], &_JtJ_Lp[0], &Li[0], &Lx[0]);
- ldl_dsolve(nCols, &deltaPerm[0], &D[0]);
- ldl_ltsolve(nCols, &deltaPerm[0], &_JtJ_Lp[0], &Li[0], &Lx[0]);
- ldl_permt(nCols, &delta[0], &deltaPerm[0], &_perm_JtJ[0]);
- }
- else
- {
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: LDL decomposition failed. Increasing lambda." << endl;
- success = false;
- }
- }
-
- if (success)
- {
- double const deltaSqrLength = sqrNorm_L2(delta);
-
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: ||delta||^2 = " << deltaSqrLength << endl;
-
- double const paramLength = this->getParameterLength();
- if (this->applyUpdateStoppingCriteria(paramLength, sqrt(deltaSqrLength)))
- {
- status = LEVENBERG_OPTIMIZER_SMALL_UPDATE;
- goto end;
- }
-
- // Copy the updates from delta to the respective arrays
- int pos = 0;
-
- for (int i = 0; i < _nNonvaryingA; ++i) makeZeroVector(deltaAi[i]);
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- for (int l = 0; l < _paramDimensionA; ++l, ++pos)
- deltaAi[i][l] = delta[pos];
-
- for (int j = 0; j < _nNonvaryingB; ++j) makeZeroVector(deltaBj[j]);
- for (int j = _nNonvaryingB; j < _nParametersB; ++j)
- for (int l = 0; l < _paramDimensionB; ++l, ++pos)
- deltaBj[j][l] = delta[pos];
-
- makeZeroVector(deltaC);
- for (int l = _nNonvaryingC; l < _paramDimensionC; ++l, ++pos)
- deltaC[l] = delta[pos];
-
- saveAllParameters();
- if (nVaryingA > 0) updateParametersA(deltaAi);
- if (nVaryingB > 0) updateParametersB(deltaBj);
- if (nVaryingC > 0) updateParametersC(deltaC);
-
- this->evalResidual(residuals2);
- for (int k = 0; k < _nMeasurements; ++k)
- scaleVectorIP(weights[k], residuals2[k]);
-
- double const newErr = squaredResidual(residuals2);
- rho = err - newErr;
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: |new residual|^2 = " << newErr << endl;
-
-#if !defined(USE_MULTIPLICATIVE_UPDATE)
- double const denom1 = lambda * deltaSqrLength;
-#else
- double denom1 = 0.0f;
- for (int i = _nNonvaryingA; i < _nParametersA; ++i)
- for (int l = 0; l < _paramDimensionA; ++l)
- denom1 += deltaAi[i][l] * deltaAi[i][l] * diagUi[i-_nNonvaryingA][l];
-
- for (int j = _nNonvaryingB; j < _nParametersB; ++j)
- for (int l = 0; l < _paramDimensionB; ++l)
- denom1 += deltaBj[j][l] * deltaBj[j][l] * diagVj[j-_nNonvaryingB][l];
-
- for (int l = _nNonvaryingC; l < _paramDimensionC; ++l)
- denom1 += deltaC[l] * deltaC[l] * diagZ[l-_nNonvaryingC];
-
- denom1 *= lambda;
-#endif
- double const denom2 = innerProduct(delta, Jt_e);
- rho = rho / (denom1 + denom2);
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: rho = " << rho
- << " denom1 = " << denom1 << " denom2 = " << denom2 << endl;
- } // end if (success)
-
- if (success && rho > 0)
- {
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: Improved solution - decreasing lambda." << endl;
- // Improvement in the new solution
- decreaseLambda(rho);
- computeDerivatives = true;
- }
- else
- {
- if (optimizerVerbosenessLevel >= 2)
- cout << "SparseLevenbergOptimizer: Inferior solution - increasing lambda." << endl;
- restoreAllParameters();
- increaseLambda();
- computeDerivatives = false;
-
- // Restore diagonal elements in Ui, Vj and Z.
- for (int i = 0; i < nVaryingA; ++i)
- {
- for (int l = 0; l < _paramDimensionA; ++l) Ui[i][l][l] = diagUi[i][l];
- } // end for (i)
-
- for (int j = 0; j < nVaryingB; ++j)
- {
- for (int l = 0; l < _paramDimensionB; ++l) Vj[j][l][l] = diagVj[j][l];
- } // end for (j)
-
- for (int l = 0; l < nVaryingC; ++l) Z[l][l] = diagZ[l];
- } // end if
- } // end for
-
- end:;
- if (optimizerVerbosenessLevel >= 2)
- cout << "Leaving SparseLevenbergOptimizer::minimize()." << endl;
- } // end SparseLevenbergOptimizer::minimize()
-
-#endif // defined(V3DLIB_ENABLE_SUITESPARSE)
-
-} // end namespace V3D
diff --git a/extern/libmv/third_party/ssba/Math/v3d_optimization.h b/extern/libmv/third_party/ssba/Math/v3d_optimization.h
deleted file mode 100644
index 27d2e12287f..00000000000
--- a/extern/libmv/third_party/ssba/Math/v3d_optimization.h
+++ /dev/null
@@ -1,273 +0,0 @@
-// -*- C++ -*-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#ifndef V3D_OPTIMIZATION_H
-#define V3D_OPTIMIZATION_H
-
-#include "Math/v3d_linear.h"
-#include "Math/v3d_mathutilities.h"
-
-#include <vector>
-#include <iostream>
-
-namespace V3D
-{
-
- enum
- {
- LEVENBERG_OPTIMIZER_TIMEOUT = 0,
- LEVENBERG_OPTIMIZER_SMALL_UPDATE = 1,
- LEVENBERG_OPTIMIZER_CONVERGED = 2
- };
-
- extern int optimizerVerbosenessLevel;
-
- struct LevenbergOptimizerCommon
- {
- LevenbergOptimizerCommon()
- : status(LEVENBERG_OPTIMIZER_TIMEOUT), currentIteration(0), maxIterations(50),
- tau(1e-3), lambda(1e-3),
- gradientThreshold(1e-10), updateThreshold(1e-10),
- _nu(2.0)
- { }
- virtual ~LevenbergOptimizerCommon() {}
-
- // See Madsen et al., "Methods for non-linear least squares problems."
- virtual void increaseLambda()
- {
- lambda *= _nu; _nu *= 2.0;
- }
-
- virtual void decreaseLambda(double const rho)
- {
- double const r = 2*rho - 1.0;
- lambda *= std::max(1.0/3.0, 1 - r*r*r);
- if (lambda < 1e-10) lambda = 1e-10;
- _nu = 2;
- }
-
- bool applyGradientStoppingCriteria(double maxGradient) const
- {
- return maxGradient < gradientThreshold;
- }
-
- bool applyUpdateStoppingCriteria(double paramLength, double updateLength) const
- {
- return updateLength < updateThreshold * (paramLength + updateThreshold);
- }
-
- int status;
- int currentIteration, maxIterations;
- double tau, lambda;
- double gradientThreshold, updateThreshold;
-
- protected:
- double _nu;
- }; // end struct LevenbergOptimizerCommon
-
-# if defined(V3DLIB_ENABLE_SUITESPARSE)
-
- struct SparseLevenbergOptimizer : public LevenbergOptimizerCommon
- {
- SparseLevenbergOptimizer(int measurementDimension,
- int nParametersA, int paramDimensionA,
- int nParametersB, int paramDimensionB,
- int paramDimensionC,
- std::vector<int> const& correspondingParamA,
- std::vector<int> const& correspondingParamB)
- : LevenbergOptimizerCommon(),
- _nMeasurements(correspondingParamA.size()),
- _measurementDimension(measurementDimension),
- _nParametersA(nParametersA), _paramDimensionA(paramDimensionA),
- _nParametersB(nParametersB), _paramDimensionB(paramDimensionB),
- _paramDimensionC(paramDimensionC),
- _nNonvaryingA(0), _nNonvaryingB(0), _nNonvaryingC(0),
- _correspondingParamA(correspondingParamA),
- _correspondingParamB(correspondingParamB)
- {
- assert(correspondingParamA.size() == correspondingParamB.size());
- }
-
- ~SparseLevenbergOptimizer() { }
-
- void setNonvaryingCounts(int nNonvaryingA, int nNonvaryingB, int nNonvaryingC)
- {
- _nNonvaryingA = nNonvaryingA;
- _nNonvaryingB = nNonvaryingB;
- _nNonvaryingC = nNonvaryingC;
- }
-
- void getNonvaryingCounts(int& nNonvaryingA, int& nNonvaryingB, int& nNonvaryingC) const
- {
- nNonvaryingA = _nNonvaryingA;
- nNonvaryingB = _nNonvaryingB;
- nNonvaryingC = _nNonvaryingC;
- }
-
- void minimize();
-
- virtual void evalResidual(VectorArray<double>& residuals) = 0;
-
- virtual void fillWeights(VectorArray<double> const& residuals, Vector<double>& w)
- {
- (void)residuals;
- std::fill(w.begin(), w.end(), 1.0);
- }
-
- void fillAllJacobians(Vector<double> const& w,
- MatrixArray<double>& Ak,
- MatrixArray<double>& Bk,
- MatrixArray<double>& Ck)
- {
- int const nVaryingA = _nParametersA - _nNonvaryingA;
- int const nVaryingB = _nParametersB - _nNonvaryingB;
- int const nVaryingC = _paramDimensionC - _nNonvaryingC;
-
- for (unsigned k = 0; k < _nMeasurements; ++k)
- {
- int const i = _correspondingParamA[k];
- int const j = _correspondingParamB[k];
-
- if (i < _nNonvaryingA && j < _nNonvaryingB) continue;
-
- fillJacobians(Ak[k], Bk[k], Ck[k], i, j, k);
- } // end for (k)
-
- if (nVaryingA > 0)
- {
- for (unsigned k = 0; k < _nMeasurements; ++k)
- scaleMatrixIP(w[k], Ak[k]);
- }
- if (nVaryingB > 0)
- {
- for (unsigned k = 0; k < _nMeasurements; ++k)
- scaleMatrixIP(w[k], Bk[k]);
- }
- if (nVaryingC > 0)
- {
- for (unsigned k = 0; k < _nMeasurements; ++k)
- scaleMatrixIP(w[k], Ck[k]);
- }
- } // end fillAllJacobians()
-
- virtual void setupJacobianGathering() { }
-
- virtual void fillJacobians(Matrix<double>& Ak, Matrix<double>& Bk, Matrix<double>& Ck,
- int i, int j, int k) = 0;
-
- virtual double getParameterLength() const = 0;
-
- virtual void updateParametersA(VectorArray<double> const& deltaAi) = 0;
- virtual void updateParametersB(VectorArray<double> const& deltaBj) = 0;
- virtual void updateParametersC(Vector<double> const& deltaC) = 0;
- virtual void saveAllParameters() = 0;
- virtual void restoreAllParameters() = 0;
-
- int currentIteration, maxIterations;
-
- protected:
- void serializeNonZerosJtJ(std::vector<std::pair<int, int> >& dst) const;
- void setupSparseJtJ();
- void fillSparseJtJ(MatrixArray<double> const& Ui, MatrixArray<double> const& Vj, MatrixArray<double> const& Wk,
- Matrix<double> const& Z, Matrix<double> const& X, Matrix<double> const& Y);
-
- int const _nMeasurements, _measurementDimension;
- int const _nParametersA, _paramDimensionA;
- int const _nParametersB, _paramDimensionB;
- int const _paramDimensionC;
-
- int _nNonvaryingA, _nNonvaryingB, _nNonvaryingC;
-
- std::vector<int> const& _correspondingParamA;
- std::vector<int> const& _correspondingParamB;
-
- std::vector<pair<int, int> > _jointNonzerosW;
- std::vector<int> _jointIndexW;
-
- std::vector<int> _JtJ_Lp, _JtJ_Parent, _JtJ_Lnz;
- std::vector<int> _perm_JtJ, _invPerm_JtJ;
-
- CCS_Matrix<double> _JtJ;
- }; // end struct SparseLevenbergOptimizer
-
- struct StdSparseLevenbergOptimizer : public SparseLevenbergOptimizer
- {
- StdSparseLevenbergOptimizer(int measurementDimension,
- int nParametersA, int paramDimensionA,
- int nParametersB, int paramDimensionB,
- int paramDimensionC,
- std::vector<int> const& correspondingParamA,
- std::vector<int> const& correspondingParamB)
- : SparseLevenbergOptimizer(measurementDimension, nParametersA, paramDimensionA,
- nParametersB, paramDimensionB, paramDimensionC,
- correspondingParamA, correspondingParamB),
- curParametersA(nParametersA, paramDimensionA), savedParametersA(nParametersA, paramDimensionA),
- curParametersB(nParametersB, paramDimensionB), savedParametersB(nParametersB, paramDimensionB),
- curParametersC(paramDimensionC), savedParametersC(paramDimensionC)
- { }
-
- virtual double getParameterLength() const
- {
- double res = 0.0;
- for (int i = 0; i < _nParametersA; ++i) res += sqrNorm_L2(curParametersA[i]);
- for (int j = 0; j < _nParametersB; ++j) res += sqrNorm_L2(curParametersB[j]);
- res += sqrNorm_L2(curParametersC);
- return sqrt(res);
- }
-
- virtual void updateParametersA(VectorArray<double> const& deltaAi)
- {
- for (int i = 0; i < _nParametersA; ++i) addVectors(deltaAi[i], curParametersA[i], curParametersA[i]);
- }
-
- virtual void updateParametersB(VectorArray<double> const& deltaBj)
- {
- for (int j = 0; j < _nParametersB; ++j) addVectors(deltaBj[j], curParametersB[j], curParametersB[j]);
- }
-
- virtual void updateParametersC(Vector<double> const& deltaC)
- {
- addVectors(deltaC, curParametersC, curParametersC);
- }
-
- virtual void saveAllParameters()
- {
- for (int i = 0; i < _nParametersA; ++i) savedParametersA[i] = curParametersA[i];
- for (int j = 0; j < _nParametersB; ++j) savedParametersB[j] = curParametersB[j];
- savedParametersC = curParametersC;
- }
-
- virtual void restoreAllParameters()
- {
- for (int i = 0; i < _nParametersA; ++i) curParametersA[i] = savedParametersA[i];
- for (int j = 0; j < _nParametersB; ++j) curParametersB[j] = savedParametersB[j];
- curParametersC = savedParametersC;
- }
-
- VectorArray<double> curParametersA, savedParametersA;
- VectorArray<double> curParametersB, savedParametersB;
- Vector<double> curParametersC, savedParametersC;
- }; // end struct StdSparseLevenbergOptimizer
-
-# endif
-
-} // end namespace V3D
-
-#endif
diff --git a/extern/libmv/third_party/ssba/README.TXT b/extern/libmv/third_party/ssba/README.TXT
deleted file mode 100644
index 734962b1df8..00000000000
--- a/extern/libmv/third_party/ssba/README.TXT
+++ /dev/null
@@ -1,92 +0,0 @@
-Description
-
-This is an implementation of a sparse Levenberg-Marquardt optimization
-procedure and several bundle adjustment modules based on it. There are three
-versions of bundle adjustment:
-1) Pure metric adjustment. Camera poses have 6 dof and 3D points have 3 dof.
-2) Common, but adjustable intrinsic and distortion parameters. This is useful,
- if the set of images are taken with the same camera under constant zoom
- settings.
-3) Variable intrinsics and distortion parameters for each view. This addresses
- the "community photo collection" setting, where each image is captured with
- a different camera and/or with varying zoom setting.
-
-There are two demo applications in the Apps directory, bundle_common and
-bundle_varying, which correspond to item 2) and 3) above.
-
-The input data file for both applications is a text file with the following
-numerical values:
-
-First, the number of 3D points, views and 2D measurements:
-<M> <N> <K>
-Then, the values of the intrinsic matrix
- [ fx skew cx ]
-K = [ 0 fy cy ]
- [ 0 0 1 ],
-and the distortion parameters according to the convention of the Bouget
-toolbox:
-
- <fx> <skew> <cx> <fy> <cy> <k1> <k2> <p1> <p2>
-
-For the bundle_varying application this is given <N> times, one for each
-camera/view.
-Then the <M> 3D point positions are given:
-
- <point-id> <X> <Y> <Z>
-
-Note: the point-ids need not to be exactly from 0 to M-1, any (unique) ids
-will do.
-The camera poses are given subsequently:
-
- <view-id> <12 entries of the RT matrix>
-
-There is a lot of confusion how to specify the orientation of cameras. We use
-projection matrix notation, i.e. P = K [R|T], and a 3D point X in world
-coordinates is transformed into the camera coordinate system by XX=R*X+T.
-
-Finally, the <K> 2d image measurements (given in pixels) are provided:
-
- <view-id> <point-id> <x> <y> 1
-
-See the example in the Dataset folder.
-
-
-Performance
-
-This software is able to perform successful loop closing for a video sequence
-containing 1745 views, 37920 3D points and 627228 image measurements in about
-16min on a 2.2 GHz Core 2. The footprint in memory was <700MB.
-
-
-Requirements
-
-Solving the augmented normal equation in the LM optimizer is done with LDL, a
-Cholsky like decomposition method for sparse matrices (see
-http://www.cise.ufl.edu/research/sparse/ldl). The appropriate column
-reordering is done with COLAMD (see
-http://www.cise.ufl.edu/research/sparse/colamd). Both packages are licensed
-under the GNU LGPL.
-
-This software was developed under Linux, but should compile equally well on
-other operating systems.
-
--Christopher Zach (cmzach@cs.unc.edu)
-
-/*
-Copyright (c) 2008 University of North Carolina at Chapel Hill
-
-This file is part of SSBA (Simple Sparse Bundle Adjustment).
-
-SSBA is free software: you can redistribute it and/or modify it under the
-terms of the GNU Lesser General Public License as published by the Free
-Software Foundation, either version 3 of the License, or (at your option) any
-later version.
-
-SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
-A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
-details.
-
-You should have received a copy of the GNU Lesser General Public License along
-with SSBA. If not, see <http://www.gnu.org/licenses/>.
-*/
diff --git a/extern/libmv/third_party/ssba/README.libmv b/extern/libmv/third_party/ssba/README.libmv
deleted file mode 100644
index 45e0a31f6fc..00000000000
--- a/extern/libmv/third_party/ssba/README.libmv
+++ /dev/null
@@ -1,23 +0,0 @@
-Project: SSBA
-URL: http://www.cs.unc.edu/~cmzach/opensource.html
-License: LGPL3
-Upstream version: 1.0
-
-Local modifications:
-
- * Added
- SET(CMAKE_CXX_FLAGS "")
- to CMakeLists.txt to prevent warnings from being treated as errors.
- * Fixed "unused variable" in the header files. Warnings in the cpps files
- are still there.
- * Fixed a bug in CameraMatrix::opticalAxis() in file
- Geometry/v3d_cameramatrix.h
- * Deleted the Dataset directory.
- * Added '#include <string>' to ssba/Apps/bundle_common.cpp and
- ssba/Apps/bundle_varying.cpp to stop undefined references to strcmp
- * Removed unnecessary elements from the CMakeLists.txt file, including the
- obsoleted local_config.cmake and friends.
- * Added a virtual destructor to V3D::LevenbergOptimizerCommon in
- Math/v3d_optimization.h
- * Added /EHsc WIN32-specific flag to CMakeLists.txt
- * Remove unused variable Vector3d np in bundle_common.cpp and bundle_varying (in main() function).