Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/bvh/qbvh_traversal.h')
-rw-r--r--intern/cycles/kernel/bvh/qbvh_traversal.h505
1 files changed, 505 insertions, 0 deletions
diff --git a/intern/cycles/kernel/bvh/qbvh_traversal.h b/intern/cycles/kernel/bvh/qbvh_traversal.h
new file mode 100644
index 00000000000..f82ff661495
--- /dev/null
+++ b/intern/cycles/kernel/bvh/qbvh_traversal.h
@@ -0,0 +1,505 @@
+/*
+ * Adapted from code Copyright 2009-2010 NVIDIA Corporation,
+ * and code copyright 2009-2012 Intel Corporation
+ *
+ * Modifications Copyright 2011-2014, Blender Foundation.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This is a template BVH traversal function, where various features can be
+ * enabled/disabled. This way we can compile optimized versions for each case
+ * without new features slowing things down.
+ *
+ * BVH_INSTANCING: object instancing
+ * BVH_HAIR: hair curve rendering
+ * BVH_HAIR_MINIMUM_WIDTH: hair curve rendering with minimum width
+ * BVH_MOTION: motion blur rendering
+ *
+ */
+
+#if BVH_FEATURE(BVH_HAIR)
+# define NODE_INTERSECT qbvh_node_intersect
+# define NODE_INTERSECT_ROBUST qbvh_node_intersect_robust
+#else
+# define NODE_INTERSECT qbvh_aligned_node_intersect
+# define NODE_INTERSECT_ROBUST qbvh_aligned_node_intersect_robust
+#endif
+
+ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
+ const Ray *ray,
+ Intersection *isect,
+ const uint visibility
+#if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH)
+ ,uint *lcg_state,
+ float difl,
+ float extmax
+#endif
+ )
+{
+ /* TODO(sergey):
+ * - Test if pushing distance on the stack helps (for non shadow rays).
+ * - Separate version for shadow rays.
+ * - Likely and unlikely for if() statements.
+ * - Test restrict attribute for pointers.
+ */
+
+ /* Traversal stack in CUDA thread-local memory. */
+ QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
+ traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
+ traversal_stack[0].dist = -FLT_MAX;
+
+ /* Traversal variables in registers. */
+ int stack_ptr = 0;
+ int node_addr = kernel_data.bvh.root;
+ float node_dist = -FLT_MAX;
+
+ /* Ray parameters in registers. */
+ float3 P = ray->P;
+ float3 dir = bvh_clamp_direction(ray->D);
+ float3 idir = bvh_inverse_direction(dir);
+ int object = OBJECT_NONE;
+
+#if BVH_FEATURE(BVH_MOTION)
+ Transform ob_itfm;
+#endif
+
+#ifndef __KERNEL_SSE41__
+ if(!isfinite(P.x)) {
+ return false;
+ }
+#endif
+
+ isect->t = ray->t;
+ isect->u = 0.0f;
+ isect->v = 0.0f;
+ isect->prim = PRIM_NONE;
+ isect->object = OBJECT_NONE;
+
+ BVH_DEBUG_INIT();
+
+ ssef tnear(0.0f), tfar(ray->t);
+#if BVH_FEATURE(BVH_HAIR)
+ sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+#endif
+ sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+
+#ifdef __KERNEL_AVX2__
+ float3 P_idir = P*idir;
+ sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+#endif
+#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
+ sse3f org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+#endif
+
+ /* Offsets to select the side that becomes the lower or upper bound. */
+ int near_x, near_y, near_z;
+ int far_x, far_y, far_z;
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+
+ IsectPrecalc isect_precalc;
+ triangle_intersect_precalc(dir, &isect_precalc);
+
+ /* Traversal loop. */
+ do {
+ do {
+ /* Traverse internal nodes. */
+ while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
+ float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
+
+ if(UNLIKELY(node_dist > isect->t)
+#ifdef __VISIBILITY_FLAG__
+ || (__float_as_uint(inodes.x) & visibility) == 0)
+#endif
+ {
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+ continue;
+ }
+
+ int child_mask;
+ ssef dist;
+
+ BVH_DEBUG_NEXT_STEP();
+
+#if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH)
+ if(difl != 0.0f) {
+ /* NOTE: We extend all the child BB instead of fetching
+ * and checking visibility flags for each of the,
+ *
+ * Need to test if doing opposite would be any faster.
+ */
+ child_mask = NODE_INTERSECT_ROBUST(kg,
+ tnear,
+ tfar,
+# ifdef __KERNEL_AVX2__
+ P_idir4,
+# endif
+# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
+ org4,
+# endif
+# if BVH_FEATURE(BVH_HAIR)
+ dir4,
+# endif
+ idir4,
+ near_x, near_y, near_z,
+ far_x, far_y, far_z,
+ node_addr,
+ difl,
+ &dist);
+ }
+ else
+#endif /* BVH_HAIR_MINIMUM_WIDTH */
+ {
+ child_mask = NODE_INTERSECT(kg,
+ tnear,
+ tfar,
+#ifdef __KERNEL_AVX2__
+ P_idir4,
+#endif
+#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
+ org4,
+#endif
+#if BVH_FEATURE(BVH_HAIR)
+ dir4,
+#endif
+ idir4,
+ near_x, near_y, near_z,
+ far_x, far_y, far_z,
+ node_addr,
+ &dist);
+ }
+
+ if(child_mask != 0) {
+ float4 cnodes;
+ /* TODO(sergey): Investigate whether moving cnodes upwards
+ * gives a speedup (will be different cache pattern but will
+ * avoid extra check here),
+ */
+#if BVH_FEATURE(BVH_HAIR)
+ if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
+ cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13);
+ }
+ else
+#endif
+ {
+ cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7);
+ }
+
+ /* One child is hit, continue with that child. */
+ int r = __bscf(child_mask);
+ float d0 = ((float*)&dist)[r];
+ if(child_mask == 0) {
+ node_addr = __float_as_int(cnodes[r]);
+ node_dist = d0;
+ continue;
+ }
+
+ /* Two children are hit, push far child, and continue with
+ * closer child.
+ */
+ int c0 = __float_as_int(cnodes[r]);
+ r = __bscf(child_mask);
+ int c1 = __float_as_int(cnodes[r]);
+ float d1 = ((float*)&dist)[r];
+ if(child_mask == 0) {
+ if(d1 < d0) {
+ node_addr = c1;
+ node_dist = d1;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c0;
+ traversal_stack[stack_ptr].dist = d0;
+ continue;
+ }
+ else {
+ node_addr = c0;
+ node_dist = d0;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c1;
+ traversal_stack[stack_ptr].dist = d1;
+ continue;
+ }
+ }
+
+ /* Here starts the slow path for 3 or 4 hit children. We push
+ * all nodes onto the stack to sort them there.
+ */
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c1;
+ traversal_stack[stack_ptr].dist = d1;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c0;
+ traversal_stack[stack_ptr].dist = d0;
+
+ /* Three children are hit, push all onto stack and sort 3
+ * stack items, continue with closest child.
+ */
+ r = __bscf(child_mask);
+ int c2 = __float_as_int(cnodes[r]);
+ float d2 = ((float*)&dist)[r];
+ if(child_mask == 0) {
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c2;
+ traversal_stack[stack_ptr].dist = d2;
+ qbvh_stack_sort(&traversal_stack[stack_ptr],
+ &traversal_stack[stack_ptr - 1],
+ &traversal_stack[stack_ptr - 2]);
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+ continue;
+ }
+
+ /* Four children are hit, push all onto stack and sort 4
+ * stack items, continue with closest child.
+ */
+ r = __bscf(child_mask);
+ int c3 = __float_as_int(cnodes[r]);
+ float d3 = ((float*)&dist)[r];
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c3;
+ traversal_stack[stack_ptr].dist = d3;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c2;
+ traversal_stack[stack_ptr].dist = d2;
+ qbvh_stack_sort(&traversal_stack[stack_ptr],
+ &traversal_stack[stack_ptr - 1],
+ &traversal_stack[stack_ptr - 2],
+ &traversal_stack[stack_ptr - 3]);
+ }
+
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+ }
+
+ /* If node is leaf, fetch triangle list. */
+ if(node_addr < 0) {
+ float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
+
+#ifdef __VISIBILITY_FLAG__
+ if(UNLIKELY((node_dist > isect->t) ||
+ ((__float_as_uint(leaf.z) & visibility) == 0)))
+#else
+ if(UNLIKELY((node_dist > isect->t)))
+#endif
+ {
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+ continue;
+ }
+
+ int prim_addr = __float_as_int(leaf.x);
+
+#if BVH_FEATURE(BVH_INSTANCING)
+ if(prim_addr >= 0) {
+#endif
+ int prim_addr2 = __float_as_int(leaf.y);
+ const uint type = __float_as_int(leaf.w);
+
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+
+ /* Primitive intersection. */
+ switch(type & PRIMITIVE_ALL) {
+ case PRIMITIVE_TRIANGLE: {
+ for(; prim_addr < prim_addr2; prim_addr++) {
+ BVH_DEBUG_NEXT_STEP();
+ kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ if(triangle_intersect(kg,
+ &isect_precalc,
+ isect,
+ P,
+ visibility,
+ object,
+ prim_addr)) {
+ tfar = ssef(isect->t);
+ /* Shadow ray early termination. */
+ if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ return true;
+ }
+ }
+ }
+ break;
+ }
+#if BVH_FEATURE(BVH_MOTION)
+ case PRIMITIVE_MOTION_TRIANGLE: {
+ for(; prim_addr < prim_addr2; prim_addr++) {
+ BVH_DEBUG_NEXT_STEP();
+ kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ if(motion_triangle_intersect(kg,
+ isect,
+ P,
+ dir,
+ ray->time,
+ visibility,
+ object,
+ prim_addr)) {
+ tfar = ssef(isect->t);
+ /* Shadow ray early termination. */
+ if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ return true;
+ }
+ }
+ }
+ break;
+ }
+#endif /* BVH_FEATURE(BVH_MOTION) */
+#if BVH_FEATURE(BVH_HAIR)
+ case PRIMITIVE_CURVE:
+ case PRIMITIVE_MOTION_CURVE: {
+ for(; prim_addr < prim_addr2; prim_addr++) {
+ BVH_DEBUG_NEXT_STEP();
+ kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ bool hit;
+ if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
+ hit = bvh_cardinal_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ type,
+ lcg_state,
+ difl,
+ extmax);
+ }
+ else {
+ hit = bvh_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ type,
+ lcg_state,
+ difl,
+ extmax);
+ }
+ if(hit) {
+ tfar = ssef(isect->t);
+ /* Shadow ray early termination. */
+ if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ return true;
+ }
+ }
+ }
+ break;
+ }
+#endif /* BVH_FEATURE(BVH_HAIR) */
+ }
+ }
+#if BVH_FEATURE(BVH_INSTANCING)
+ else {
+ /* Instance push. */
+ object = kernel_tex_fetch(__prim_object, -prim_addr-1);
+
+# if BVH_FEATURE(BVH_MOTION)
+ qbvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist, &ob_itfm);
+# else
+ qbvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist);
+# endif
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+ tfar = ssef(isect->t);
+# if BVH_FEATURE(BVH_HAIR)
+ dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+# endif
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+# ifdef __KERNEL_AVX2__
+ P_idir = P*idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+# endif
+# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
+ org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+# endif
+
+ triangle_intersect_precalc(dir, &isect_precalc);
+
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
+ traversal_stack[stack_ptr].dist = -FLT_MAX;
+
+ node_addr = kernel_tex_fetch(__object_node, object);
+
+ BVH_DEBUG_NEXT_INSTANCE();
+ }
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while(node_addr != ENTRYPOINT_SENTINEL);
+
+#if BVH_FEATURE(BVH_INSTANCING)
+ if(stack_ptr >= 0) {
+ kernel_assert(object != OBJECT_NONE);
+
+ /* Instance pop. */
+# if BVH_FEATURE(BVH_MOTION)
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+# else
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
+# endif
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+ tfar = ssef(isect->t);
+# if BVH_FEATURE(BVH_HAIR)
+ dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+# endif
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+# ifdef __KERNEL_AVX2__
+ P_idir = P*idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+# endif
+# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
+ org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+# endif
+
+ triangle_intersect_precalc(dir, &isect_precalc);
+
+ object = OBJECT_NONE;
+ node_addr = traversal_stack[stack_ptr].addr;
+ node_dist = traversal_stack[stack_ptr].dist;
+ --stack_ptr;
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while(node_addr != ENTRYPOINT_SENTINEL);
+
+ return (isect->prim != PRIM_NONE);
+}
+
+#undef NODE_INTERSECT
+#undef NODE_INTERSECT_ROBUST