Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/device/opencl/opencl_split.cpp')
-rw-r--r--intern/cycles/device/opencl/opencl_split.cpp3506
1 files changed, 1734 insertions, 1772 deletions
diff --git a/intern/cycles/device/opencl/opencl_split.cpp b/intern/cycles/device/opencl/opencl_split.cpp
index 489d10b7087..70b1a643044 100644
--- a/intern/cycles/device/opencl/opencl_split.cpp
+++ b/intern/cycles/device/opencl/opencl_split.cpp
@@ -16,273 +16,278 @@
#ifdef WITH_OPENCL
-#include "device/opencl/opencl.h"
+# include "device/opencl/opencl.h"
-#include "kernel/kernel_types.h"
-#include "kernel/split/kernel_split_data_types.h"
+# include "kernel/kernel_types.h"
+# include "kernel/split/kernel_split_data_types.h"
-#include "util/util_algorithm.h"
-#include "util/util_debug.h"
-#include "util/util_foreach.h"
-#include "util/util_logging.h"
-#include "util/util_md5.h"
-#include "util/util_path.h"
-#include "util/util_time.h"
+# include "util/util_algorithm.h"
+# include "util/util_debug.h"
+# include "util/util_foreach.h"
+# include "util/util_logging.h"
+# include "util/util_md5.h"
+# include "util/util_path.h"
+# include "util/util_time.h"
CCL_NAMESPACE_BEGIN
struct texture_slot_t {
- texture_slot_t(const string& name, int slot)
- : name(name),
- slot(slot) {
- }
- string name;
- int slot;
+ texture_slot_t(const string &name, int slot) : name(name), slot(slot)
+ {
+ }
+ string name;
+ int slot;
};
static const string NON_SPLIT_KERNELS =
- "denoising "
- "base "
- "background "
- "displace ";
+ "denoising "
+ "base "
+ "background "
+ "displace ";
static const string SPLIT_BUNDLE_KERNELS =
- "data_init "
- "path_init "
- "state_buffer_size "
- "scene_intersect "
- "queue_enqueue "
- "shader_setup "
- "shader_sort "
- "enqueue_inactive "
- "next_iteration_setup "
- "indirect_subsurface "
- "buffer_update";
-
-const string OpenCLDevice::get_opencl_program_name(const string& kernel_name)
+ "data_init "
+ "path_init "
+ "state_buffer_size "
+ "scene_intersect "
+ "queue_enqueue "
+ "shader_setup "
+ "shader_sort "
+ "enqueue_inactive "
+ "next_iteration_setup "
+ "indirect_subsurface "
+ "buffer_update";
+
+const string OpenCLDevice::get_opencl_program_name(const string &kernel_name)
{
- if (NON_SPLIT_KERNELS.find(kernel_name) != std::string::npos) {
- return kernel_name;
- }
- else if (SPLIT_BUNDLE_KERNELS.find(kernel_name) != std::string::npos) {
- return "split_bundle";
- }
- else {
- return "split_" + kernel_name;
- }
+ if (NON_SPLIT_KERNELS.find(kernel_name) != std::string::npos) {
+ return kernel_name;
+ }
+ else if (SPLIT_BUNDLE_KERNELS.find(kernel_name) != std::string::npos) {
+ return "split_bundle";
+ }
+ else {
+ return "split_" + kernel_name;
+ }
}
-const string OpenCLDevice::get_opencl_program_filename(const string& kernel_name)
+const string OpenCLDevice::get_opencl_program_filename(const string &kernel_name)
{
- if (kernel_name == "denoising") {
- return "filter.cl";
- }
- else if (SPLIT_BUNDLE_KERNELS.find(kernel_name) != std::string::npos) {
- return "kernel_split_bundle.cl";
- }
- else {
- return "kernel_" + kernel_name + ".cl";
- }
+ if (kernel_name == "denoising") {
+ return "filter.cl";
+ }
+ else if (SPLIT_BUNDLE_KERNELS.find(kernel_name) != std::string::npos) {
+ return "kernel_split_bundle.cl";
+ }
+ else {
+ return "kernel_" + kernel_name + ".cl";
+ }
}
/* Enable features that we always want to compile to reduce recompilation events */
-void OpenCLDevice::enable_default_features(DeviceRequestedFeatures& features)
+void OpenCLDevice::enable_default_features(DeviceRequestedFeatures &features)
{
- features.use_transparent = true;
- features.use_shadow_tricks = true;
- features.use_principled = true;
- features.use_denoising = true;
-
- if (!background)
- {
- features.max_nodes_group = NODE_GROUP_LEVEL_MAX;
- features.nodes_features = NODE_FEATURE_ALL;
- features.use_hair = true;
- features.use_subsurface = true;
- features.use_camera_motion = false;
- features.use_object_motion = false;
- }
+ features.use_transparent = true;
+ features.use_shadow_tricks = true;
+ features.use_principled = true;
+ features.use_denoising = true;
+
+ if (!background) {
+ features.max_nodes_group = NODE_GROUP_LEVEL_MAX;
+ features.nodes_features = NODE_FEATURE_ALL;
+ features.use_hair = true;
+ features.use_subsurface = true;
+ features.use_camera_motion = false;
+ features.use_object_motion = false;
+ }
}
-string OpenCLDevice::get_build_options(const DeviceRequestedFeatures& requested_features, const string& opencl_program_name, bool preview_kernel)
+string OpenCLDevice::get_build_options(const DeviceRequestedFeatures &requested_features,
+ const string &opencl_program_name,
+ bool preview_kernel)
{
- /* first check for non-split kernel programs */
- if (opencl_program_name == "base" || opencl_program_name == "denoising") {
- return "";
- }
- else if (opencl_program_name == "bake") {
- /* Note: get_build_options for bake is only requested when baking is enabled.
- * displace and background are always requested.
- * `__SPLIT_KERNEL__` must not be present in the compile directives for bake */
- DeviceRequestedFeatures features(requested_features);
- enable_default_features(features);
- features.use_denoising = false;
- features.use_object_motion = false;
- features.use_camera_motion = false;
- features.use_hair = true;
- features.use_subsurface = true;
- features.max_nodes_group = NODE_GROUP_LEVEL_MAX;
- features.nodes_features = NODE_FEATURE_ALL;
- features.use_integrator_branched = false;
- return features.get_build_options();
- }
- else if (opencl_program_name == "displace") {
- /* As displacement does not use any nodes from the Shading group (eg BSDF).
- * We disable all features that are related to shading. */
- DeviceRequestedFeatures features(requested_features);
- enable_default_features(features);
- features.use_denoising = false;
- features.use_object_motion = false;
- features.use_camera_motion = false;
- features.use_baking = false;
- features.use_transparent = false;
- features.use_shadow_tricks = false;
- features.use_subsurface = false;
- features.use_volume = false;
- features.nodes_features &= ~NODE_FEATURE_VOLUME;
- features.use_denoising = false;
- features.use_principled = false;
- features.use_integrator_branched = false;
- return features.get_build_options();
- }
- else if (opencl_program_name == "background") {
- /* Background uses Background shading
- * It is save to disable shadow features, subsurface and volumetric. */
- DeviceRequestedFeatures features(requested_features);
- enable_default_features(features);
- features.use_baking = false;
- features.use_object_motion = false;
- features.use_camera_motion = false;
- features.use_transparent = false;
- features.use_shadow_tricks = false;
- features.use_denoising = false;
- /* NOTE: currently possible to use surface nodes like `Hair Info`, `Bump` node.
- * Perhaps we should remove them in UI as it does not make any sense when
- * rendering background. */
- features.nodes_features &= ~NODE_FEATURE_VOLUME;
- features.use_subsurface = false;
- features.use_volume = false;
- features.use_shader_raytrace = false;
- features.use_patch_evaluation = false;
- features.use_integrator_branched = false;
- return features.get_build_options();
- }
-
- string build_options = "-D__SPLIT_KERNEL__ ";
- /* Set compute device build option. */
- cl_device_type device_type;
- OpenCLInfo::get_device_type(this->cdDevice, &device_type, &this->ciErr);
- assert(this->ciErr == CL_SUCCESS);
- if(device_type == CL_DEVICE_TYPE_GPU) {
- build_options += "-D__COMPUTE_DEVICE_GPU__ ";
- }
-
- DeviceRequestedFeatures nofeatures;
- enable_default_features(nofeatures);
-
- /* Add program specific optimized compile directives */
- if (preview_kernel) {
- DeviceRequestedFeatures preview_features;
- preview_features.use_hair = true;
- build_options += "-D__KERNEL_AO_PREVIEW__ ";
- build_options += preview_features.get_build_options();
- }
- else if (opencl_program_name == "split_do_volume" && !requested_features.use_volume) {
- build_options += nofeatures.get_build_options();
- }
- else {
- DeviceRequestedFeatures features(requested_features);
- enable_default_features(features);
-
- /* Always turn off baking at this point. Baking is only usefull when building the bake kernel.
- * this also makes sure that the kernels that are build during baking can be reused
- * when not doing any baking. */
- features.use_baking = false;
-
- /* Do not vary on shaders when program doesn't do any shading.
- * We have bundled them in a single program. */
- if (opencl_program_name == "split_bundle") {
- features.max_nodes_group = 0;
- features.nodes_features = 0;
- features.use_shader_raytrace = false;
- }
-
- /* No specific settings, just add the regular ones */
- build_options += features.get_build_options();
- }
-
- return build_options;
+ /* first check for non-split kernel programs */
+ if (opencl_program_name == "base" || opencl_program_name == "denoising") {
+ return "";
+ }
+ else if (opencl_program_name == "bake") {
+ /* Note: get_build_options for bake is only requested when baking is enabled.
+ * displace and background are always requested.
+ * `__SPLIT_KERNEL__` must not be present in the compile directives for bake */
+ DeviceRequestedFeatures features(requested_features);
+ enable_default_features(features);
+ features.use_denoising = false;
+ features.use_object_motion = false;
+ features.use_camera_motion = false;
+ features.use_hair = true;
+ features.use_subsurface = true;
+ features.max_nodes_group = NODE_GROUP_LEVEL_MAX;
+ features.nodes_features = NODE_FEATURE_ALL;
+ features.use_integrator_branched = false;
+ return features.get_build_options();
+ }
+ else if (opencl_program_name == "displace") {
+ /* As displacement does not use any nodes from the Shading group (eg BSDF).
+ * We disable all features that are related to shading. */
+ DeviceRequestedFeatures features(requested_features);
+ enable_default_features(features);
+ features.use_denoising = false;
+ features.use_object_motion = false;
+ features.use_camera_motion = false;
+ features.use_baking = false;
+ features.use_transparent = false;
+ features.use_shadow_tricks = false;
+ features.use_subsurface = false;
+ features.use_volume = false;
+ features.nodes_features &= ~NODE_FEATURE_VOLUME;
+ features.use_denoising = false;
+ features.use_principled = false;
+ features.use_integrator_branched = false;
+ return features.get_build_options();
+ }
+ else if (opencl_program_name == "background") {
+ /* Background uses Background shading
+ * It is save to disable shadow features, subsurface and volumetric. */
+ DeviceRequestedFeatures features(requested_features);
+ enable_default_features(features);
+ features.use_baking = false;
+ features.use_object_motion = false;
+ features.use_camera_motion = false;
+ features.use_transparent = false;
+ features.use_shadow_tricks = false;
+ features.use_denoising = false;
+ /* NOTE: currently possible to use surface nodes like `Hair Info`, `Bump` node.
+ * Perhaps we should remove them in UI as it does not make any sense when
+ * rendering background. */
+ features.nodes_features &= ~NODE_FEATURE_VOLUME;
+ features.use_subsurface = false;
+ features.use_volume = false;
+ features.use_shader_raytrace = false;
+ features.use_patch_evaluation = false;
+ features.use_integrator_branched = false;
+ return features.get_build_options();
+ }
+
+ string build_options = "-D__SPLIT_KERNEL__ ";
+ /* Set compute device build option. */
+ cl_device_type device_type;
+ OpenCLInfo::get_device_type(this->cdDevice, &device_type, &this->ciErr);
+ assert(this->ciErr == CL_SUCCESS);
+ if (device_type == CL_DEVICE_TYPE_GPU) {
+ build_options += "-D__COMPUTE_DEVICE_GPU__ ";
+ }
+
+ DeviceRequestedFeatures nofeatures;
+ enable_default_features(nofeatures);
+
+ /* Add program specific optimized compile directives */
+ if (preview_kernel) {
+ DeviceRequestedFeatures preview_features;
+ preview_features.use_hair = true;
+ build_options += "-D__KERNEL_AO_PREVIEW__ ";
+ build_options += preview_features.get_build_options();
+ }
+ else if (opencl_program_name == "split_do_volume" && !requested_features.use_volume) {
+ build_options += nofeatures.get_build_options();
+ }
+ else {
+ DeviceRequestedFeatures features(requested_features);
+ enable_default_features(features);
+
+ /* Always turn off baking at this point. Baking is only usefull when building the bake kernel.
+ * this also makes sure that the kernels that are build during baking can be reused
+ * when not doing any baking. */
+ features.use_baking = false;
+
+ /* Do not vary on shaders when program doesn't do any shading.
+ * We have bundled them in a single program. */
+ if (opencl_program_name == "split_bundle") {
+ features.max_nodes_group = 0;
+ features.nodes_features = 0;
+ features.use_shader_raytrace = false;
+ }
+
+ /* No specific settings, just add the regular ones */
+ build_options += features.get_build_options();
+ }
+
+ return build_options;
}
OpenCLDevice::OpenCLSplitPrograms::OpenCLSplitPrograms(OpenCLDevice *device_)
{
- device = device_;
+ device = device_;
}
OpenCLDevice::OpenCLSplitPrograms::~OpenCLSplitPrograms()
{
- program_split.release();
- program_lamp_emission.release();
- program_do_volume.release();
- program_indirect_background.release();
- program_shader_eval.release();
- program_holdout_emission_blurring_pathtermination_ao.release();
- program_subsurface_scatter.release();
- program_direct_lighting.release();
- program_shadow_blocked_ao.release();
- program_shadow_blocked_dl.release();
+ program_split.release();
+ program_lamp_emission.release();
+ program_do_volume.release();
+ program_indirect_background.release();
+ program_shader_eval.release();
+ program_holdout_emission_blurring_pathtermination_ao.release();
+ program_subsurface_scatter.release();
+ program_direct_lighting.release();
+ program_shadow_blocked_ao.release();
+ program_shadow_blocked_dl.release();
}
-void OpenCLDevice::OpenCLSplitPrograms::load_kernels(vector<OpenCLProgram*> &programs, const DeviceRequestedFeatures& requested_features, bool is_preview)
+void OpenCLDevice::OpenCLSplitPrograms::load_kernels(
+ vector<OpenCLProgram *> &programs,
+ const DeviceRequestedFeatures &requested_features,
+ bool is_preview)
{
- if (!requested_features.use_baking) {
-#define ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(kernel_name) program_split.add_kernel(ustring("path_trace_"#kernel_name));
-#define ADD_SPLIT_KERNEL_PROGRAM(kernel_name) \
- const string program_name_##kernel_name = "split_"#kernel_name; \
- program_##kernel_name = \
- OpenCLDevice::OpenCLProgram(device, \
- program_name_##kernel_name, \
- "kernel_"#kernel_name".cl", \
- device->get_build_options(requested_features, program_name_##kernel_name, is_preview)); \
- program_##kernel_name.add_kernel(ustring("path_trace_"#kernel_name)); \
- programs.push_back(&program_##kernel_name);
-
- /* Ordered with most complex kernels first, to reduce overall compile time. */
- ADD_SPLIT_KERNEL_PROGRAM(subsurface_scatter);
- if (requested_features.use_volume || is_preview) {
- ADD_SPLIT_KERNEL_PROGRAM(do_volume);
- }
- ADD_SPLIT_KERNEL_PROGRAM(shadow_blocked_dl);
- ADD_SPLIT_KERNEL_PROGRAM(shadow_blocked_ao);
- ADD_SPLIT_KERNEL_PROGRAM(holdout_emission_blurring_pathtermination_ao);
- ADD_SPLIT_KERNEL_PROGRAM(lamp_emission);
- ADD_SPLIT_KERNEL_PROGRAM(direct_lighting);
- ADD_SPLIT_KERNEL_PROGRAM(indirect_background);
- ADD_SPLIT_KERNEL_PROGRAM(shader_eval);
-
- /* Quick kernels bundled in a single program to reduce overhead of starting
- * Blender processes. */
- program_split = OpenCLDevice::OpenCLProgram(device,
- "split_bundle" ,
- "kernel_split_bundle.cl",
- device->get_build_options(requested_features, "split_bundle", is_preview));
-
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(data_init);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(state_buffer_size);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(path_init);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(scene_intersect);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(queue_enqueue);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(shader_setup);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(shader_sort);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(enqueue_inactive);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(next_iteration_setup);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(indirect_subsurface);
- ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(buffer_update);
- programs.push_back(&program_split);
-
-#undef ADD_SPLIT_KERNEL_PROGRAM
-#undef ADD_SPLIT_KERNEL_BUNDLE_PROGRAM
- }
+ if (!requested_features.use_baking) {
+# define ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(kernel_name) \
+ program_split.add_kernel(ustring("path_trace_" #kernel_name));
+# define ADD_SPLIT_KERNEL_PROGRAM(kernel_name) \
+ const string program_name_##kernel_name = "split_" #kernel_name; \
+ program_##kernel_name = OpenCLDevice::OpenCLProgram( \
+ device, \
+ program_name_##kernel_name, \
+ "kernel_" #kernel_name ".cl", \
+ device->get_build_options(requested_features, program_name_##kernel_name, is_preview)); \
+ program_##kernel_name.add_kernel(ustring("path_trace_" #kernel_name)); \
+ programs.push_back(&program_##kernel_name);
+
+ /* Ordered with most complex kernels first, to reduce overall compile time. */
+ ADD_SPLIT_KERNEL_PROGRAM(subsurface_scatter);
+ if (requested_features.use_volume || is_preview) {
+ ADD_SPLIT_KERNEL_PROGRAM(do_volume);
+ }
+ ADD_SPLIT_KERNEL_PROGRAM(shadow_blocked_dl);
+ ADD_SPLIT_KERNEL_PROGRAM(shadow_blocked_ao);
+ ADD_SPLIT_KERNEL_PROGRAM(holdout_emission_blurring_pathtermination_ao);
+ ADD_SPLIT_KERNEL_PROGRAM(lamp_emission);
+ ADD_SPLIT_KERNEL_PROGRAM(direct_lighting);
+ ADD_SPLIT_KERNEL_PROGRAM(indirect_background);
+ ADD_SPLIT_KERNEL_PROGRAM(shader_eval);
+
+ /* Quick kernels bundled in a single program to reduce overhead of starting
+ * Blender processes. */
+ program_split = OpenCLDevice::OpenCLProgram(
+ device,
+ "split_bundle",
+ "kernel_split_bundle.cl",
+ device->get_build_options(requested_features, "split_bundle", is_preview));
+
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(data_init);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(state_buffer_size);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(path_init);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(scene_intersect);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(queue_enqueue);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(shader_setup);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(shader_sort);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(enqueue_inactive);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(next_iteration_setup);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(indirect_subsurface);
+ ADD_SPLIT_KERNEL_BUNDLE_PROGRAM(buffer_update);
+ programs.push_back(&program_split);
+
+# undef ADD_SPLIT_KERNEL_PROGRAM
+# undef ADD_SPLIT_KERNEL_BUNDLE_PROGRAM
+ }
}
namespace {
@@ -291,1126 +296,1108 @@ namespace {
* fetch its size.
*/
typedef struct KernelGlobalsDummy {
- ccl_constant KernelData *data;
- ccl_global char *buffers[8];
+ ccl_constant KernelData *data;
+ ccl_global char *buffers[8];
-#define KERNEL_TEX(type, name) \
- TextureInfo name;
+# define KERNEL_TEX(type, name) TextureInfo name;
# include "kernel/kernel_textures.h"
-#undef KERNEL_TEX
- SplitData split_data;
- SplitParams split_param_data;
+# undef KERNEL_TEX
+ SplitData split_data;
+ SplitParams split_param_data;
} KernelGlobalsDummy;
} // namespace
-
struct CachedSplitMemory {
- int id;
- device_memory *split_data;
- device_memory *ray_state;
- device_memory *queue_index;
- device_memory *use_queues_flag;
- device_memory *work_pools;
- device_ptr *buffer;
+ int id;
+ device_memory *split_data;
+ device_memory *ray_state;
+ device_memory *queue_index;
+ device_memory *use_queues_flag;
+ device_memory *work_pools;
+ device_ptr *buffer;
};
class OpenCLSplitKernelFunction : public SplitKernelFunction {
-public:
- OpenCLDevice* device;
- OpenCLDevice::OpenCLProgram program;
- CachedSplitMemory& cached_memory;
- int cached_id;
-
- OpenCLSplitKernelFunction(OpenCLDevice* device, CachedSplitMemory& cached_memory) :
- device(device), cached_memory(cached_memory), cached_id(cached_memory.id-1)
- {
- }
-
- ~OpenCLSplitKernelFunction()
- {
- program.release();
- }
-
- virtual bool enqueue(const KernelDimensions& dim, device_memory& kg, device_memory& data)
- {
- if(cached_id != cached_memory.id) {
- cl_uint start_arg_index =
- device->kernel_set_args(program(),
- 0,
- kg,
- data,
- *cached_memory.split_data,
- *cached_memory.ray_state);
-
- device->set_kernel_arg_buffers(program(), &start_arg_index);
-
- start_arg_index +=
- device->kernel_set_args(program(),
- start_arg_index,
- *cached_memory.queue_index,
- *cached_memory.use_queues_flag,
- *cached_memory.work_pools,
- *cached_memory.buffer);
-
- cached_id = cached_memory.id;
- }
-
- device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
- program(),
- 2,
- NULL,
- dim.global_size,
- dim.local_size,
- 0,
- NULL,
- NULL);
-
- device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
-
- if(device->ciErr != CL_SUCCESS) {
- string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
- clewErrorString(device->ciErr));
- device->opencl_error(message);
- return false;
- }
-
- return true;
- }
+ public:
+ OpenCLDevice *device;
+ OpenCLDevice::OpenCLProgram program;
+ CachedSplitMemory &cached_memory;
+ int cached_id;
+
+ OpenCLSplitKernelFunction(OpenCLDevice *device, CachedSplitMemory &cached_memory)
+ : device(device), cached_memory(cached_memory), cached_id(cached_memory.id - 1)
+ {
+ }
+
+ ~OpenCLSplitKernelFunction()
+ {
+ program.release();
+ }
+
+ virtual bool enqueue(const KernelDimensions &dim, device_memory &kg, device_memory &data)
+ {
+ if (cached_id != cached_memory.id) {
+ cl_uint start_arg_index = device->kernel_set_args(
+ program(), 0, kg, data, *cached_memory.split_data, *cached_memory.ray_state);
+
+ device->set_kernel_arg_buffers(program(), &start_arg_index);
+
+ start_arg_index += device->kernel_set_args(program(),
+ start_arg_index,
+ *cached_memory.queue_index,
+ *cached_memory.use_queues_flag,
+ *cached_memory.work_pools,
+ *cached_memory.buffer);
+
+ cached_id = cached_memory.id;
+ }
+
+ device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
+ program(),
+ 2,
+ NULL,
+ dim.global_size,
+ dim.local_size,
+ 0,
+ NULL,
+ NULL);
+
+ device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
+
+ if (device->ciErr != CL_SUCCESS) {
+ string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
+ clewErrorString(device->ciErr));
+ device->opencl_error(message);
+ return false;
+ }
+
+ return true;
+ }
};
class OpenCLSplitKernel : public DeviceSplitKernel {
- OpenCLDevice *device;
- CachedSplitMemory cached_memory;
-public:
- explicit OpenCLSplitKernel(OpenCLDevice *device) : DeviceSplitKernel(device), device(device) {
- }
-
- virtual SplitKernelFunction* get_split_kernel_function(const string& kernel_name,
- const DeviceRequestedFeatures& requested_features)
- {
- OpenCLSplitKernelFunction* kernel = new OpenCLSplitKernelFunction(device, cached_memory);
-
- const string program_name = device->get_opencl_program_name(kernel_name);
- kernel->program =
- OpenCLDevice::OpenCLProgram(device,
- program_name,
- device->get_opencl_program_filename(kernel_name),
- device->get_build_options(requested_features,
- program_name,
- device->use_preview_kernels));
-
- kernel->program.add_kernel(ustring("path_trace_" + kernel_name));
- kernel->program.load();
-
- if(!kernel->program.is_loaded()) {
- delete kernel;
- return NULL;
- }
-
- return kernel;
- }
-
- virtual uint64_t state_buffer_size(device_memory& kg, device_memory& data, size_t num_threads)
- {
- device_vector<uint64_t> size_buffer(device, "size_buffer", MEM_READ_WRITE);
- size_buffer.alloc(1);
- size_buffer.zero_to_device();
-
- uint threads = num_threads;
- OpenCLDevice::OpenCLSplitPrograms *programs = device->get_split_programs();
- cl_kernel kernel_state_buffer_size = programs->program_split(ustring("path_trace_state_buffer_size"));
- device->kernel_set_args(kernel_state_buffer_size, 0, kg, data, threads, size_buffer);
-
- size_t global_size = 64;
- device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
- kernel_state_buffer_size,
- 1,
- NULL,
- &global_size,
- NULL,
- 0,
- NULL,
- NULL);
-
- device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
-
- size_buffer.copy_from_device(0, 1, 1);
- size_t size = size_buffer[0];
- size_buffer.free();
-
- if(device->ciErr != CL_SUCCESS) {
- string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
- clewErrorString(device->ciErr));
- device->opencl_error(message);
- return 0;
- }
-
- return size;
- }
-
- virtual bool enqueue_split_kernel_data_init(const KernelDimensions& dim,
- RenderTile& rtile,
- int num_global_elements,
- device_memory& kernel_globals,
- device_memory& kernel_data,
- device_memory& split_data,
- device_memory& ray_state,
- device_memory& queue_index,
- device_memory& use_queues_flag,
- device_memory& work_pool_wgs
- )
- {
- cl_int dQueue_size = dim.global_size[0] * dim.global_size[1];
-
- /* Set the range of samples to be processed for every ray in
- * path-regeneration logic.
- */
- cl_int start_sample = rtile.start_sample;
- cl_int end_sample = rtile.start_sample + rtile.num_samples;
-
- OpenCLDevice::OpenCLSplitPrograms *programs = device->get_split_programs();
- cl_kernel kernel_data_init = programs->program_split(ustring("path_trace_data_init"));
-
- cl_uint start_arg_index =
- device->kernel_set_args(kernel_data_init,
- 0,
- kernel_globals,
- kernel_data,
- split_data,
- num_global_elements,
- ray_state);
-
- device->set_kernel_arg_buffers(kernel_data_init, &start_arg_index);
-
- start_arg_index +=
- device->kernel_set_args(kernel_data_init,
- start_arg_index,
- start_sample,
- end_sample,
- rtile.x,
- rtile.y,
- rtile.w,
- rtile.h,
- rtile.offset,
- rtile.stride,
- queue_index,
- dQueue_size,
- use_queues_flag,
- work_pool_wgs,
- rtile.num_samples,
- rtile.buffer);
-
- /* Enqueue ckPathTraceKernel_data_init kernel. */
- device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
- kernel_data_init,
- 2,
- NULL,
- dim.global_size,
- dim.local_size,
- 0,
- NULL,
- NULL);
-
- device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
-
- if(device->ciErr != CL_SUCCESS) {
- string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
- clewErrorString(device->ciErr));
- device->opencl_error(message);
- return false;
- }
-
- cached_memory.split_data = &split_data;
- cached_memory.ray_state = &ray_state;
- cached_memory.queue_index = &queue_index;
- cached_memory.use_queues_flag = &use_queues_flag;
- cached_memory.work_pools = &work_pool_wgs;
- cached_memory.buffer = &rtile.buffer;
- cached_memory.id++;
-
- return true;
- }
-
- virtual int2 split_kernel_local_size()
- {
- return make_int2(64, 1);
- }
-
- virtual int2 split_kernel_global_size(device_memory& kg, device_memory& data, DeviceTask * /*task*/)
- {
- cl_device_type type = OpenCLInfo::get_device_type(device->cdDevice);
- /* Use small global size on CPU devices as it seems to be much faster. */
- if(type == CL_DEVICE_TYPE_CPU) {
- VLOG(1) << "Global size: (64, 64).";
- return make_int2(64, 64);
- }
-
- cl_ulong max_buffer_size;
- clGetDeviceInfo(device->cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_buffer_size, NULL);
-
- if(DebugFlags().opencl.mem_limit) {
- max_buffer_size = min(max_buffer_size,
- cl_ulong(DebugFlags().opencl.mem_limit - device->stats.mem_used));
- }
-
- VLOG(1) << "Maximum device allocation size: "
- << string_human_readable_number(max_buffer_size) << " bytes. ("
- << string_human_readable_size(max_buffer_size) << ").";
-
- /* Limit to 2gb, as we shouldn't need more than that and some devices may support much more. */
- max_buffer_size = min(max_buffer_size / 2, (cl_ulong)2l*1024*1024*1024);
-
- size_t num_elements = max_elements_for_max_buffer_size(kg, data, max_buffer_size);
- int2 global_size = make_int2(max(round_down((int)sqrt(num_elements), 64), 64), (int)sqrt(num_elements));
- VLOG(1) << "Global size: " << global_size << ".";
- return global_size;
- }
+ OpenCLDevice *device;
+ CachedSplitMemory cached_memory;
+
+ public:
+ explicit OpenCLSplitKernel(OpenCLDevice *device) : DeviceSplitKernel(device), device(device)
+ {
+ }
+
+ virtual SplitKernelFunction *get_split_kernel_function(
+ const string &kernel_name, const DeviceRequestedFeatures &requested_features)
+ {
+ OpenCLSplitKernelFunction *kernel = new OpenCLSplitKernelFunction(device, cached_memory);
+
+ const string program_name = device->get_opencl_program_name(kernel_name);
+ kernel->program = OpenCLDevice::OpenCLProgram(
+ device,
+ program_name,
+ device->get_opencl_program_filename(kernel_name),
+ device->get_build_options(requested_features, program_name, device->use_preview_kernels));
+
+ kernel->program.add_kernel(ustring("path_trace_" + kernel_name));
+ kernel->program.load();
+
+ if (!kernel->program.is_loaded()) {
+ delete kernel;
+ return NULL;
+ }
+
+ return kernel;
+ }
+
+ virtual uint64_t state_buffer_size(device_memory &kg, device_memory &data, size_t num_threads)
+ {
+ device_vector<uint64_t> size_buffer(device, "size_buffer", MEM_READ_WRITE);
+ size_buffer.alloc(1);
+ size_buffer.zero_to_device();
+
+ uint threads = num_threads;
+ OpenCLDevice::OpenCLSplitPrograms *programs = device->get_split_programs();
+ cl_kernel kernel_state_buffer_size = programs->program_split(
+ ustring("path_trace_state_buffer_size"));
+ device->kernel_set_args(kernel_state_buffer_size, 0, kg, data, threads, size_buffer);
+
+ size_t global_size = 64;
+ device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
+ kernel_state_buffer_size,
+ 1,
+ NULL,
+ &global_size,
+ NULL,
+ 0,
+ NULL,
+ NULL);
+
+ device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
+
+ size_buffer.copy_from_device(0, 1, 1);
+ size_t size = size_buffer[0];
+ size_buffer.free();
+
+ if (device->ciErr != CL_SUCCESS) {
+ string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
+ clewErrorString(device->ciErr));
+ device->opencl_error(message);
+ return 0;
+ }
+
+ return size;
+ }
+
+ virtual bool enqueue_split_kernel_data_init(const KernelDimensions &dim,
+ RenderTile &rtile,
+ int num_global_elements,
+ device_memory &kernel_globals,
+ device_memory &kernel_data,
+ device_memory &split_data,
+ device_memory &ray_state,
+ device_memory &queue_index,
+ device_memory &use_queues_flag,
+ device_memory &work_pool_wgs)
+ {
+ cl_int dQueue_size = dim.global_size[0] * dim.global_size[1];
+
+ /* Set the range of samples to be processed for every ray in
+ * path-regeneration logic.
+ */
+ cl_int start_sample = rtile.start_sample;
+ cl_int end_sample = rtile.start_sample + rtile.num_samples;
+
+ OpenCLDevice::OpenCLSplitPrograms *programs = device->get_split_programs();
+ cl_kernel kernel_data_init = programs->program_split(ustring("path_trace_data_init"));
+
+ cl_uint start_arg_index = device->kernel_set_args(kernel_data_init,
+ 0,
+ kernel_globals,
+ kernel_data,
+ split_data,
+ num_global_elements,
+ ray_state);
+
+ device->set_kernel_arg_buffers(kernel_data_init, &start_arg_index);
+
+ start_arg_index += device->kernel_set_args(kernel_data_init,
+ start_arg_index,
+ start_sample,
+ end_sample,
+ rtile.x,
+ rtile.y,
+ rtile.w,
+ rtile.h,
+ rtile.offset,
+ rtile.stride,
+ queue_index,
+ dQueue_size,
+ use_queues_flag,
+ work_pool_wgs,
+ rtile.num_samples,
+ rtile.buffer);
+
+ /* Enqueue ckPathTraceKernel_data_init kernel. */
+ device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
+ kernel_data_init,
+ 2,
+ NULL,
+ dim.global_size,
+ dim.local_size,
+ 0,
+ NULL,
+ NULL);
+
+ device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
+
+ if (device->ciErr != CL_SUCCESS) {
+ string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
+ clewErrorString(device->ciErr));
+ device->opencl_error(message);
+ return false;
+ }
+
+ cached_memory.split_data = &split_data;
+ cached_memory.ray_state = &ray_state;
+ cached_memory.queue_index = &queue_index;
+ cached_memory.use_queues_flag = &use_queues_flag;
+ cached_memory.work_pools = &work_pool_wgs;
+ cached_memory.buffer = &rtile.buffer;
+ cached_memory.id++;
+
+ return true;
+ }
+
+ virtual int2 split_kernel_local_size()
+ {
+ return make_int2(64, 1);
+ }
+
+ virtual int2 split_kernel_global_size(device_memory &kg,
+ device_memory &data,
+ DeviceTask * /*task*/)
+ {
+ cl_device_type type = OpenCLInfo::get_device_type(device->cdDevice);
+ /* Use small global size on CPU devices as it seems to be much faster. */
+ if (type == CL_DEVICE_TYPE_CPU) {
+ VLOG(1) << "Global size: (64, 64).";
+ return make_int2(64, 64);
+ }
+
+ cl_ulong max_buffer_size;
+ clGetDeviceInfo(
+ device->cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_buffer_size, NULL);
+
+ if (DebugFlags().opencl.mem_limit) {
+ max_buffer_size = min(max_buffer_size,
+ cl_ulong(DebugFlags().opencl.mem_limit - device->stats.mem_used));
+ }
+
+ VLOG(1) << "Maximum device allocation size: " << string_human_readable_number(max_buffer_size)
+ << " bytes. (" << string_human_readable_size(max_buffer_size) << ").";
+
+ /* Limit to 2gb, as we shouldn't need more than that and some devices may support much more. */
+ max_buffer_size = min(max_buffer_size / 2, (cl_ulong)2l * 1024 * 1024 * 1024);
+
+ size_t num_elements = max_elements_for_max_buffer_size(kg, data, max_buffer_size);
+ int2 global_size = make_int2(max(round_down((int)sqrt(num_elements), 64), 64),
+ (int)sqrt(num_elements));
+ VLOG(1) << "Global size: " << global_size << ".";
+ return global_size;
+ }
};
bool OpenCLDevice::opencl_error(cl_int err)
{
- if(err != CL_SUCCESS) {
- string message = string_printf("OpenCL error (%d): %s", err, clewErrorString(err));
- if(error_msg == "")
- error_msg = message;
- fprintf(stderr, "%s\n", message.c_str());
- return true;
- }
-
- return false;
+ if (err != CL_SUCCESS) {
+ string message = string_printf("OpenCL error (%d): %s", err, clewErrorString(err));
+ if (error_msg == "")
+ error_msg = message;
+ fprintf(stderr, "%s\n", message.c_str());
+ return true;
+ }
+
+ return false;
}
-void OpenCLDevice::opencl_error(const string& message)
+void OpenCLDevice::opencl_error(const string &message)
{
- if(error_msg == "")
- error_msg = message;
- fprintf(stderr, "%s\n", message.c_str());
+ if (error_msg == "")
+ error_msg = message;
+ fprintf(stderr, "%s\n", message.c_str());
}
-void OpenCLDevice::opencl_assert_err(cl_int err, const char* where)
+void OpenCLDevice::opencl_assert_err(cl_int err, const char *where)
{
- if(err != CL_SUCCESS) {
- string message = string_printf("OpenCL error (%d): %s in %s", err, clewErrorString(err), where);
- if(error_msg == "")
- error_msg = message;
- fprintf(stderr, "%s\n", message.c_str());
-#ifndef NDEBUG
- abort();
-#endif
- }
+ if (err != CL_SUCCESS) {
+ string message = string_printf(
+ "OpenCL error (%d): %s in %s", err, clewErrorString(err), where);
+ if (error_msg == "")
+ error_msg = message;
+ fprintf(stderr, "%s\n", message.c_str());
+# ifndef NDEBUG
+ abort();
+# endif
+ }
}
-OpenCLDevice::OpenCLDevice(DeviceInfo& info, Stats &stats, Profiler &profiler, bool background)
-: Device(info, stats, profiler, background),
- kernel_programs(this),
- preview_programs(this),
- memory_manager(this),
- texture_info(this, "__texture_info", MEM_TEXTURE)
+OpenCLDevice::OpenCLDevice(DeviceInfo &info, Stats &stats, Profiler &profiler, bool background)
+ : Device(info, stats, profiler, background),
+ kernel_programs(this),
+ preview_programs(this),
+ memory_manager(this),
+ texture_info(this, "__texture_info", MEM_TEXTURE)
{
- cpPlatform = NULL;
- cdDevice = NULL;
- cxContext = NULL;
- cqCommandQueue = NULL;
- null_mem = 0;
- device_initialized = false;
- textures_need_update = true;
- use_preview_kernels = !background;
-
- vector<OpenCLPlatformDevice> usable_devices;
- OpenCLInfo::get_usable_devices(&usable_devices);
- if(usable_devices.size() == 0) {
- opencl_error("OpenCL: no devices found.");
- return;
- }
- assert(info.num < usable_devices.size());
- OpenCLPlatformDevice& platform_device = usable_devices[info.num];
- device_num = info.num;
- cpPlatform = platform_device.platform_id;
- cdDevice = platform_device.device_id;
- platform_name = platform_device.platform_name;
- device_name = platform_device.device_name;
- VLOG(2) << "Creating new Cycles device for OpenCL platform "
- << platform_name << ", device "
- << device_name << ".";
-
- {
- /* try to use cached context */
- thread_scoped_lock cache_locker;
- cxContext = OpenCLCache::get_context(cpPlatform, cdDevice, cache_locker);
-
- if(cxContext == NULL) {
- /* create context properties array to specify platform */
- const cl_context_properties context_props[] = {
- CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform,
- 0, 0
- };
-
- /* create context */
- cxContext = clCreateContext(context_props, 1, &cdDevice,
- context_notify_callback, cdDevice, &ciErr);
-
- if(opencl_error(ciErr)) {
- opencl_error("OpenCL: clCreateContext failed");
- return;
- }
-
- /* cache it */
- OpenCLCache::store_context(cpPlatform, cdDevice, cxContext, cache_locker);
- }
- }
-
- cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr);
- if(opencl_error(ciErr)) {
- opencl_error("OpenCL: Error creating command queue");
- return;
- }
-
- null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr);
- if(opencl_error(ciErr)) {
- opencl_error("OpenCL: Error creating memory buffer for NULL");
- return;
- }
-
- /* Allocate this right away so that texture_info is placed at offset 0 in the device memory buffers */
- texture_info.resize(1);
- memory_manager.alloc("texture_info", texture_info);
-
- device_initialized = true;
-
- split_kernel = new OpenCLSplitKernel(this);
- if (!background) {
- load_preview_kernels();
- }
+ cpPlatform = NULL;
+ cdDevice = NULL;
+ cxContext = NULL;
+ cqCommandQueue = NULL;
+ null_mem = 0;
+ device_initialized = false;
+ textures_need_update = true;
+ use_preview_kernels = !background;
+
+ vector<OpenCLPlatformDevice> usable_devices;
+ OpenCLInfo::get_usable_devices(&usable_devices);
+ if (usable_devices.size() == 0) {
+ opencl_error("OpenCL: no devices found.");
+ return;
+ }
+ assert(info.num < usable_devices.size());
+ OpenCLPlatformDevice &platform_device = usable_devices[info.num];
+ device_num = info.num;
+ cpPlatform = platform_device.platform_id;
+ cdDevice = platform_device.device_id;
+ platform_name = platform_device.platform_name;
+ device_name = platform_device.device_name;
+ VLOG(2) << "Creating new Cycles device for OpenCL platform " << platform_name << ", device "
+ << device_name << ".";
+
+ {
+ /* try to use cached context */
+ thread_scoped_lock cache_locker;
+ cxContext = OpenCLCache::get_context(cpPlatform, cdDevice, cache_locker);
+
+ if (cxContext == NULL) {
+ /* create context properties array to specify platform */
+ const cl_context_properties context_props[] = {
+ CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 0, 0};
+
+ /* create context */
+ cxContext = clCreateContext(
+ context_props, 1, &cdDevice, context_notify_callback, cdDevice, &ciErr);
+
+ if (opencl_error(ciErr)) {
+ opencl_error("OpenCL: clCreateContext failed");
+ return;
+ }
+
+ /* cache it */
+ OpenCLCache::store_context(cpPlatform, cdDevice, cxContext, cache_locker);
+ }
+ }
+
+ cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr);
+ if (opencl_error(ciErr)) {
+ opencl_error("OpenCL: Error creating command queue");
+ return;
+ }
+
+ null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr);
+ if (opencl_error(ciErr)) {
+ opencl_error("OpenCL: Error creating memory buffer for NULL");
+ return;
+ }
+
+ /* Allocate this right away so that texture_info is placed at offset 0 in the device memory buffers */
+ texture_info.resize(1);
+ memory_manager.alloc("texture_info", texture_info);
+
+ device_initialized = true;
+
+ split_kernel = new OpenCLSplitKernel(this);
+ if (!background) {
+ load_preview_kernels();
+ }
}
OpenCLDevice::~OpenCLDevice()
{
- task_pool.stop();
- load_required_kernel_task_pool.stop();
- load_kernel_task_pool.stop();
+ task_pool.stop();
+ load_required_kernel_task_pool.stop();
+ load_kernel_task_pool.stop();
- memory_manager.free();
+ memory_manager.free();
- if(null_mem)
- clReleaseMemObject(CL_MEM_PTR(null_mem));
+ if (null_mem)
+ clReleaseMemObject(CL_MEM_PTR(null_mem));
- ConstMemMap::iterator mt;
- for(mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) {
- delete mt->second;
- }
+ ConstMemMap::iterator mt;
+ for (mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) {
+ delete mt->second;
+ }
- base_program.release();
- bake_program.release();
- displace_program.release();
- background_program.release();
- denoising_program.release();
+ base_program.release();
+ bake_program.release();
+ displace_program.release();
+ background_program.release();
+ denoising_program.release();
- if(cqCommandQueue)
- clReleaseCommandQueue(cqCommandQueue);
- if(cxContext)
- clReleaseContext(cxContext);
+ if (cqCommandQueue)
+ clReleaseCommandQueue(cqCommandQueue);
+ if (cxContext)
+ clReleaseContext(cxContext);
- delete split_kernel;
+ delete split_kernel;
}
void CL_CALLBACK OpenCLDevice::context_notify_callback(const char *err_info,
- const void * /*private_info*/, size_t /*cb*/, void *user_data)
+ const void * /*private_info*/,
+ size_t /*cb*/,
+ void *user_data)
{
- string device_name = OpenCLInfo::get_device_name((cl_device_id)user_data);
- fprintf(stderr, "OpenCL error (%s): %s\n", device_name.c_str(), err_info);
+ string device_name = OpenCLInfo::get_device_name((cl_device_id)user_data);
+ fprintf(stderr, "OpenCL error (%s): %s\n", device_name.c_str(), err_info);
}
bool OpenCLDevice::opencl_version_check()
{
- string error;
- if(!OpenCLInfo::platform_version_check(cpPlatform, &error)) {
- opencl_error(error);
- return false;
- }
- if(!OpenCLInfo::device_version_check(cdDevice, &error)) {
- opencl_error(error);
- return false;
- }
- return true;
+ string error;
+ if (!OpenCLInfo::platform_version_check(cpPlatform, &error)) {
+ opencl_error(error);
+ return false;
+ }
+ if (!OpenCLInfo::device_version_check(cdDevice, &error)) {
+ opencl_error(error);
+ return false;
+ }
+ return true;
}
string OpenCLDevice::device_md5_hash(string kernel_custom_build_options)
{
- MD5Hash md5;
- char version[256], driver[256], name[256], vendor[256];
+ MD5Hash md5;
+ char version[256], driver[256], name[256], vendor[256];
- clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL);
- clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL);
- clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL);
- clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL);
+ clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL);
+ clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL);
+ clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL);
+ clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL);
- md5.append((uint8_t*)vendor, strlen(vendor));
- md5.append((uint8_t*)version, strlen(version));
- md5.append((uint8_t*)name, strlen(name));
- md5.append((uint8_t*)driver, strlen(driver));
+ md5.append((uint8_t *)vendor, strlen(vendor));
+ md5.append((uint8_t *)version, strlen(version));
+ md5.append((uint8_t *)name, strlen(name));
+ md5.append((uint8_t *)driver, strlen(driver));
- string options = kernel_build_options();
- options += kernel_custom_build_options;
- md5.append((uint8_t*)options.c_str(), options.size());
+ string options = kernel_build_options();
+ options += kernel_custom_build_options;
+ md5.append((uint8_t *)options.c_str(), options.size());
- return md5.get_hex();
+ return md5.get_hex();
}
-bool OpenCLDevice::load_kernels(const DeviceRequestedFeatures& requested_features)
+bool OpenCLDevice::load_kernels(const DeviceRequestedFeatures &requested_features)
{
- VLOG(2) << "Loading kernels for platform " << platform_name
- << ", device " << device_name << ".";
- /* Verify if device was initialized. */
- if(!device_initialized) {
- fprintf(stderr, "OpenCL: failed to initialize device.\n");
- return false;
- }
-
- /* Verify we have right opencl version. */
- if(!opencl_version_check())
- return false;
-
- load_required_kernels(requested_features);
-
- vector<OpenCLProgram*> programs;
- kernel_programs.load_kernels(programs, requested_features, false);
-
- if (!requested_features.use_baking && requested_features.use_denoising) {
- denoising_program = OpenCLProgram(this, "denoising", "filter.cl", get_build_options(requested_features, "denoising"));
- denoising_program.add_kernel(ustring("filter_divide_shadow"));
- denoising_program.add_kernel(ustring("filter_get_feature"));
- denoising_program.add_kernel(ustring("filter_write_feature"));
- denoising_program.add_kernel(ustring("filter_detect_outliers"));
- denoising_program.add_kernel(ustring("filter_combine_halves"));
- denoising_program.add_kernel(ustring("filter_construct_transform"));
- denoising_program.add_kernel(ustring("filter_nlm_calc_difference"));
- denoising_program.add_kernel(ustring("filter_nlm_blur"));
- denoising_program.add_kernel(ustring("filter_nlm_calc_weight"));
- denoising_program.add_kernel(ustring("filter_nlm_update_output"));
- denoising_program.add_kernel(ustring("filter_nlm_normalize"));
- denoising_program.add_kernel(ustring("filter_nlm_construct_gramian"));
- denoising_program.add_kernel(ustring("filter_finalize"));
- programs.push_back(&denoising_program);
- }
-
- load_required_kernel_task_pool.wait_work();
-
- /* Parallel compilation of Cycles kernels, this launches multiple
- * processes to workaround OpenCL frameworks serializing the calls
- * internally within a single process. */
- foreach(OpenCLProgram *program, programs) {
- if (!program->load()) {
- load_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
- }
- }
- return true;
+ VLOG(2) << "Loading kernels for platform " << platform_name << ", device " << device_name << ".";
+ /* Verify if device was initialized. */
+ if (!device_initialized) {
+ fprintf(stderr, "OpenCL: failed to initialize device.\n");
+ return false;
+ }
+
+ /* Verify we have right opencl version. */
+ if (!opencl_version_check())
+ return false;
+
+ load_required_kernels(requested_features);
+
+ vector<OpenCLProgram *> programs;
+ kernel_programs.load_kernels(programs, requested_features, false);
+
+ if (!requested_features.use_baking && requested_features.use_denoising) {
+ denoising_program = OpenCLProgram(
+ this, "denoising", "filter.cl", get_build_options(requested_features, "denoising"));
+ denoising_program.add_kernel(ustring("filter_divide_shadow"));
+ denoising_program.add_kernel(ustring("filter_get_feature"));
+ denoising_program.add_kernel(ustring("filter_write_feature"));
+ denoising_program.add_kernel(ustring("filter_detect_outliers"));
+ denoising_program.add_kernel(ustring("filter_combine_halves"));
+ denoising_program.add_kernel(ustring("filter_construct_transform"));
+ denoising_program.add_kernel(ustring("filter_nlm_calc_difference"));
+ denoising_program.add_kernel(ustring("filter_nlm_blur"));
+ denoising_program.add_kernel(ustring("filter_nlm_calc_weight"));
+ denoising_program.add_kernel(ustring("filter_nlm_update_output"));
+ denoising_program.add_kernel(ustring("filter_nlm_normalize"));
+ denoising_program.add_kernel(ustring("filter_nlm_construct_gramian"));
+ denoising_program.add_kernel(ustring("filter_finalize"));
+ programs.push_back(&denoising_program);
+ }
+
+ load_required_kernel_task_pool.wait_work();
+
+ /* Parallel compilation of Cycles kernels, this launches multiple
+ * processes to workaround OpenCL frameworks serializing the calls
+ * internally within a single process. */
+ foreach (OpenCLProgram *program, programs) {
+ if (!program->load()) {
+ load_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
+ }
+ }
+ return true;
}
-void OpenCLDevice::load_required_kernels(const DeviceRequestedFeatures& requested_features)
+void OpenCLDevice::load_required_kernels(const DeviceRequestedFeatures &requested_features)
{
- vector<OpenCLProgram*> programs;
- base_program = OpenCLProgram(this, "base", "kernel_base.cl", get_build_options(requested_features, "base"));
- base_program.add_kernel(ustring("convert_to_byte"));
- base_program.add_kernel(ustring("convert_to_half_float"));
- base_program.add_kernel(ustring("zero_buffer"));
- programs.push_back(&base_program);
-
- if (requested_features.use_true_displacement) {
- displace_program = OpenCLProgram(this, "displace", "kernel_displace.cl", get_build_options(requested_features, "displace"));
- displace_program.add_kernel(ustring("displace"));
- programs.push_back(&displace_program);
- }
-
- if (requested_features.use_background_light) {
- background_program = OpenCLProgram(this, "background", "kernel_background.cl", get_build_options(requested_features, "background"));
- background_program.add_kernel(ustring("background"));
- programs.push_back(&background_program);
- }
-
- if (requested_features.use_baking) {
- bake_program = OpenCLProgram(this, "bake", "kernel_bake.cl", get_build_options(requested_features, "bake"));
- bake_program.add_kernel(ustring("bake"));
- programs.push_back(&bake_program);
- }
-
- foreach(OpenCLProgram *program, programs) {
- if (!program->load()) {
- load_required_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
- }
- }
+ vector<OpenCLProgram *> programs;
+ base_program = OpenCLProgram(
+ this, "base", "kernel_base.cl", get_build_options(requested_features, "base"));
+ base_program.add_kernel(ustring("convert_to_byte"));
+ base_program.add_kernel(ustring("convert_to_half_float"));
+ base_program.add_kernel(ustring("zero_buffer"));
+ programs.push_back(&base_program);
+
+ if (requested_features.use_true_displacement) {
+ displace_program = OpenCLProgram(
+ this, "displace", "kernel_displace.cl", get_build_options(requested_features, "displace"));
+ displace_program.add_kernel(ustring("displace"));
+ programs.push_back(&displace_program);
+ }
+
+ if (requested_features.use_background_light) {
+ background_program = OpenCLProgram(this,
+ "background",
+ "kernel_background.cl",
+ get_build_options(requested_features, "background"));
+ background_program.add_kernel(ustring("background"));
+ programs.push_back(&background_program);
+ }
+
+ if (requested_features.use_baking) {
+ bake_program = OpenCLProgram(
+ this, "bake", "kernel_bake.cl", get_build_options(requested_features, "bake"));
+ bake_program.add_kernel(ustring("bake"));
+ programs.push_back(&bake_program);
+ }
+
+ foreach (OpenCLProgram *program, programs) {
+ if (!program->load()) {
+ load_required_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
+ }
+ }
}
void OpenCLDevice::load_preview_kernels()
{
- DeviceRequestedFeatures no_features;
- vector<OpenCLProgram*> programs;
- preview_programs.load_kernels(programs, no_features, true);
-
- foreach(OpenCLProgram *program, programs) {
- if (!program->load()) {
- load_required_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
- }
- }
+ DeviceRequestedFeatures no_features;
+ vector<OpenCLProgram *> programs;
+ preview_programs.load_kernels(programs, no_features, true);
+
+ foreach (OpenCLProgram *program, programs) {
+ if (!program->load()) {
+ load_required_kernel_task_pool.push(function_bind(&OpenCLProgram::compile, program));
+ }
+ }
}
-bool OpenCLDevice::wait_for_availability(const DeviceRequestedFeatures& requested_features)
+bool OpenCLDevice::wait_for_availability(const DeviceRequestedFeatures &requested_features)
{
- if (background) {
- load_kernel_task_pool.wait_work();
- use_preview_kernels = false;
- }
- else {
- /* We use a device setting to determine to load preview kernels or not
- * Better to check on device level than per kernel as mixing preview and
- * non-preview kernels does not work due to different data types */
- if (use_preview_kernels) {
- use_preview_kernels = !load_kernel_task_pool.finished();
- }
- }
- return split_kernel->load_kernels(requested_features);
+ if (background) {
+ load_kernel_task_pool.wait_work();
+ use_preview_kernels = false;
+ }
+ else {
+ /* We use a device setting to determine to load preview kernels or not
+ * Better to check on device level than per kernel as mixing preview and
+ * non-preview kernels does not work due to different data types */
+ if (use_preview_kernels) {
+ use_preview_kernels = !load_kernel_task_pool.finished();
+ }
+ }
+ return split_kernel->load_kernels(requested_features);
}
-OpenCLDevice::OpenCLSplitPrograms* OpenCLDevice::get_split_programs()
+OpenCLDevice::OpenCLSplitPrograms *OpenCLDevice::get_split_programs()
{
- return use_preview_kernels?&preview_programs:&kernel_programs;
+ return use_preview_kernels ? &preview_programs : &kernel_programs;
}
DeviceKernelStatus OpenCLDevice::get_active_kernel_switch_state()
{
- /* Do not switch kernels for background renderings
- * We do foreground rendering but use the preview kernels
- * Check for the optimized kernels
- *
- * This works also the other way around, where we are using
- * optimized kernels but new ones are being compiled due
- * to other features that are needed */
- if (background) {
- /* The if-statements below would find the same result,
- * But as the `finished` method uses a mutex we added
- * this as an early exit */
- return DEVICE_KERNEL_USING_FEATURE_KERNEL;
- }
-
- bool other_kernels_finished = load_kernel_task_pool.finished();
- if (use_preview_kernels) {
- if (other_kernels_finished) {
- return DEVICE_KERNEL_FEATURE_KERNEL_AVAILABLE;
- }
- else {
- return DEVICE_KERNEL_WAITING_FOR_FEATURE_KERNEL;
- }
- }
- else {
- if (other_kernels_finished) {
- return DEVICE_KERNEL_USING_FEATURE_KERNEL;
- }
- else {
- return DEVICE_KERNEL_FEATURE_KERNEL_INVALID;
- }
- }
+ /* Do not switch kernels for background renderings
+ * We do foreground rendering but use the preview kernels
+ * Check for the optimized kernels
+ *
+ * This works also the other way around, where we are using
+ * optimized kernels but new ones are being compiled due
+ * to other features that are needed */
+ if (background) {
+ /* The if-statements below would find the same result,
+ * But as the `finished` method uses a mutex we added
+ * this as an early exit */
+ return DEVICE_KERNEL_USING_FEATURE_KERNEL;
+ }
+
+ bool other_kernels_finished = load_kernel_task_pool.finished();
+ if (use_preview_kernels) {
+ if (other_kernels_finished) {
+ return DEVICE_KERNEL_FEATURE_KERNEL_AVAILABLE;
+ }
+ else {
+ return DEVICE_KERNEL_WAITING_FOR_FEATURE_KERNEL;
+ }
+ }
+ else {
+ if (other_kernels_finished) {
+ return DEVICE_KERNEL_USING_FEATURE_KERNEL;
+ }
+ else {
+ return DEVICE_KERNEL_FEATURE_KERNEL_INVALID;
+ }
+ }
}
-void OpenCLDevice::mem_alloc(device_memory& mem)
+void OpenCLDevice::mem_alloc(device_memory &mem)
{
- if(mem.name) {
- VLOG(1) << "Buffer allocate: " << mem.name << ", "
- << string_human_readable_number(mem.memory_size()) << " bytes. ("
- << string_human_readable_size(mem.memory_size()) << ")";
- }
-
- size_t size = mem.memory_size();
-
- /* check there is enough memory available for the allocation */
- cl_ulong max_alloc_size = 0;
- clGetDeviceInfo(cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_alloc_size, NULL);
-
- if(DebugFlags().opencl.mem_limit) {
- max_alloc_size = min(max_alloc_size,
- cl_ulong(DebugFlags().opencl.mem_limit - stats.mem_used));
- }
-
- if(size > max_alloc_size) {
- string error = "Scene too complex to fit in available memory.";
- if(mem.name != NULL) {
- error += string_printf(" (allocating buffer %s failed.)", mem.name);
- }
- set_error(error);
-
- return;
- }
-
- cl_mem_flags mem_flag;
- void *mem_ptr = NULL;
-
- if(mem.type == MEM_READ_ONLY || mem.type == MEM_TEXTURE)
- mem_flag = CL_MEM_READ_ONLY;
- else
- mem_flag = CL_MEM_READ_WRITE;
-
- /* Zero-size allocation might be invoked by render, but not really
- * supported by OpenCL. Using NULL as device pointer also doesn't really
- * work for some reason, so for the time being we'll use special case
- * will null_mem buffer.
- */
- if(size != 0) {
- mem.device_pointer = (device_ptr)clCreateBuffer(cxContext,
- mem_flag,
- size,
- mem_ptr,
- &ciErr);
- opencl_assert_err(ciErr, "clCreateBuffer");
- }
- else {
- mem.device_pointer = null_mem;
- }
-
- stats.mem_alloc(size);
- mem.device_size = size;
+ if (mem.name) {
+ VLOG(1) << "Buffer allocate: " << mem.name << ", "
+ << string_human_readable_number(mem.memory_size()) << " bytes. ("
+ << string_human_readable_size(mem.memory_size()) << ")";
+ }
+
+ size_t size = mem.memory_size();
+
+ /* check there is enough memory available for the allocation */
+ cl_ulong max_alloc_size = 0;
+ clGetDeviceInfo(cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_alloc_size, NULL);
+
+ if (DebugFlags().opencl.mem_limit) {
+ max_alloc_size = min(max_alloc_size, cl_ulong(DebugFlags().opencl.mem_limit - stats.mem_used));
+ }
+
+ if (size > max_alloc_size) {
+ string error = "Scene too complex to fit in available memory.";
+ if (mem.name != NULL) {
+ error += string_printf(" (allocating buffer %s failed.)", mem.name);
+ }
+ set_error(error);
+
+ return;
+ }
+
+ cl_mem_flags mem_flag;
+ void *mem_ptr = NULL;
+
+ if (mem.type == MEM_READ_ONLY || mem.type == MEM_TEXTURE)
+ mem_flag = CL_MEM_READ_ONLY;
+ else
+ mem_flag = CL_MEM_READ_WRITE;
+
+ /* Zero-size allocation might be invoked by render, but not really
+ * supported by OpenCL. Using NULL as device pointer also doesn't really
+ * work for some reason, so for the time being we'll use special case
+ * will null_mem buffer.
+ */
+ if (size != 0) {
+ mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, mem_flag, size, mem_ptr, &ciErr);
+ opencl_assert_err(ciErr, "clCreateBuffer");
+ }
+ else {
+ mem.device_pointer = null_mem;
+ }
+
+ stats.mem_alloc(size);
+ mem.device_size = size;
}
-void OpenCLDevice::mem_copy_to(device_memory& mem)
+void OpenCLDevice::mem_copy_to(device_memory &mem)
{
- if(mem.type == MEM_TEXTURE) {
- tex_free(mem);
- tex_alloc(mem);
- }
- else {
- if(!mem.device_pointer) {
- mem_alloc(mem);
- }
-
- /* this is blocking */
- size_t size = mem.memory_size();
- if(size != 0) {
- opencl_assert(clEnqueueWriteBuffer(cqCommandQueue,
- CL_MEM_PTR(mem.device_pointer),
- CL_TRUE,
- 0,
- size,
- mem.host_pointer,
- 0,
- NULL, NULL));
- }
- }
+ if (mem.type == MEM_TEXTURE) {
+ tex_free(mem);
+ tex_alloc(mem);
+ }
+ else {
+ if (!mem.device_pointer) {
+ mem_alloc(mem);
+ }
+
+ /* this is blocking */
+ size_t size = mem.memory_size();
+ if (size != 0) {
+ opencl_assert(clEnqueueWriteBuffer(cqCommandQueue,
+ CL_MEM_PTR(mem.device_pointer),
+ CL_TRUE,
+ 0,
+ size,
+ mem.host_pointer,
+ 0,
+ NULL,
+ NULL));
+ }
+ }
}
-void OpenCLDevice::mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
+void OpenCLDevice::mem_copy_from(device_memory &mem, int y, int w, int h, int elem)
{
- size_t offset = elem*y*w;
- size_t size = elem*w*h;
- assert(size != 0);
- opencl_assert(clEnqueueReadBuffer(cqCommandQueue,
- CL_MEM_PTR(mem.device_pointer),
- CL_TRUE,
- offset,
- size,
- (uchar*)mem.host_pointer + offset,
- 0,
- NULL, NULL));
+ size_t offset = elem * y * w;
+ size_t size = elem * w * h;
+ assert(size != 0);
+ opencl_assert(clEnqueueReadBuffer(cqCommandQueue,
+ CL_MEM_PTR(mem.device_pointer),
+ CL_TRUE,
+ offset,
+ size,
+ (uchar *)mem.host_pointer + offset,
+ 0,
+ NULL,
+ NULL));
}
void OpenCLDevice::mem_zero_kernel(device_ptr mem, size_t size)
{
- base_program.wait_for_availability();
- cl_kernel ckZeroBuffer = base_program(ustring("zero_buffer"));
-
- size_t global_size[] = {1024, 1024};
- size_t num_threads = global_size[0] * global_size[1];
-
- cl_mem d_buffer = CL_MEM_PTR(mem);
- cl_ulong d_offset = 0;
- cl_ulong d_size = 0;
-
- while(d_offset < size) {
- d_size = std::min<cl_ulong>(num_threads*sizeof(float4), size - d_offset);
-
- kernel_set_args(ckZeroBuffer, 0, d_buffer, d_size, d_offset);
-
- ciErr = clEnqueueNDRangeKernel(cqCommandQueue,
- ckZeroBuffer,
- 2,
- NULL,
- global_size,
- NULL,
- 0,
- NULL,
- NULL);
- opencl_assert_err(ciErr, "clEnqueueNDRangeKernel");
-
- d_offset += d_size;
- }
+ base_program.wait_for_availability();
+ cl_kernel ckZeroBuffer = base_program(ustring("zero_buffer"));
+
+ size_t global_size[] = {1024, 1024};
+ size_t num_threads = global_size[0] * global_size[1];
+
+ cl_mem d_buffer = CL_MEM_PTR(mem);
+ cl_ulong d_offset = 0;
+ cl_ulong d_size = 0;
+
+ while (d_offset < size) {
+ d_size = std::min<cl_ulong>(num_threads * sizeof(float4), size - d_offset);
+
+ kernel_set_args(ckZeroBuffer, 0, d_buffer, d_size, d_offset);
+
+ ciErr = clEnqueueNDRangeKernel(
+ cqCommandQueue, ckZeroBuffer, 2, NULL, global_size, NULL, 0, NULL, NULL);
+ opencl_assert_err(ciErr, "clEnqueueNDRangeKernel");
+
+ d_offset += d_size;
+ }
}
-void OpenCLDevice::mem_zero(device_memory& mem)
+void OpenCLDevice::mem_zero(device_memory &mem)
{
- if(!mem.device_pointer) {
- mem_alloc(mem);
- }
-
- if(mem.device_pointer) {
- if(base_program.is_loaded()) {
- mem_zero_kernel(mem.device_pointer, mem.memory_size());
- }
-
- if(mem.host_pointer) {
- memset(mem.host_pointer, 0, mem.memory_size());
- }
-
- if(!base_program.is_loaded()) {
- void* zero = mem.host_pointer;
-
- if(!mem.host_pointer) {
- zero = util_aligned_malloc(mem.memory_size(), 16);
- memset(zero, 0, mem.memory_size());
- }
-
- opencl_assert(clEnqueueWriteBuffer(cqCommandQueue,
- CL_MEM_PTR(mem.device_pointer),
- CL_TRUE,
- 0,
- mem.memory_size(),
- zero,
- 0,
- NULL, NULL));
-
- if(!mem.host_pointer) {
- util_aligned_free(zero);
- }
- }
- }
+ if (!mem.device_pointer) {
+ mem_alloc(mem);
+ }
+
+ if (mem.device_pointer) {
+ if (base_program.is_loaded()) {
+ mem_zero_kernel(mem.device_pointer, mem.memory_size());
+ }
+
+ if (mem.host_pointer) {
+ memset(mem.host_pointer, 0, mem.memory_size());
+ }
+
+ if (!base_program.is_loaded()) {
+ void *zero = mem.host_pointer;
+
+ if (!mem.host_pointer) {
+ zero = util_aligned_malloc(mem.memory_size(), 16);
+ memset(zero, 0, mem.memory_size());
+ }
+
+ opencl_assert(clEnqueueWriteBuffer(cqCommandQueue,
+ CL_MEM_PTR(mem.device_pointer),
+ CL_TRUE,
+ 0,
+ mem.memory_size(),
+ zero,
+ 0,
+ NULL,
+ NULL));
+
+ if (!mem.host_pointer) {
+ util_aligned_free(zero);
+ }
+ }
+ }
}
-void OpenCLDevice::mem_free(device_memory& mem)
+void OpenCLDevice::mem_free(device_memory &mem)
{
- if(mem.type == MEM_TEXTURE) {
- tex_free(mem);
- }
- else {
- if(mem.device_pointer) {
- if(mem.device_pointer != null_mem) {
- opencl_assert(clReleaseMemObject(CL_MEM_PTR(mem.device_pointer)));
- }
- mem.device_pointer = 0;
-
- stats.mem_free(mem.device_size);
- mem.device_size = 0;
- }
- }
+ if (mem.type == MEM_TEXTURE) {
+ tex_free(mem);
+ }
+ else {
+ if (mem.device_pointer) {
+ if (mem.device_pointer != null_mem) {
+ opencl_assert(clReleaseMemObject(CL_MEM_PTR(mem.device_pointer)));
+ }
+ mem.device_pointer = 0;
+
+ stats.mem_free(mem.device_size);
+ mem.device_size = 0;
+ }
+ }
}
int OpenCLDevice::mem_sub_ptr_alignment()
{
- return OpenCLInfo::mem_sub_ptr_alignment(cdDevice);
+ return OpenCLInfo::mem_sub_ptr_alignment(cdDevice);
}
-device_ptr OpenCLDevice::mem_alloc_sub_ptr(device_memory& mem, int offset, int size)
+device_ptr OpenCLDevice::mem_alloc_sub_ptr(device_memory &mem, int offset, int size)
{
- cl_mem_flags mem_flag;
- if(mem.type == MEM_READ_ONLY || mem.type == MEM_TEXTURE)
- mem_flag = CL_MEM_READ_ONLY;
- else
- mem_flag = CL_MEM_READ_WRITE;
-
- cl_buffer_region info;
- info.origin = mem.memory_elements_size(offset);
- info.size = mem.memory_elements_size(size);
-
- device_ptr sub_buf = (device_ptr) clCreateSubBuffer(CL_MEM_PTR(mem.device_pointer),
- mem_flag,
- CL_BUFFER_CREATE_TYPE_REGION,
- &info,
- &ciErr);
- opencl_assert_err(ciErr, "clCreateSubBuffer");
- return sub_buf;
+ cl_mem_flags mem_flag;
+ if (mem.type == MEM_READ_ONLY || mem.type == MEM_TEXTURE)
+ mem_flag = CL_MEM_READ_ONLY;
+ else
+ mem_flag = CL_MEM_READ_WRITE;
+
+ cl_buffer_region info;
+ info.origin = mem.memory_elements_size(offset);
+ info.size = mem.memory_elements_size(size);
+
+ device_ptr sub_buf = (device_ptr)clCreateSubBuffer(
+ CL_MEM_PTR(mem.device_pointer), mem_flag, CL_BUFFER_CREATE_TYPE_REGION, &info, &ciErr);
+ opencl_assert_err(ciErr, "clCreateSubBuffer");
+ return sub_buf;
}
void OpenCLDevice::mem_free_sub_ptr(device_ptr device_pointer)
{
- if(device_pointer && device_pointer != null_mem) {
- opencl_assert(clReleaseMemObject(CL_MEM_PTR(device_pointer)));
- }
+ if (device_pointer && device_pointer != null_mem) {
+ opencl_assert(clReleaseMemObject(CL_MEM_PTR(device_pointer)));
+ }
}
void OpenCLDevice::const_copy_to(const char *name, void *host, size_t size)
{
- ConstMemMap::iterator i = const_mem_map.find(name);
- device_vector<uchar> *data;
-
- if(i == const_mem_map.end()) {
- data = new device_vector<uchar>(this, name, MEM_READ_ONLY);
- data->alloc(size);
- const_mem_map.insert(ConstMemMap::value_type(name, data));
- }
- else {
- data = i->second;
- }
-
- memcpy(data->data(), host, size);
- data->copy_to_device();
+ ConstMemMap::iterator i = const_mem_map.find(name);
+ device_vector<uchar> *data;
+
+ if (i == const_mem_map.end()) {
+ data = new device_vector<uchar>(this, name, MEM_READ_ONLY);
+ data->alloc(size);
+ const_mem_map.insert(ConstMemMap::value_type(name, data));
+ }
+ else {
+ data = i->second;
+ }
+
+ memcpy(data->data(), host, size);
+ data->copy_to_device();
}
-void OpenCLDevice::tex_alloc(device_memory& mem)
+void OpenCLDevice::tex_alloc(device_memory &mem)
{
- VLOG(1) << "Texture allocate: " << mem.name << ", "
- << string_human_readable_number(mem.memory_size()) << " bytes. ("
- << string_human_readable_size(mem.memory_size()) << ")";
-
- memory_manager.alloc(mem.name, mem);
- /* Set the pointer to non-null to keep code that inspects its value from thinking its unallocated. */
- mem.device_pointer = 1;
- textures[mem.name] = &mem;
- textures_need_update = true;
+ VLOG(1) << "Texture allocate: " << mem.name << ", "
+ << string_human_readable_number(mem.memory_size()) << " bytes. ("
+ << string_human_readable_size(mem.memory_size()) << ")";
+
+ memory_manager.alloc(mem.name, mem);
+ /* Set the pointer to non-null to keep code that inspects its value from thinking its unallocated. */
+ mem.device_pointer = 1;
+ textures[mem.name] = &mem;
+ textures_need_update = true;
}
-void OpenCLDevice::tex_free(device_memory& mem)
+void OpenCLDevice::tex_free(device_memory &mem)
{
- if(mem.device_pointer) {
- mem.device_pointer = 0;
-
- if(memory_manager.free(mem)) {
- textures_need_update = true;
- }
-
- foreach(TexturesMap::value_type& value, textures) {
- if(value.second == &mem) {
- textures.erase(value.first);
- break;
- }
- }
- }
+ if (mem.device_pointer) {
+ mem.device_pointer = 0;
+
+ if (memory_manager.free(mem)) {
+ textures_need_update = true;
+ }
+
+ foreach (TexturesMap::value_type &value, textures) {
+ if (value.second == &mem) {
+ textures.erase(value.first);
+ break;
+ }
+ }
+ }
}
size_t OpenCLDevice::global_size_round_up(int group_size, int global_size)
{
- int r = global_size % group_size;
- return global_size + ((r == 0)? 0: group_size - r);
+ int r = global_size % group_size;
+ return global_size + ((r == 0) ? 0 : group_size - r);
}
-void OpenCLDevice::enqueue_kernel(cl_kernel kernel, size_t w, size_t h, bool x_workgroups, size_t max_workgroup_size)
+void OpenCLDevice::enqueue_kernel(
+ cl_kernel kernel, size_t w, size_t h, bool x_workgroups, size_t max_workgroup_size)
{
- size_t workgroup_size, max_work_items[3];
-
- clGetKernelWorkGroupInfo(kernel, cdDevice,
- CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
- clGetDeviceInfo(cdDevice,
- CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, max_work_items, NULL);
-
- if(max_workgroup_size > 0 && workgroup_size > max_workgroup_size) {
- workgroup_size = max_workgroup_size;
- }
-
- /* Try to divide evenly over 2 dimensions. */
- size_t local_size[2];
- if(x_workgroups) {
- local_size[0] = workgroup_size;
- local_size[1] = 1;
- }
- else {
- size_t sqrt_workgroup_size = max((size_t)sqrt((double)workgroup_size), 1);
- local_size[0] = local_size[1] = sqrt_workgroup_size;
- }
-
- /* Some implementations have max size 1 on 2nd dimension. */
- if(local_size[1] > max_work_items[1]) {
- local_size[0] = workgroup_size/max_work_items[1];
- local_size[1] = max_work_items[1];
- }
-
- size_t global_size[2] = {global_size_round_up(local_size[0], w),
- global_size_round_up(local_size[1], h)};
-
- /* Vertical size of 1 is coming from bake/shade kernels where we should
- * not round anything up because otherwise we'll either be doing too
- * much work per pixel (if we don't check global ID on Y axis) or will
- * be checking for global ID to always have Y of 0.
- */
- if(h == 1) {
- global_size[h] = 1;
- }
-
- /* run kernel */
- opencl_assert(clEnqueueNDRangeKernel(cqCommandQueue, kernel, 2, NULL, global_size, NULL, 0, NULL, NULL));
- opencl_assert(clFlush(cqCommandQueue));
+ size_t workgroup_size, max_work_items[3];
+
+ clGetKernelWorkGroupInfo(
+ kernel, cdDevice, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
+ clGetDeviceInfo(
+ cdDevice, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * 3, max_work_items, NULL);
+
+ if (max_workgroup_size > 0 && workgroup_size > max_workgroup_size) {
+ workgroup_size = max_workgroup_size;
+ }
+
+ /* Try to divide evenly over 2 dimensions. */
+ size_t local_size[2];
+ if (x_workgroups) {
+ local_size[0] = workgroup_size;
+ local_size[1] = 1;
+ }
+ else {
+ size_t sqrt_workgroup_size = max((size_t)sqrt((double)workgroup_size), 1);
+ local_size[0] = local_size[1] = sqrt_workgroup_size;
+ }
+
+ /* Some implementations have max size 1 on 2nd dimension. */
+ if (local_size[1] > max_work_items[1]) {
+ local_size[0] = workgroup_size / max_work_items[1];
+ local_size[1] = max_work_items[1];
+ }
+
+ size_t global_size[2] = {global_size_round_up(local_size[0], w),
+ global_size_round_up(local_size[1], h)};
+
+ /* Vertical size of 1 is coming from bake/shade kernels where we should
+ * not round anything up because otherwise we'll either be doing too
+ * much work per pixel (if we don't check global ID on Y axis) or will
+ * be checking for global ID to always have Y of 0.
+ */
+ if (h == 1) {
+ global_size[h] = 1;
+ }
+
+ /* run kernel */
+ opencl_assert(
+ clEnqueueNDRangeKernel(cqCommandQueue, kernel, 2, NULL, global_size, NULL, 0, NULL, NULL));
+ opencl_assert(clFlush(cqCommandQueue));
}
void OpenCLDevice::set_kernel_arg_mem(cl_kernel kernel, cl_uint *narg, const char *name)
{
- cl_mem ptr;
-
- MemMap::iterator i = mem_map.find(name);
- if(i != mem_map.end()) {
- ptr = CL_MEM_PTR(i->second);
- }
- else {
- /* work around NULL not working, even though the spec says otherwise */
- ptr = CL_MEM_PTR(null_mem);
- }
-
- opencl_assert(clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void*)&ptr));
+ cl_mem ptr;
+
+ MemMap::iterator i = mem_map.find(name);
+ if (i != mem_map.end()) {
+ ptr = CL_MEM_PTR(i->second);
+ }
+ else {
+ /* work around NULL not working, even though the spec says otherwise */
+ ptr = CL_MEM_PTR(null_mem);
+ }
+
+ opencl_assert(clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void *)&ptr));
}
void OpenCLDevice::set_kernel_arg_buffers(cl_kernel kernel, cl_uint *narg)
{
- flush_texture_buffers();
+ flush_texture_buffers();
- memory_manager.set_kernel_arg_buffers(kernel, narg);
+ memory_manager.set_kernel_arg_buffers(kernel, narg);
}
void OpenCLDevice::flush_texture_buffers()
{
- if(!textures_need_update) {
- return;
- }
- textures_need_update = false;
-
- /* Setup slots for textures. */
- int num_slots = 0;
-
- vector<texture_slot_t> texture_slots;
-
-#define KERNEL_TEX(type, name) \
- if(textures.find(#name) != textures.end()) { \
- texture_slots.push_back(texture_slot_t(#name, num_slots)); \
- } \
- num_slots++;
-#include "kernel/kernel_textures.h"
-
- int num_data_slots = num_slots;
-
- foreach(TexturesMap::value_type& tex, textures) {
- string name = tex.first;
-
- if(string_startswith(name, "__tex_image")) {
- int pos = name.rfind("_");
- int id = atoi(name.data() + pos + 1);
- texture_slots.push_back(texture_slot_t(name,
- num_data_slots + id));
- num_slots = max(num_slots, num_data_slots + id + 1);
- }
- }
-
- /* Realloc texture descriptors buffer. */
- memory_manager.free(texture_info);
- texture_info.resize(num_slots);
- memory_manager.alloc("texture_info", texture_info);
-
- /* Fill in descriptors */
- foreach(texture_slot_t& slot, texture_slots) {
- TextureInfo& info = texture_info[slot.slot];
-
- MemoryManager::BufferDescriptor desc = memory_manager.get_descriptor(slot.name);
- info.data = desc.offset;
- info.cl_buffer = desc.device_buffer;
-
- if(string_startswith(slot.name, "__tex_image")) {
- device_memory *mem = textures[slot.name];
-
- info.width = mem->data_width;
- info.height = mem->data_height;
- info.depth = mem->data_depth;
-
- info.interpolation = mem->interpolation;
- info.extension = mem->extension;
- }
- }
-
- /* Force write of descriptors. */
- memory_manager.free(texture_info);
- memory_manager.alloc("texture_info", texture_info);
-}
+ if (!textures_need_update) {
+ return;
+ }
+ textures_need_update = false;
+
+ /* Setup slots for textures. */
+ int num_slots = 0;
+
+ vector<texture_slot_t> texture_slots;
+
+# define KERNEL_TEX(type, name) \
+ if (textures.find(#name) != textures.end()) { \
+ texture_slots.push_back(texture_slot_t(#name, num_slots)); \
+ } \
+ num_slots++;
+# include "kernel/kernel_textures.h"
+
+ int num_data_slots = num_slots;
+
+ foreach (TexturesMap::value_type &tex, textures) {
+ string name = tex.first;
+
+ if (string_startswith(name, "__tex_image")) {
+ int pos = name.rfind("_");
+ int id = atoi(name.data() + pos + 1);
+ texture_slots.push_back(texture_slot_t(name, num_data_slots + id));
+ num_slots = max(num_slots, num_data_slots + id + 1);
+ }
+ }
+
+ /* Realloc texture descriptors buffer. */
+ memory_manager.free(texture_info);
+ texture_info.resize(num_slots);
+ memory_manager.alloc("texture_info", texture_info);
+
+ /* Fill in descriptors */
+ foreach (texture_slot_t &slot, texture_slots) {
+ TextureInfo &info = texture_info[slot.slot];
+
+ MemoryManager::BufferDescriptor desc = memory_manager.get_descriptor(slot.name);
+ info.data = desc.offset;
+ info.cl_buffer = desc.device_buffer;
+ if (string_startswith(slot.name, "__tex_image")) {
+ device_memory *mem = textures[slot.name];
+
+ info.width = mem->data_width;
+ info.height = mem->data_height;
+ info.depth = mem->data_depth;
+
+ info.interpolation = mem->interpolation;
+ info.extension = mem->extension;
+ }
+ }
+
+ /* Force write of descriptors. */
+ memory_manager.free(texture_info);
+ memory_manager.alloc("texture_info", texture_info);
+}
void OpenCLDevice::thread_run(DeviceTask *task)
{
- flush_texture_buffers();
-
- if(task->type == DeviceTask::FILM_CONVERT) {
- film_convert(*task, task->buffer, task->rgba_byte, task->rgba_half);
- }
- else if(task->type == DeviceTask::SHADER) {
- shader(*task);
- }
- else if(task->type == DeviceTask::RENDER) {
- RenderTile tile;
- DenoisingTask denoising(this, *task);
-
- /* Allocate buffer for kernel globals */
- device_only_memory<KernelGlobalsDummy> kgbuffer(this, "kernel_globals");
- kgbuffer.alloc_to_device(1);
-
- /* Keep rendering tiles until done. */
- while(task->acquire_tile(this, tile)) {
- if(tile.task == RenderTile::PATH_TRACE) {
- assert(tile.task == RenderTile::PATH_TRACE);
- scoped_timer timer(&tile.buffers->render_time);
-
- split_kernel->path_trace(task,
- tile,
- kgbuffer,
- *const_mem_map["__data"]);
-
- /* Complete kernel execution before release tile. */
- /* This helps in multi-device render;
- * The device that reaches the critical-section function
- * release_tile waits (stalling other devices from entering
- * release_tile) for all kernels to complete. If device1 (a
- * slow-render device) reaches release_tile first then it would
- * stall device2 (a fast-render device) from proceeding to render
- * next tile.
- */
- clFinish(cqCommandQueue);
- }
- else if(tile.task == RenderTile::DENOISE) {
- tile.sample = tile.start_sample + tile.num_samples;
- denoise(tile, denoising);
- task->update_progress(&tile, tile.w*tile.h);
- }
-
- task->release_tile(tile);
- }
-
- kgbuffer.free();
- }
+ flush_texture_buffers();
+
+ if (task->type == DeviceTask::FILM_CONVERT) {
+ film_convert(*task, task->buffer, task->rgba_byte, task->rgba_half);
+ }
+ else if (task->type == DeviceTask::SHADER) {
+ shader(*task);
+ }
+ else if (task->type == DeviceTask::RENDER) {
+ RenderTile tile;
+ DenoisingTask denoising(this, *task);
+
+ /* Allocate buffer for kernel globals */
+ device_only_memory<KernelGlobalsDummy> kgbuffer(this, "kernel_globals");
+ kgbuffer.alloc_to_device(1);
+
+ /* Keep rendering tiles until done. */
+ while (task->acquire_tile(this, tile)) {
+ if (tile.task == RenderTile::PATH_TRACE) {
+ assert(tile.task == RenderTile::PATH_TRACE);
+ scoped_timer timer(&tile.buffers->render_time);
+
+ split_kernel->path_trace(task, tile, kgbuffer, *const_mem_map["__data"]);
+
+ /* Complete kernel execution before release tile. */
+ /* This helps in multi-device render;
+ * The device that reaches the critical-section function
+ * release_tile waits (stalling other devices from entering
+ * release_tile) for all kernels to complete. If device1 (a
+ * slow-render device) reaches release_tile first then it would
+ * stall device2 (a fast-render device) from proceeding to render
+ * next tile.
+ */
+ clFinish(cqCommandQueue);
+ }
+ else if (tile.task == RenderTile::DENOISE) {
+ tile.sample = tile.start_sample + tile.num_samples;
+ denoise(tile, denoising);
+ task->update_progress(&tile, tile.w * tile.h);
+ }
+
+ task->release_tile(tile);
+ }
+
+ kgbuffer.free();
+ }
}
-void OpenCLDevice::film_convert(DeviceTask& task, device_ptr buffer, device_ptr rgba_byte, device_ptr rgba_half)
+void OpenCLDevice::film_convert(DeviceTask &task,
+ device_ptr buffer,
+ device_ptr rgba_byte,
+ device_ptr rgba_half)
{
- /* cast arguments to cl types */
- cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
- cl_mem d_rgba = (rgba_byte)? CL_MEM_PTR(rgba_byte): CL_MEM_PTR(rgba_half);
- cl_mem d_buffer = CL_MEM_PTR(buffer);
- cl_int d_x = task.x;
- cl_int d_y = task.y;
- cl_int d_w = task.w;
- cl_int d_h = task.h;
- cl_float d_sample_scale = 1.0f/(task.sample + 1);
- cl_int d_offset = task.offset;
- cl_int d_stride = task.stride;
-
-
- cl_kernel ckFilmConvertKernel = (rgba_byte)? base_program(ustring("convert_to_byte")): base_program(ustring("convert_to_half_float"));
-
- cl_uint start_arg_index =
- kernel_set_args(ckFilmConvertKernel,
- 0,
- d_data,
- d_rgba,
- d_buffer);
-
- set_kernel_arg_buffers(ckFilmConvertKernel, &start_arg_index);
-
- start_arg_index += kernel_set_args(ckFilmConvertKernel,
- start_arg_index,
- d_sample_scale,
- d_x,
- d_y,
- d_w,
- d_h,
- d_offset,
- d_stride);
-
- enqueue_kernel(ckFilmConvertKernel, d_w, d_h);
+ /* cast arguments to cl types */
+ cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
+ cl_mem d_rgba = (rgba_byte) ? CL_MEM_PTR(rgba_byte) : CL_MEM_PTR(rgba_half);
+ cl_mem d_buffer = CL_MEM_PTR(buffer);
+ cl_int d_x = task.x;
+ cl_int d_y = task.y;
+ cl_int d_w = task.w;
+ cl_int d_h = task.h;
+ cl_float d_sample_scale = 1.0f / (task.sample + 1);
+ cl_int d_offset = task.offset;
+ cl_int d_stride = task.stride;
+
+ cl_kernel ckFilmConvertKernel = (rgba_byte) ? base_program(ustring("convert_to_byte")) :
+ base_program(ustring("convert_to_half_float"));
+
+ cl_uint start_arg_index = kernel_set_args(ckFilmConvertKernel, 0, d_data, d_rgba, d_buffer);
+
+ set_kernel_arg_buffers(ckFilmConvertKernel, &start_arg_index);
+
+ start_arg_index += kernel_set_args(ckFilmConvertKernel,
+ start_arg_index,
+ d_sample_scale,
+ d_x,
+ d_y,
+ d_w,
+ d_h,
+ d_offset,
+ d_stride);
+
+ enqueue_kernel(ckFilmConvertKernel, d_w, d_h);
}
bool OpenCLDevice::denoising_non_local_means(device_ptr image_ptr,
@@ -1419,123 +1406,119 @@ bool OpenCLDevice::denoising_non_local_means(device_ptr image_ptr,
device_ptr out_ptr,
DenoisingTask *task)
{
- int stride = task->buffer.stride;
- int w = task->buffer.width;
- int h = task->buffer.h;
- int r = task->nlm_state.r;
- int f = task->nlm_state.f;
- float a = task->nlm_state.a;
- float k_2 = task->nlm_state.k_2;
-
- int pass_stride = task->buffer.pass_stride;
- int num_shifts = (2*r+1)*(2*r+1);
- int channel_offset = task->nlm_state.is_color? task->buffer.pass_stride : 0;
-
- device_sub_ptr difference(task->buffer.temporary_mem, 0, pass_stride*num_shifts);
- device_sub_ptr blurDifference(task->buffer.temporary_mem, pass_stride*num_shifts, pass_stride*num_shifts);
- device_sub_ptr weightAccum(task->buffer.temporary_mem, 2*pass_stride*num_shifts, pass_stride);
- cl_mem weightAccum_mem = CL_MEM_PTR(*weightAccum);
- cl_mem difference_mem = CL_MEM_PTR(*difference);
- cl_mem blurDifference_mem = CL_MEM_PTR(*blurDifference);
-
- cl_mem image_mem = CL_MEM_PTR(image_ptr);
- cl_mem guide_mem = CL_MEM_PTR(guide_ptr);
- cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
- cl_mem out_mem = CL_MEM_PTR(out_ptr);
- cl_mem scale_mem = NULL;
-
- mem_zero_kernel(*weightAccum, sizeof(float)*pass_stride);
- mem_zero_kernel(out_ptr, sizeof(float)*pass_stride);
-
- cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
- cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
- cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
- cl_kernel ckNLMUpdateOutput = denoising_program(ustring("filter_nlm_update_output"));
- cl_kernel ckNLMNormalize = denoising_program(ustring("filter_nlm_normalize"));
-
- kernel_set_args(ckNLMCalcDifference, 0,
- guide_mem,
- variance_mem,
- scale_mem,
- difference_mem,
- w, h, stride,
- pass_stride,
- r, channel_offset,
- 0, a, k_2);
- kernel_set_args(ckNLMBlur, 0,
- difference_mem,
- blurDifference_mem,
- w, h, stride,
- pass_stride,
- r, f);
- kernel_set_args(ckNLMCalcWeight, 0,
- blurDifference_mem,
- difference_mem,
- w, h, stride,
- pass_stride,
- r, f);
- kernel_set_args(ckNLMUpdateOutput, 0,
- blurDifference_mem,
- image_mem,
- out_mem,
- weightAccum_mem,
- w, h, stride,
- pass_stride,
- channel_offset,
- r, f);
-
- enqueue_kernel(ckNLMCalcDifference, w*h, num_shifts, true);
- enqueue_kernel(ckNLMBlur, w*h, num_shifts, true);
- enqueue_kernel(ckNLMCalcWeight, w*h, num_shifts, true);
- enqueue_kernel(ckNLMBlur, w*h, num_shifts, true);
- enqueue_kernel(ckNLMUpdateOutput, w*h, num_shifts, true);
-
- kernel_set_args(ckNLMNormalize, 0,
- out_mem, weightAccum_mem, w, h, stride);
- enqueue_kernel(ckNLMNormalize, w, h);
-
- return true;
+ int stride = task->buffer.stride;
+ int w = task->buffer.width;
+ int h = task->buffer.h;
+ int r = task->nlm_state.r;
+ int f = task->nlm_state.f;
+ float a = task->nlm_state.a;
+ float k_2 = task->nlm_state.k_2;
+
+ int pass_stride = task->buffer.pass_stride;
+ int num_shifts = (2 * r + 1) * (2 * r + 1);
+ int channel_offset = task->nlm_state.is_color ? task->buffer.pass_stride : 0;
+
+ device_sub_ptr difference(task->buffer.temporary_mem, 0, pass_stride * num_shifts);
+ device_sub_ptr blurDifference(
+ task->buffer.temporary_mem, pass_stride * num_shifts, pass_stride * num_shifts);
+ device_sub_ptr weightAccum(
+ task->buffer.temporary_mem, 2 * pass_stride * num_shifts, pass_stride);
+ cl_mem weightAccum_mem = CL_MEM_PTR(*weightAccum);
+ cl_mem difference_mem = CL_MEM_PTR(*difference);
+ cl_mem blurDifference_mem = CL_MEM_PTR(*blurDifference);
+
+ cl_mem image_mem = CL_MEM_PTR(image_ptr);
+ cl_mem guide_mem = CL_MEM_PTR(guide_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+ cl_mem out_mem = CL_MEM_PTR(out_ptr);
+ cl_mem scale_mem = NULL;
+
+ mem_zero_kernel(*weightAccum, sizeof(float) * pass_stride);
+ mem_zero_kernel(out_ptr, sizeof(float) * pass_stride);
+
+ cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
+ cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
+ cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
+ cl_kernel ckNLMUpdateOutput = denoising_program(ustring("filter_nlm_update_output"));
+ cl_kernel ckNLMNormalize = denoising_program(ustring("filter_nlm_normalize"));
+
+ kernel_set_args(ckNLMCalcDifference,
+ 0,
+ guide_mem,
+ variance_mem,
+ scale_mem,
+ difference_mem,
+ w,
+ h,
+ stride,
+ pass_stride,
+ r,
+ channel_offset,
+ 0,
+ a,
+ k_2);
+ kernel_set_args(
+ ckNLMBlur, 0, difference_mem, blurDifference_mem, w, h, stride, pass_stride, r, f);
+ kernel_set_args(
+ ckNLMCalcWeight, 0, blurDifference_mem, difference_mem, w, h, stride, pass_stride, r, f);
+ kernel_set_args(ckNLMUpdateOutput,
+ 0,
+ blurDifference_mem,
+ image_mem,
+ out_mem,
+ weightAccum_mem,
+ w,
+ h,
+ stride,
+ pass_stride,
+ channel_offset,
+ r,
+ f);
+
+ enqueue_kernel(ckNLMCalcDifference, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMBlur, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMCalcWeight, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMBlur, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMUpdateOutput, w * h, num_shifts, true);
+
+ kernel_set_args(ckNLMNormalize, 0, out_mem, weightAccum_mem, w, h, stride);
+ enqueue_kernel(ckNLMNormalize, w, h);
+
+ return true;
}
bool OpenCLDevice::denoising_construct_transform(DenoisingTask *task)
{
- cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
- cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
- cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
- cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
-
- char use_time = task->buffer.use_time? 1 : 0;
-
- cl_kernel ckFilterConstructTransform = denoising_program(ustring("filter_construct_transform"));
-
- int arg_ofs = kernel_set_args(ckFilterConstructTransform, 0,
- buffer_mem,
- tile_info_mem);
- cl_mem buffers[9];
- for(int i = 0; i < 9; i++) {
- buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
- arg_ofs += kernel_set_args(ckFilterConstructTransform,
- arg_ofs,
- buffers[i]);
- }
- kernel_set_args(ckFilterConstructTransform,
- arg_ofs,
- transform_mem,
- rank_mem,
- task->filter_area,
- task->rect,
- task->buffer.pass_stride,
- task->buffer.frame_stride,
- use_time,
- task->radius,
- task->pca_threshold);
-
- enqueue_kernel(ckFilterConstructTransform,
- task->storage.w,
- task->storage.h,
- 256);
-
- return true;
+ cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
+ cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
+ cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
+ cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
+
+ char use_time = task->buffer.use_time ? 1 : 0;
+
+ cl_kernel ckFilterConstructTransform = denoising_program(ustring("filter_construct_transform"));
+
+ int arg_ofs = kernel_set_args(ckFilterConstructTransform, 0, buffer_mem, tile_info_mem);
+ cl_mem buffers[9];
+ for (int i = 0; i < 9; i++) {
+ buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
+ arg_ofs += kernel_set_args(ckFilterConstructTransform, arg_ofs, buffers[i]);
+ }
+ kernel_set_args(ckFilterConstructTransform,
+ arg_ofs,
+ transform_mem,
+ rank_mem,
+ task->filter_area,
+ task->rect,
+ task->buffer.pass_stride,
+ task->buffer.frame_stride,
+ use_time,
+ task->radius,
+ task->pca_threshold);
+
+ enqueue_kernel(ckFilterConstructTransform, task->storage.w, task->storage.h, 256);
+
+ return true;
}
bool OpenCLDevice::denoising_accumulate(device_ptr color_ptr,
@@ -1544,136 +1527,130 @@ bool OpenCLDevice::denoising_accumulate(device_ptr color_ptr,
int frame,
DenoisingTask *task)
{
- cl_mem color_mem = CL_MEM_PTR(color_ptr);
- cl_mem color_variance_mem = CL_MEM_PTR(color_variance_ptr);
- cl_mem scale_mem = CL_MEM_PTR(scale_ptr);
-
- cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
- cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
- cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
- cl_mem XtWX_mem = CL_MEM_PTR(task->storage.XtWX.device_pointer);
- cl_mem XtWY_mem = CL_MEM_PTR(task->storage.XtWY.device_pointer);
-
- cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
- cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
- cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
- cl_kernel ckNLMConstructGramian = denoising_program(ustring("filter_nlm_construct_gramian"));
-
- int w = task->reconstruction_state.source_w;
- int h = task->reconstruction_state.source_h;
- int stride = task->buffer.stride;
- int frame_offset = frame * task->buffer.frame_stride;
- int t = task->tile_info->frames[frame];
- char use_time = task->buffer.use_time? 1 : 0;
-
- int r = task->radius;
- int pass_stride = task->buffer.pass_stride;
- int num_shifts = (2*r+1)*(2*r+1);
-
- device_sub_ptr difference(task->buffer.temporary_mem, 0, pass_stride*num_shifts);
- device_sub_ptr blurDifference(task->buffer.temporary_mem, pass_stride*num_shifts, pass_stride*num_shifts);
- cl_mem difference_mem = CL_MEM_PTR(*difference);
- cl_mem blurDifference_mem = CL_MEM_PTR(*blurDifference);
-
- kernel_set_args(ckNLMCalcDifference, 0,
- color_mem,
- color_variance_mem,
- scale_mem,
- difference_mem,
- w, h, stride,
- pass_stride,
- r,
- pass_stride,
- frame_offset,
- 1.0f, task->nlm_k_2);
- kernel_set_args(ckNLMBlur, 0,
- difference_mem,
- blurDifference_mem,
- w, h, stride,
- pass_stride,
- r, 4);
- kernel_set_args(ckNLMCalcWeight, 0,
- blurDifference_mem,
- difference_mem,
- w, h, stride,
- pass_stride,
- r, 4);
- kernel_set_args(ckNLMConstructGramian, 0,
- t,
- blurDifference_mem,
- buffer_mem,
- transform_mem,
- rank_mem,
- XtWX_mem,
- XtWY_mem,
- task->reconstruction_state.filter_window,
- w, h, stride,
- pass_stride,
- r, 4,
- frame_offset,
- use_time);
-
- enqueue_kernel(ckNLMCalcDifference, w*h, num_shifts, true);
- enqueue_kernel(ckNLMBlur, w*h, num_shifts, true);
- enqueue_kernel(ckNLMCalcWeight, w*h, num_shifts, true);
- enqueue_kernel(ckNLMBlur, w*h, num_shifts, true);
- enqueue_kernel(ckNLMConstructGramian, w*h, num_shifts, true, 256);
-
- return true;
+ cl_mem color_mem = CL_MEM_PTR(color_ptr);
+ cl_mem color_variance_mem = CL_MEM_PTR(color_variance_ptr);
+ cl_mem scale_mem = CL_MEM_PTR(scale_ptr);
+
+ cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
+ cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
+ cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
+ cl_mem XtWX_mem = CL_MEM_PTR(task->storage.XtWX.device_pointer);
+ cl_mem XtWY_mem = CL_MEM_PTR(task->storage.XtWY.device_pointer);
+
+ cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
+ cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
+ cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
+ cl_kernel ckNLMConstructGramian = denoising_program(ustring("filter_nlm_construct_gramian"));
+
+ int w = task->reconstruction_state.source_w;
+ int h = task->reconstruction_state.source_h;
+ int stride = task->buffer.stride;
+ int frame_offset = frame * task->buffer.frame_stride;
+ int t = task->tile_info->frames[frame];
+ char use_time = task->buffer.use_time ? 1 : 0;
+
+ int r = task->radius;
+ int pass_stride = task->buffer.pass_stride;
+ int num_shifts = (2 * r + 1) * (2 * r + 1);
+
+ device_sub_ptr difference(task->buffer.temporary_mem, 0, pass_stride * num_shifts);
+ device_sub_ptr blurDifference(
+ task->buffer.temporary_mem, pass_stride * num_shifts, pass_stride * num_shifts);
+ cl_mem difference_mem = CL_MEM_PTR(*difference);
+ cl_mem blurDifference_mem = CL_MEM_PTR(*blurDifference);
+
+ kernel_set_args(ckNLMCalcDifference,
+ 0,
+ color_mem,
+ color_variance_mem,
+ scale_mem,
+ difference_mem,
+ w,
+ h,
+ stride,
+ pass_stride,
+ r,
+ pass_stride,
+ frame_offset,
+ 1.0f,
+ task->nlm_k_2);
+ kernel_set_args(
+ ckNLMBlur, 0, difference_mem, blurDifference_mem, w, h, stride, pass_stride, r, 4);
+ kernel_set_args(
+ ckNLMCalcWeight, 0, blurDifference_mem, difference_mem, w, h, stride, pass_stride, r, 4);
+ kernel_set_args(ckNLMConstructGramian,
+ 0,
+ t,
+ blurDifference_mem,
+ buffer_mem,
+ transform_mem,
+ rank_mem,
+ XtWX_mem,
+ XtWY_mem,
+ task->reconstruction_state.filter_window,
+ w,
+ h,
+ stride,
+ pass_stride,
+ r,
+ 4,
+ frame_offset,
+ use_time);
+
+ enqueue_kernel(ckNLMCalcDifference, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMBlur, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMCalcWeight, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMBlur, w * h, num_shifts, true);
+ enqueue_kernel(ckNLMConstructGramian, w * h, num_shifts, true, 256);
+
+ return true;
}
-bool OpenCLDevice::denoising_solve(device_ptr output_ptr,
- DenoisingTask *task)
+bool OpenCLDevice::denoising_solve(device_ptr output_ptr, DenoisingTask *task)
{
- cl_kernel ckFinalize = denoising_program(ustring("filter_finalize"));
-
- cl_mem output_mem = CL_MEM_PTR(output_ptr);
- cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
- cl_mem XtWX_mem = CL_MEM_PTR(task->storage.XtWX.device_pointer);
- cl_mem XtWY_mem = CL_MEM_PTR(task->storage.XtWY.device_pointer);
-
- int w = task->reconstruction_state.source_w;
- int h = task->reconstruction_state.source_h;
-
- kernel_set_args(ckFinalize, 0,
- output_mem,
- rank_mem,
- XtWX_mem,
- XtWY_mem,
- task->filter_area,
- task->reconstruction_state.buffer_params,
- task->render_buffer.samples);
- enqueue_kernel(ckFinalize, w, h);
-
- return true;
+ cl_kernel ckFinalize = denoising_program(ustring("filter_finalize"));
+
+ cl_mem output_mem = CL_MEM_PTR(output_ptr);
+ cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
+ cl_mem XtWX_mem = CL_MEM_PTR(task->storage.XtWX.device_pointer);
+ cl_mem XtWY_mem = CL_MEM_PTR(task->storage.XtWY.device_pointer);
+
+ int w = task->reconstruction_state.source_w;
+ int h = task->reconstruction_state.source_h;
+
+ kernel_set_args(ckFinalize,
+ 0,
+ output_mem,
+ rank_mem,
+ XtWX_mem,
+ XtWY_mem,
+ task->filter_area,
+ task->reconstruction_state.buffer_params,
+ task->render_buffer.samples);
+ enqueue_kernel(ckFinalize, w, h);
+
+ return true;
}
bool OpenCLDevice::denoising_combine_halves(device_ptr a_ptr,
device_ptr b_ptr,
device_ptr mean_ptr,
device_ptr variance_ptr,
- int r, int4 rect,
+ int r,
+ int4 rect,
DenoisingTask *task)
{
- cl_mem a_mem = CL_MEM_PTR(a_ptr);
- cl_mem b_mem = CL_MEM_PTR(b_ptr);
- cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
- cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
-
- cl_kernel ckFilterCombineHalves = denoising_program(ustring("filter_combine_halves"));
-
- kernel_set_args(ckFilterCombineHalves, 0,
- mean_mem,
- variance_mem,
- a_mem,
- b_mem,
- rect,
- r);
- enqueue_kernel(ckFilterCombineHalves,
- task->rect.z-task->rect.x,
- task->rect.w-task->rect.y);
-
- return true;
+ cl_mem a_mem = CL_MEM_PTR(a_ptr);
+ cl_mem b_mem = CL_MEM_PTR(b_ptr);
+ cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+
+ cl_kernel ckFilterCombineHalves = denoising_program(ustring("filter_combine_halves"));
+
+ kernel_set_args(ckFilterCombineHalves, 0, mean_mem, variance_mem, a_mem, b_mem, rect, r);
+ enqueue_kernel(ckFilterCombineHalves, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
+
+ return true;
}
bool OpenCLDevice::denoising_divide_shadow(device_ptr a_ptr,
@@ -1683,39 +1660,36 @@ bool OpenCLDevice::denoising_divide_shadow(device_ptr a_ptr,
device_ptr buffer_variance_ptr,
DenoisingTask *task)
{
- cl_mem a_mem = CL_MEM_PTR(a_ptr);
- cl_mem b_mem = CL_MEM_PTR(b_ptr);
- cl_mem sample_variance_mem = CL_MEM_PTR(sample_variance_ptr);
- cl_mem sv_variance_mem = CL_MEM_PTR(sv_variance_ptr);
- cl_mem buffer_variance_mem = CL_MEM_PTR(buffer_variance_ptr);
-
- cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
-
- cl_kernel ckFilterDivideShadow = denoising_program(ustring("filter_divide_shadow"));
-
- int arg_ofs = kernel_set_args(ckFilterDivideShadow, 0,
- task->render_buffer.samples,
- tile_info_mem);
- cl_mem buffers[9];
- for(int i = 0; i < 9; i++) {
- buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
- arg_ofs += kernel_set_args(ckFilterDivideShadow, arg_ofs,
- buffers[i]);
- }
- kernel_set_args(ckFilterDivideShadow, arg_ofs,
- a_mem,
- b_mem,
- sample_variance_mem,
- sv_variance_mem,
- buffer_variance_mem,
- task->rect,
- task->render_buffer.pass_stride,
- task->render_buffer.offset);
- enqueue_kernel(ckFilterDivideShadow,
- task->rect.z-task->rect.x,
- task->rect.w-task->rect.y);
-
- return true;
+ cl_mem a_mem = CL_MEM_PTR(a_ptr);
+ cl_mem b_mem = CL_MEM_PTR(b_ptr);
+ cl_mem sample_variance_mem = CL_MEM_PTR(sample_variance_ptr);
+ cl_mem sv_variance_mem = CL_MEM_PTR(sv_variance_ptr);
+ cl_mem buffer_variance_mem = CL_MEM_PTR(buffer_variance_ptr);
+
+ cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
+
+ cl_kernel ckFilterDivideShadow = denoising_program(ustring("filter_divide_shadow"));
+
+ int arg_ofs = kernel_set_args(
+ ckFilterDivideShadow, 0, task->render_buffer.samples, tile_info_mem);
+ cl_mem buffers[9];
+ for (int i = 0; i < 9; i++) {
+ buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
+ arg_ofs += kernel_set_args(ckFilterDivideShadow, arg_ofs, buffers[i]);
+ }
+ kernel_set_args(ckFilterDivideShadow,
+ arg_ofs,
+ a_mem,
+ b_mem,
+ sample_variance_mem,
+ sv_variance_mem,
+ buffer_variance_mem,
+ task->rect,
+ task->render_buffer.pass_stride,
+ task->render_buffer.offset);
+ enqueue_kernel(ckFilterDivideShadow, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
+
+ return true;
}
bool OpenCLDevice::denoising_get_feature(int mean_offset,
@@ -1725,36 +1699,32 @@ bool OpenCLDevice::denoising_get_feature(int mean_offset,
float scale,
DenoisingTask *task)
{
- cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
- cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
-
- cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
-
- cl_kernel ckFilterGetFeature = denoising_program(ustring("filter_get_feature"));
-
- int arg_ofs = kernel_set_args(ckFilterGetFeature, 0,
- task->render_buffer.samples,
- tile_info_mem);
- cl_mem buffers[9];
- for(int i = 0; i < 9; i++) {
- buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
- arg_ofs += kernel_set_args(ckFilterGetFeature, arg_ofs,
- buffers[i]);
- }
- kernel_set_args(ckFilterGetFeature, arg_ofs,
- mean_offset,
- variance_offset,
- mean_mem,
- variance_mem,
- scale,
- task->rect,
- task->render_buffer.pass_stride,
- task->render_buffer.offset);
- enqueue_kernel(ckFilterGetFeature,
- task->rect.z-task->rect.x,
- task->rect.w-task->rect.y);
-
- return true;
+ cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+
+ cl_mem tile_info_mem = CL_MEM_PTR(task->tile_info_mem.device_pointer);
+
+ cl_kernel ckFilterGetFeature = denoising_program(ustring("filter_get_feature"));
+
+ int arg_ofs = kernel_set_args(ckFilterGetFeature, 0, task->render_buffer.samples, tile_info_mem);
+ cl_mem buffers[9];
+ for (int i = 0; i < 9; i++) {
+ buffers[i] = CL_MEM_PTR(task->tile_info->buffers[i]);
+ arg_ofs += kernel_set_args(ckFilterGetFeature, arg_ofs, buffers[i]);
+ }
+ kernel_set_args(ckFilterGetFeature,
+ arg_ofs,
+ mean_offset,
+ variance_offset,
+ mean_mem,
+ variance_mem,
+ scale,
+ task->rect,
+ task->render_buffer.pass_stride,
+ task->render_buffer.offset);
+ enqueue_kernel(ckFilterGetFeature, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
+
+ return true;
}
bool OpenCLDevice::denoising_write_feature(int out_offset,
@@ -1762,24 +1732,23 @@ bool OpenCLDevice::denoising_write_feature(int out_offset,
device_ptr buffer_ptr,
DenoisingTask *task)
{
- cl_mem from_mem = CL_MEM_PTR(from_ptr);
- cl_mem buffer_mem = CL_MEM_PTR(buffer_ptr);
-
- cl_kernel ckFilterWriteFeature = denoising_program(ustring("filter_write_feature"));
-
- kernel_set_args(ckFilterWriteFeature, 0,
- task->render_buffer.samples,
- task->reconstruction_state.buffer_params,
- task->filter_area,
- from_mem,
- buffer_mem,
- out_offset,
- task->rect);
- enqueue_kernel(ckFilterWriteFeature,
- task->filter_area.z,
- task->filter_area.w);
-
- return true;
+ cl_mem from_mem = CL_MEM_PTR(from_ptr);
+ cl_mem buffer_mem = CL_MEM_PTR(buffer_ptr);
+
+ cl_kernel ckFilterWriteFeature = denoising_program(ustring("filter_write_feature"));
+
+ kernel_set_args(ckFilterWriteFeature,
+ 0,
+ task->render_buffer.samples,
+ task->reconstruction_state.buffer_params,
+ task->filter_area,
+ from_mem,
+ buffer_mem,
+ out_offset,
+ task->rect);
+ enqueue_kernel(ckFilterWriteFeature, task->filter_area.z, task->filter_area.w);
+
+ return true;
}
bool OpenCLDevice::denoising_detect_outliers(device_ptr image_ptr,
@@ -1788,155 +1757,155 @@ bool OpenCLDevice::denoising_detect_outliers(device_ptr image_ptr,
device_ptr output_ptr,
DenoisingTask *task)
{
- cl_mem image_mem = CL_MEM_PTR(image_ptr);
- cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
- cl_mem depth_mem = CL_MEM_PTR(depth_ptr);
- cl_mem output_mem = CL_MEM_PTR(output_ptr);
-
- cl_kernel ckFilterDetectOutliers = denoising_program(ustring("filter_detect_outliers"));
-
- kernel_set_args(ckFilterDetectOutliers, 0,
- image_mem,
- variance_mem,
- depth_mem,
- output_mem,
- task->rect,
- task->buffer.pass_stride);
- enqueue_kernel(ckFilterDetectOutliers,
- task->rect.z-task->rect.x,
- task->rect.w-task->rect.y);
-
- return true;
+ cl_mem image_mem = CL_MEM_PTR(image_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+ cl_mem depth_mem = CL_MEM_PTR(depth_ptr);
+ cl_mem output_mem = CL_MEM_PTR(output_ptr);
+
+ cl_kernel ckFilterDetectOutliers = denoising_program(ustring("filter_detect_outliers"));
+
+ kernel_set_args(ckFilterDetectOutliers,
+ 0,
+ image_mem,
+ variance_mem,
+ depth_mem,
+ output_mem,
+ task->rect,
+ task->buffer.pass_stride);
+ enqueue_kernel(ckFilterDetectOutliers, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
+
+ return true;
}
-void OpenCLDevice::denoise(RenderTile &rtile, DenoisingTask& denoising)
+void OpenCLDevice::denoise(RenderTile &rtile, DenoisingTask &denoising)
{
- denoising.functions.construct_transform = function_bind(&OpenCLDevice::denoising_construct_transform, this, &denoising);
- denoising.functions.accumulate = function_bind(&OpenCLDevice::denoising_accumulate, this, _1, _2, _3, _4, &denoising);
- denoising.functions.solve = function_bind(&OpenCLDevice::denoising_solve, this, _1, &denoising);
- denoising.functions.divide_shadow = function_bind(&OpenCLDevice::denoising_divide_shadow, this, _1, _2, _3, _4, _5, &denoising);
- denoising.functions.non_local_means = function_bind(&OpenCLDevice::denoising_non_local_means, this, _1, _2, _3, _4, &denoising);
- denoising.functions.combine_halves = function_bind(&OpenCLDevice::denoising_combine_halves, this, _1, _2, _3, _4, _5, _6, &denoising);
- denoising.functions.get_feature = function_bind(&OpenCLDevice::denoising_get_feature, this, _1, _2, _3, _4, _5, &denoising);
- denoising.functions.write_feature = function_bind(&OpenCLDevice::denoising_write_feature, this, _1, _2, _3, &denoising);
- denoising.functions.detect_outliers = function_bind(&OpenCLDevice::denoising_detect_outliers, this, _1, _2, _3, _4, &denoising);
-
- denoising.filter_area = make_int4(rtile.x, rtile.y, rtile.w, rtile.h);
- denoising.render_buffer.samples = rtile.sample;
- denoising.buffer.gpu_temporary_mem = true;
-
- denoising.run_denoising(&rtile);
+ denoising.functions.construct_transform = function_bind(
+ &OpenCLDevice::denoising_construct_transform, this, &denoising);
+ denoising.functions.accumulate = function_bind(
+ &OpenCLDevice::denoising_accumulate, this, _1, _2, _3, _4, &denoising);
+ denoising.functions.solve = function_bind(&OpenCLDevice::denoising_solve, this, _1, &denoising);
+ denoising.functions.divide_shadow = function_bind(
+ &OpenCLDevice::denoising_divide_shadow, this, _1, _2, _3, _4, _5, &denoising);
+ denoising.functions.non_local_means = function_bind(
+ &OpenCLDevice::denoising_non_local_means, this, _1, _2, _3, _4, &denoising);
+ denoising.functions.combine_halves = function_bind(
+ &OpenCLDevice::denoising_combine_halves, this, _1, _2, _3, _4, _5, _6, &denoising);
+ denoising.functions.get_feature = function_bind(
+ &OpenCLDevice::denoising_get_feature, this, _1, _2, _3, _4, _5, &denoising);
+ denoising.functions.write_feature = function_bind(
+ &OpenCLDevice::denoising_write_feature, this, _1, _2, _3, &denoising);
+ denoising.functions.detect_outliers = function_bind(
+ &OpenCLDevice::denoising_detect_outliers, this, _1, _2, _3, _4, &denoising);
+
+ denoising.filter_area = make_int4(rtile.x, rtile.y, rtile.w, rtile.h);
+ denoising.render_buffer.samples = rtile.sample;
+ denoising.buffer.gpu_temporary_mem = true;
+
+ denoising.run_denoising(&rtile);
}
-void OpenCLDevice::shader(DeviceTask& task)
+void OpenCLDevice::shader(DeviceTask &task)
{
- /* cast arguments to cl types */
- cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
- cl_mem d_input = CL_MEM_PTR(task.shader_input);
- cl_mem d_output = CL_MEM_PTR(task.shader_output);
- cl_int d_shader_eval_type = task.shader_eval_type;
- cl_int d_shader_filter = task.shader_filter;
- cl_int d_shader_x = task.shader_x;
- cl_int d_shader_w = task.shader_w;
- cl_int d_offset = task.offset;
-
- OpenCLDevice::OpenCLProgram *program = &background_program;
- if(task.shader_eval_type >= SHADER_EVAL_BAKE) {
- program = &bake_program;
- }
- else if(task.shader_eval_type == SHADER_EVAL_DISPLACE) {
- program = &displace_program;
- }
- program->wait_for_availability();
- cl_kernel kernel = (*program)();
-
- cl_uint start_arg_index =
- kernel_set_args(kernel,
- 0,
- d_data,
- d_input,
- d_output);
-
- set_kernel_arg_buffers(kernel, &start_arg_index);
-
- start_arg_index += kernel_set_args(kernel,
- start_arg_index,
- d_shader_eval_type);
- if(task.shader_eval_type >= SHADER_EVAL_BAKE) {
- start_arg_index += kernel_set_args(kernel,
- start_arg_index,
- d_shader_filter);
- }
- start_arg_index += kernel_set_args(kernel,
- start_arg_index,
- d_shader_x,
- d_shader_w,
- d_offset);
-
- for(int sample = 0; sample < task.num_samples; sample++) {
-
- if(task.get_cancel())
- break;
-
- kernel_set_args(kernel, start_arg_index, sample);
-
- enqueue_kernel(kernel, task.shader_w, 1);
-
- clFinish(cqCommandQueue);
-
- task.update_progress(NULL);
- }
+ /* cast arguments to cl types */
+ cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
+ cl_mem d_input = CL_MEM_PTR(task.shader_input);
+ cl_mem d_output = CL_MEM_PTR(task.shader_output);
+ cl_int d_shader_eval_type = task.shader_eval_type;
+ cl_int d_shader_filter = task.shader_filter;
+ cl_int d_shader_x = task.shader_x;
+ cl_int d_shader_w = task.shader_w;
+ cl_int d_offset = task.offset;
+
+ OpenCLDevice::OpenCLProgram *program = &background_program;
+ if (task.shader_eval_type >= SHADER_EVAL_BAKE) {
+ program = &bake_program;
+ }
+ else if (task.shader_eval_type == SHADER_EVAL_DISPLACE) {
+ program = &displace_program;
+ }
+ program->wait_for_availability();
+ cl_kernel kernel = (*program)();
+
+ cl_uint start_arg_index = kernel_set_args(kernel, 0, d_data, d_input, d_output);
+
+ set_kernel_arg_buffers(kernel, &start_arg_index);
+
+ start_arg_index += kernel_set_args(kernel, start_arg_index, d_shader_eval_type);
+ if (task.shader_eval_type >= SHADER_EVAL_BAKE) {
+ start_arg_index += kernel_set_args(kernel, start_arg_index, d_shader_filter);
+ }
+ start_arg_index += kernel_set_args(kernel, start_arg_index, d_shader_x, d_shader_w, d_offset);
+
+ for (int sample = 0; sample < task.num_samples; sample++) {
+
+ if (task.get_cancel())
+ break;
+
+ kernel_set_args(kernel, start_arg_index, sample);
+
+ enqueue_kernel(kernel, task.shader_w, 1);
+
+ clFinish(cqCommandQueue);
+
+ task.update_progress(NULL);
+ }
}
string OpenCLDevice::kernel_build_options(const string *debug_src)
{
- string build_options = "-cl-no-signed-zeros -cl-mad-enable ";
-
- if(platform_name == "NVIDIA CUDA") {
- build_options += "-D__KERNEL_OPENCL_NVIDIA__ "
- "-cl-nv-maxrregcount=32 "
- "-cl-nv-verbose ";
-
- uint compute_capability_major, compute_capability_minor;
- clGetDeviceInfo(cdDevice, CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV,
- sizeof(cl_uint), &compute_capability_major, NULL);
- clGetDeviceInfo(cdDevice, CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV,
- sizeof(cl_uint), &compute_capability_minor, NULL);
-
- build_options += string_printf("-D__COMPUTE_CAPABILITY__=%u ",
- compute_capability_major * 100 +
- compute_capability_minor * 10);
- }
-
- else if(platform_name == "Apple")
- build_options += "-D__KERNEL_OPENCL_APPLE__ ";
-
- else if(platform_name == "AMD Accelerated Parallel Processing")
- build_options += "-D__KERNEL_OPENCL_AMD__ ";
-
- else if(platform_name == "Intel(R) OpenCL") {
- build_options += "-D__KERNEL_OPENCL_INTEL_CPU__ ";
-
- /* Options for gdb source level kernel debugging.
- * this segfaults on linux currently.
- */
- if(OpenCLInfo::use_debug() && debug_src)
- build_options += "-g -s \"" + *debug_src + "\" ";
- }
-
- if(info.has_half_images) {
- build_options += "-D__KERNEL_CL_KHR_FP16__ ";
- }
-
- if(OpenCLInfo::use_debug()) {
- build_options += "-D__KERNEL_OPENCL_DEBUG__ ";
- }
-
-#ifdef WITH_CYCLES_DEBUG
- build_options += "-D__KERNEL_DEBUG__ ";
-#endif
-
- return build_options;
+ string build_options = "-cl-no-signed-zeros -cl-mad-enable ";
+
+ if (platform_name == "NVIDIA CUDA") {
+ build_options +=
+ "-D__KERNEL_OPENCL_NVIDIA__ "
+ "-cl-nv-maxrregcount=32 "
+ "-cl-nv-verbose ";
+
+ uint compute_capability_major, compute_capability_minor;
+ clGetDeviceInfo(cdDevice,
+ CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV,
+ sizeof(cl_uint),
+ &compute_capability_major,
+ NULL);
+ clGetDeviceInfo(cdDevice,
+ CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV,
+ sizeof(cl_uint),
+ &compute_capability_minor,
+ NULL);
+
+ build_options += string_printf("-D__COMPUTE_CAPABILITY__=%u ",
+ compute_capability_major * 100 + compute_capability_minor * 10);
+ }
+
+ else if (platform_name == "Apple")
+ build_options += "-D__KERNEL_OPENCL_APPLE__ ";
+
+ else if (platform_name == "AMD Accelerated Parallel Processing")
+ build_options += "-D__KERNEL_OPENCL_AMD__ ";
+
+ else if (platform_name == "Intel(R) OpenCL") {
+ build_options += "-D__KERNEL_OPENCL_INTEL_CPU__ ";
+
+ /* Options for gdb source level kernel debugging.
+ * this segfaults on linux currently.
+ */
+ if (OpenCLInfo::use_debug() && debug_src)
+ build_options += "-g -s \"" + *debug_src + "\" ";
+ }
+
+ if (info.has_half_images) {
+ build_options += "-D__KERNEL_CL_KHR_FP16__ ";
+ }
+
+ if (OpenCLInfo::use_debug()) {
+ build_options += "-D__KERNEL_OPENCL_DEBUG__ ";
+ }
+
+# ifdef WITH_CYCLES_DEBUG
+ build_options += "-D__KERNEL_DEBUG__ ";
+# endif
+
+ return build_options;
}
/* TODO(sergey): In the future we can use variadic templates, once
@@ -1944,137 +1913,130 @@ string OpenCLDevice::kernel_build_options(const string *debug_src)
*/
int OpenCLDevice::kernel_set_args(cl_kernel kernel,
int start_argument_index,
- const ArgumentWrapper& arg1,
- const ArgumentWrapper& arg2,
- const ArgumentWrapper& arg3,
- const ArgumentWrapper& arg4,
- const ArgumentWrapper& arg5,
- const ArgumentWrapper& arg6,
- const ArgumentWrapper& arg7,
- const ArgumentWrapper& arg8,
- const ArgumentWrapper& arg9,
- const ArgumentWrapper& arg10,
- const ArgumentWrapper& arg11,
- const ArgumentWrapper& arg12,
- const ArgumentWrapper& arg13,
- const ArgumentWrapper& arg14,
- const ArgumentWrapper& arg15,
- const ArgumentWrapper& arg16,
- const ArgumentWrapper& arg17,
- const ArgumentWrapper& arg18,
- const ArgumentWrapper& arg19,
- const ArgumentWrapper& arg20,
- const ArgumentWrapper& arg21,
- const ArgumentWrapper& arg22,
- const ArgumentWrapper& arg23,
- const ArgumentWrapper& arg24,
- const ArgumentWrapper& arg25,
- const ArgumentWrapper& arg26,
- const ArgumentWrapper& arg27,
- const ArgumentWrapper& arg28,
- const ArgumentWrapper& arg29,
- const ArgumentWrapper& arg30,
- const ArgumentWrapper& arg31,
- const ArgumentWrapper& arg32,
- const ArgumentWrapper& arg33)
+ const ArgumentWrapper &arg1,
+ const ArgumentWrapper &arg2,
+ const ArgumentWrapper &arg3,
+ const ArgumentWrapper &arg4,
+ const ArgumentWrapper &arg5,
+ const ArgumentWrapper &arg6,
+ const ArgumentWrapper &arg7,
+ const ArgumentWrapper &arg8,
+ const ArgumentWrapper &arg9,
+ const ArgumentWrapper &arg10,
+ const ArgumentWrapper &arg11,
+ const ArgumentWrapper &arg12,
+ const ArgumentWrapper &arg13,
+ const ArgumentWrapper &arg14,
+ const ArgumentWrapper &arg15,
+ const ArgumentWrapper &arg16,
+ const ArgumentWrapper &arg17,
+ const ArgumentWrapper &arg18,
+ const ArgumentWrapper &arg19,
+ const ArgumentWrapper &arg20,
+ const ArgumentWrapper &arg21,
+ const ArgumentWrapper &arg22,
+ const ArgumentWrapper &arg23,
+ const ArgumentWrapper &arg24,
+ const ArgumentWrapper &arg25,
+ const ArgumentWrapper &arg26,
+ const ArgumentWrapper &arg27,
+ const ArgumentWrapper &arg28,
+ const ArgumentWrapper &arg29,
+ const ArgumentWrapper &arg30,
+ const ArgumentWrapper &arg31,
+ const ArgumentWrapper &arg32,
+ const ArgumentWrapper &arg33)
{
- int current_arg_index = 0;
-#define FAKE_VARARG_HANDLE_ARG(arg) \
- do { \
- if(arg.pointer != NULL) { \
- opencl_assert(clSetKernelArg( \
- kernel, \
- start_argument_index + current_arg_index, \
- arg.size, arg.pointer)); \
- ++current_arg_index; \
- } \
- else { \
- return current_arg_index; \
- } \
- } while(false)
- FAKE_VARARG_HANDLE_ARG(arg1);
- FAKE_VARARG_HANDLE_ARG(arg2);
- FAKE_VARARG_HANDLE_ARG(arg3);
- FAKE_VARARG_HANDLE_ARG(arg4);
- FAKE_VARARG_HANDLE_ARG(arg5);
- FAKE_VARARG_HANDLE_ARG(arg6);
- FAKE_VARARG_HANDLE_ARG(arg7);
- FAKE_VARARG_HANDLE_ARG(arg8);
- FAKE_VARARG_HANDLE_ARG(arg9);
- FAKE_VARARG_HANDLE_ARG(arg10);
- FAKE_VARARG_HANDLE_ARG(arg11);
- FAKE_VARARG_HANDLE_ARG(arg12);
- FAKE_VARARG_HANDLE_ARG(arg13);
- FAKE_VARARG_HANDLE_ARG(arg14);
- FAKE_VARARG_HANDLE_ARG(arg15);
- FAKE_VARARG_HANDLE_ARG(arg16);
- FAKE_VARARG_HANDLE_ARG(arg17);
- FAKE_VARARG_HANDLE_ARG(arg18);
- FAKE_VARARG_HANDLE_ARG(arg19);
- FAKE_VARARG_HANDLE_ARG(arg20);
- FAKE_VARARG_HANDLE_ARG(arg21);
- FAKE_VARARG_HANDLE_ARG(arg22);
- FAKE_VARARG_HANDLE_ARG(arg23);
- FAKE_VARARG_HANDLE_ARG(arg24);
- FAKE_VARARG_HANDLE_ARG(arg25);
- FAKE_VARARG_HANDLE_ARG(arg26);
- FAKE_VARARG_HANDLE_ARG(arg27);
- FAKE_VARARG_HANDLE_ARG(arg28);
- FAKE_VARARG_HANDLE_ARG(arg29);
- FAKE_VARARG_HANDLE_ARG(arg30);
- FAKE_VARARG_HANDLE_ARG(arg31);
- FAKE_VARARG_HANDLE_ARG(arg32);
- FAKE_VARARG_HANDLE_ARG(arg33);
-#undef FAKE_VARARG_HANDLE_ARG
- return current_arg_index;
+ int current_arg_index = 0;
+# define FAKE_VARARG_HANDLE_ARG(arg) \
+ do { \
+ if (arg.pointer != NULL) { \
+ opencl_assert(clSetKernelArg( \
+ kernel, start_argument_index + current_arg_index, arg.size, arg.pointer)); \
+ ++current_arg_index; \
+ } \
+ else { \
+ return current_arg_index; \
+ } \
+ } while (false)
+ FAKE_VARARG_HANDLE_ARG(arg1);
+ FAKE_VARARG_HANDLE_ARG(arg2);
+ FAKE_VARARG_HANDLE_ARG(arg3);
+ FAKE_VARARG_HANDLE_ARG(arg4);
+ FAKE_VARARG_HANDLE_ARG(arg5);
+ FAKE_VARARG_HANDLE_ARG(arg6);
+ FAKE_VARARG_HANDLE_ARG(arg7);
+ FAKE_VARARG_HANDLE_ARG(arg8);
+ FAKE_VARARG_HANDLE_ARG(arg9);
+ FAKE_VARARG_HANDLE_ARG(arg10);
+ FAKE_VARARG_HANDLE_ARG(arg11);
+ FAKE_VARARG_HANDLE_ARG(arg12);
+ FAKE_VARARG_HANDLE_ARG(arg13);
+ FAKE_VARARG_HANDLE_ARG(arg14);
+ FAKE_VARARG_HANDLE_ARG(arg15);
+ FAKE_VARARG_HANDLE_ARG(arg16);
+ FAKE_VARARG_HANDLE_ARG(arg17);
+ FAKE_VARARG_HANDLE_ARG(arg18);
+ FAKE_VARARG_HANDLE_ARG(arg19);
+ FAKE_VARARG_HANDLE_ARG(arg20);
+ FAKE_VARARG_HANDLE_ARG(arg21);
+ FAKE_VARARG_HANDLE_ARG(arg22);
+ FAKE_VARARG_HANDLE_ARG(arg23);
+ FAKE_VARARG_HANDLE_ARG(arg24);
+ FAKE_VARARG_HANDLE_ARG(arg25);
+ FAKE_VARARG_HANDLE_ARG(arg26);
+ FAKE_VARARG_HANDLE_ARG(arg27);
+ FAKE_VARARG_HANDLE_ARG(arg28);
+ FAKE_VARARG_HANDLE_ARG(arg29);
+ FAKE_VARARG_HANDLE_ARG(arg30);
+ FAKE_VARARG_HANDLE_ARG(arg31);
+ FAKE_VARARG_HANDLE_ARG(arg32);
+ FAKE_VARARG_HANDLE_ARG(arg33);
+# undef FAKE_VARARG_HANDLE_ARG
+ return current_arg_index;
}
void OpenCLDevice::release_kernel_safe(cl_kernel kernel)
{
- if(kernel) {
- clReleaseKernel(kernel);
- }
+ if (kernel) {
+ clReleaseKernel(kernel);
+ }
}
void OpenCLDevice::release_mem_object_safe(cl_mem mem)
{
- if(mem != NULL) {
- clReleaseMemObject(mem);
- }
+ if (mem != NULL) {
+ clReleaseMemObject(mem);
+ }
}
void OpenCLDevice::release_program_safe(cl_program program)
{
- if(program) {
- clReleaseProgram(program);
- }
+ if (program) {
+ clReleaseProgram(program);
+ }
}
/* ** Those guys are for workign around some compiler-specific bugs ** */
-cl_program OpenCLDevice::load_cached_kernel(ustring key,
- thread_scoped_lock& cache_locker)
+cl_program OpenCLDevice::load_cached_kernel(ustring key, thread_scoped_lock &cache_locker)
{
- return OpenCLCache::get_program(cpPlatform,
- cdDevice,
- key,
- cache_locker);
+ return OpenCLCache::get_program(cpPlatform, cdDevice, key, cache_locker);
}
void OpenCLDevice::store_cached_kernel(cl_program program,
ustring key,
- thread_scoped_lock& cache_locker)
+ thread_scoped_lock &cache_locker)
{
- OpenCLCache::store_program(cpPlatform,
- cdDevice,
- program,
- key,
- cache_locker);
+ OpenCLCache::store_program(cpPlatform, cdDevice, program, key, cache_locker);
}
-Device *opencl_create_split_device(DeviceInfo& info, Stats& stats, Profiler &profiler, bool background)
+Device *opencl_create_split_device(DeviceInfo &info,
+ Stats &stats,
+ Profiler &profiler,
+ bool background)
{
- return new OpenCLDevice(info, stats, profiler, background);
+ return new OpenCLDevice(info, stats, profiler, background);
}
CCL_NAMESPACE_END