Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/device/device_denoising.cpp')
-rw-r--r--intern/cycles/device/device_denoising.cpp232
1 files changed, 232 insertions, 0 deletions
diff --git a/intern/cycles/device/device_denoising.cpp b/intern/cycles/device/device_denoising.cpp
new file mode 100644
index 00000000000..619cc1d171e
--- /dev/null
+++ b/intern/cycles/device/device_denoising.cpp
@@ -0,0 +1,232 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "device/device_denoising.h"
+
+#include "kernel/filter/filter_defines.h"
+
+CCL_NAMESPACE_BEGIN
+
+void DenoisingTask::init_from_devicetask(const DeviceTask &task)
+{
+ radius = task.denoising_radius;
+ nlm_k_2 = powf(2.0f, lerp(-5.0f, 3.0f, task.denoising_strength));
+ if(task.denoising_relative_pca) {
+ pca_threshold = -powf(10.0f, lerp(-8.0f, 0.0f, task.denoising_feature_strength));
+ }
+ else {
+ pca_threshold = powf(10.0f, lerp(-5.0f, 3.0f, task.denoising_feature_strength));
+ }
+
+ render_buffer.pass_stride = task.pass_stride;
+ render_buffer.denoising_data_offset = task.pass_denoising_data;
+ render_buffer.denoising_clean_offset = task.pass_denoising_clean;
+
+ /* Expand filter_area by radius pixels and clamp the result to the extent of the neighboring tiles */
+ rect = make_int4(max(tiles->x[0], filter_area.x - radius),
+ max(tiles->y[0], filter_area.y - radius),
+ min(tiles->x[3], filter_area.x + filter_area.z + radius),
+ min(tiles->y[3], filter_area.y + filter_area.w + radius));
+}
+
+void DenoisingTask::tiles_from_rendertiles(RenderTile *rtiles)
+{
+ tiles = (TilesInfo*) tiles_mem.resize(sizeof(TilesInfo)/sizeof(int));
+
+ device_ptr buffers[9];
+ for(int i = 0; i < 9; i++) {
+ buffers[i] = rtiles[i].buffer;
+ tiles->offsets[i] = rtiles[i].offset;
+ tiles->strides[i] = rtiles[i].stride;
+ }
+ tiles->x[0] = rtiles[3].x;
+ tiles->x[1] = rtiles[4].x;
+ tiles->x[2] = rtiles[5].x;
+ tiles->x[3] = rtiles[5].x + rtiles[5].w;
+ tiles->y[0] = rtiles[1].y;
+ tiles->y[1] = rtiles[4].y;
+ tiles->y[2] = rtiles[7].y;
+ tiles->y[3] = rtiles[7].y + rtiles[7].h;
+
+ render_buffer.offset = rtiles[4].offset;
+ render_buffer.stride = rtiles[4].stride;
+ render_buffer.ptr = rtiles[4].buffer;
+
+ functions.set_tiles(buffers);
+}
+
+bool DenoisingTask::run_denoising()
+{
+ /* Allocate denoising buffer. */
+ buffer.passes = 14;
+ buffer.w = align_up(rect.z - rect.x, 4);
+ buffer.h = rect.w - rect.y;
+ buffer.pass_stride = align_up(buffer.w * buffer.h, divide_up(device->mem_address_alignment(), sizeof(float)));
+ buffer.mem.resize(buffer.pass_stride * buffer.passes);
+ device->mem_alloc("Denoising Pixel Buffer", buffer.mem, MEM_READ_WRITE);
+
+ device_ptr null_ptr = (device_ptr) 0;
+
+ /* Prefilter shadow feature. */
+ {
+ device_sub_ptr unfiltered_a (device, buffer.mem, 0, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr unfiltered_b (device, buffer.mem, 1*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr sample_var (device, buffer.mem, 2*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr sample_var_var (device, buffer.mem, 3*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr buffer_var (device, buffer.mem, 5*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr filtered_var (device, buffer.mem, 6*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_1(device, buffer.mem, 7*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_2(device, buffer.mem, 8*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_3(device, buffer.mem, 9*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+
+ nlm_state.temporary_1_ptr = *nlm_temporary_1;
+ nlm_state.temporary_2_ptr = *nlm_temporary_2;
+ nlm_state.temporary_3_ptr = *nlm_temporary_3;
+
+ /* Get the A/B unfiltered passes, the combined sample variance, the estimated variance of the sample variance and the buffer variance. */
+ functions.divide_shadow(*unfiltered_a, *unfiltered_b, *sample_var, *sample_var_var, *buffer_var);
+
+ /* Smooth the (generally pretty noisy) buffer variance using the spatial information from the sample variance. */
+ nlm_state.set_parameters(6, 3, 4.0f, 1.0f);
+ functions.non_local_means(*buffer_var, *sample_var, *sample_var_var, *filtered_var);
+
+ /* Reuse memory, the previous data isn't needed anymore. */
+ device_ptr filtered_a = *buffer_var,
+ filtered_b = *sample_var;
+ /* Use the smoothed variance to filter the two shadow half images using each other for weight calculation. */
+ nlm_state.set_parameters(5, 3, 1.0f, 0.25f);
+ functions.non_local_means(*unfiltered_a, *unfiltered_b, *filtered_var, filtered_a);
+ functions.non_local_means(*unfiltered_b, *unfiltered_a, *filtered_var, filtered_b);
+
+ device_ptr residual_var = *sample_var_var;
+ /* Estimate the residual variance between the two filtered halves. */
+ functions.combine_halves(filtered_a, filtered_b, null_ptr, residual_var, 2, rect);
+
+ device_ptr final_a = *unfiltered_a,
+ final_b = *unfiltered_b;
+ /* Use the residual variance for a second filter pass. */
+ nlm_state.set_parameters(4, 2, 1.0f, 0.5f);
+ functions.non_local_means(filtered_a, filtered_b, residual_var, final_a);
+ functions.non_local_means(filtered_b, filtered_a, residual_var, final_b);
+
+ /* Combine the two double-filtered halves to a final shadow feature. */
+ device_sub_ptr shadow_pass(device, buffer.mem, 4*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ functions.combine_halves(final_a, final_b, *shadow_pass, null_ptr, 0, rect);
+ }
+
+ /* Prefilter general features. */
+ {
+ device_sub_ptr unfiltered (device, buffer.mem, 8*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr variance (device, buffer.mem, 9*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_1(device, buffer.mem, 10*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_2(device, buffer.mem, 11*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr nlm_temporary_3(device, buffer.mem, 12*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+
+ nlm_state.temporary_1_ptr = *nlm_temporary_1;
+ nlm_state.temporary_2_ptr = *nlm_temporary_2;
+ nlm_state.temporary_3_ptr = *nlm_temporary_3;
+
+ int mean_from[] = { 0, 1, 2, 12, 6, 7, 8 };
+ int variance_from[] = { 3, 4, 5, 13, 9, 10, 11};
+ int pass_to[] = { 1, 2, 3, 0, 5, 6, 7};
+ for(int pass = 0; pass < 7; pass++) {
+ device_sub_ptr feature_pass(device, buffer.mem, pass_to[pass]*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ /* Get the unfiltered pass and its variance from the RenderBuffers. */
+ functions.get_feature(mean_from[pass], variance_from[pass], *unfiltered, *variance);
+ /* Smooth the pass and store the result in the denoising buffers. */
+ nlm_state.set_parameters(2, 2, 1.0f, 0.25f);
+ functions.non_local_means(*unfiltered, *unfiltered, *variance, *feature_pass);
+ }
+ }
+
+ /* Copy color passes. */
+ {
+ int mean_from[] = {20, 21, 22};
+ int variance_from[] = {23, 24, 25};
+ int mean_to[] = { 8, 9, 10};
+ int variance_to[] = {11, 12, 13};
+ int num_color_passes = 3;
+
+ device_only_memory<float> temp_color;
+ temp_color.resize(3*buffer.pass_stride);
+ device->mem_alloc("Denoising temporary color", temp_color, MEM_READ_WRITE);
+
+ for(int pass = 0; pass < num_color_passes; pass++) {
+ device_sub_ptr color_pass(device, temp_color, pass*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr color_var_pass(device, buffer.mem, variance_to[pass]*buffer.pass_stride, buffer.pass_stride, MEM_READ_WRITE);
+ functions.get_feature(mean_from[pass], variance_from[pass], *color_pass, *color_var_pass);
+ }
+
+ {
+ device_sub_ptr depth_pass (device, buffer.mem, 0, buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr color_var_pass(device, buffer.mem, variance_to[0]*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr output_pass (device, buffer.mem, mean_to[0]*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
+ functions.detect_outliers(temp_color.device_pointer, *color_var_pass, *depth_pass, *output_pass);
+ }
+
+ device->mem_free(temp_color);
+ }
+
+ storage.w = filter_area.z;
+ storage.h = filter_area.w;
+ storage.transform.resize(storage.w*storage.h*TRANSFORM_SIZE);
+ storage.rank.resize(storage.w*storage.h);
+ device->mem_alloc("Denoising Transform", storage.transform, MEM_READ_WRITE);
+ device->mem_alloc("Denoising Rank", storage.rank, MEM_READ_WRITE);
+
+ functions.construct_transform();
+
+ device_only_memory<float> temporary_1;
+ device_only_memory<float> temporary_2;
+ temporary_1.resize(buffer.w*buffer.h);
+ temporary_2.resize(buffer.w*buffer.h);
+ device->mem_alloc("Denoising NLM temporary 1", temporary_1, MEM_READ_WRITE);
+ device->mem_alloc("Denoising NLM temporary 2", temporary_2, MEM_READ_WRITE);
+ reconstruction_state.temporary_1_ptr = temporary_1.device_pointer;
+ reconstruction_state.temporary_2_ptr = temporary_2.device_pointer;
+
+ storage.XtWX.resize(storage.w*storage.h*XTWX_SIZE);
+ storage.XtWY.resize(storage.w*storage.h*XTWY_SIZE);
+ device->mem_alloc("Denoising XtWX", storage.XtWX, MEM_READ_WRITE);
+ device->mem_alloc("Denoising XtWY", storage.XtWY, MEM_READ_WRITE);
+
+ reconstruction_state.filter_rect = make_int4(filter_area.x-rect.x, filter_area.y-rect.y, storage.w, storage.h);
+ int tile_coordinate_offset = filter_area.y*render_buffer.stride + filter_area.x;
+ reconstruction_state.buffer_params = make_int4(render_buffer.offset + tile_coordinate_offset,
+ render_buffer.stride,
+ render_buffer.pass_stride,
+ render_buffer.denoising_clean_offset);
+ reconstruction_state.source_w = rect.z-rect.x;
+ reconstruction_state.source_h = rect.w-rect.y;
+
+ {
+ device_sub_ptr color_ptr (device, buffer.mem, 8*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
+ device_sub_ptr color_var_ptr(device, buffer.mem, 11*buffer.pass_stride, 3*buffer.pass_stride, MEM_READ_WRITE);
+ functions.reconstruct(*color_ptr, *color_var_ptr, render_buffer.ptr);
+ }
+
+ device->mem_free(storage.XtWX);
+ device->mem_free(storage.XtWY);
+ device->mem_free(storage.transform);
+ device->mem_free(storage.rank);
+ device->mem_free(temporary_1);
+ device->mem_free(temporary_2);
+ device->mem_free(buffer.mem);
+ device->mem_free(tiles_mem);
+ return true;
+}
+
+CCL_NAMESPACE_END