Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/bvh/qbvh_volume.h')
-rw-r--r--intern/cycles/kernel/bvh/qbvh_volume.h538
1 files changed, 271 insertions, 267 deletions
diff --git a/intern/cycles/kernel/bvh/qbvh_volume.h b/intern/cycles/kernel/bvh/qbvh_volume.h
index 6790bfa6c83..e4eaed04467 100644
--- a/intern/cycles/kernel/bvh/qbvh_volume.h
+++ b/intern/cycles/kernel/bvh/qbvh_volume.h
@@ -33,331 +33,335 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
Intersection *isect,
const uint visibility)
{
- /* TODO(sergey):
- * - Test if pushing distance on the stack helps.
- * - Likely and unlikely for if() statements.
- * - Test restrict attribute for pointers.
- */
-
- /* Traversal stack in CUDA thread-local memory. */
- QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
- traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
-
- /* Traversal variables in registers. */
- int stack_ptr = 0;
- int node_addr = kernel_data.bvh.root;
-
- /* Ray parameters in registers. */
- float3 P = ray->P;
- float3 dir = bvh_clamp_direction(ray->D);
- float3 idir = bvh_inverse_direction(dir);
- int object = OBJECT_NONE;
+ /* TODO(sergey):
+ * - Test if pushing distance on the stack helps.
+ * - Likely and unlikely for if() statements.
+ * - Test restrict attribute for pointers.
+ */
+
+ /* Traversal stack in CUDA thread-local memory. */
+ QBVHStackItem traversal_stack[BVH_QSTACK_SIZE];
+ traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
+
+ /* Traversal variables in registers. */
+ int stack_ptr = 0;
+ int node_addr = kernel_data.bvh.root;
+
+ /* Ray parameters in registers. */
+ float3 P = ray->P;
+ float3 dir = bvh_clamp_direction(ray->D);
+ float3 idir = bvh_inverse_direction(dir);
+ int object = OBJECT_NONE;
#if BVH_FEATURE(BVH_MOTION)
- Transform ob_itfm;
+ Transform ob_itfm;
#endif
- isect->t = ray->t;
- isect->u = 0.0f;
- isect->v = 0.0f;
- isect->prim = PRIM_NONE;
- isect->object = OBJECT_NONE;
+ isect->t = ray->t;
+ isect->u = 0.0f;
+ isect->v = 0.0f;
+ isect->prim = PRIM_NONE;
+ isect->object = OBJECT_NONE;
- ssef tnear(0.0f), tfar(ray->t);
+ ssef tnear(0.0f), tfar(ray->t);
#if BVH_FEATURE(BVH_HAIR)
- sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+ sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z));
#endif
- sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+ sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
- float3 P_idir = P*idir;
- sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
+ float3 P_idir = P * idir;
+ sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z);
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z));
+ sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
- /* Offsets to select the side that becomes the lower or upper bound. */
- int near_x, near_y, near_z;
- int far_x, far_y, far_z;
- qbvh_near_far_idx_calc(idir,
- &near_x, &near_y, &near_z,
- &far_x, &far_y, &far_z);
+ /* Offsets to select the side that becomes the lower or upper bound. */
+ int near_x, near_y, near_z;
+ int far_x, far_y, far_z;
+ qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
- /* Traversal loop. */
- do {
- do {
- /* Traverse internal nodes. */
- while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
- float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
+ /* Traversal loop. */
+ do {
+ do {
+ /* Traverse internal nodes. */
+ while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
+ float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0);
#ifdef __VISIBILITY_FLAG__
- if((__float_as_uint(inodes.x) & visibility) == 0) {
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
+ if ((__float_as_uint(inodes.x) & visibility) == 0) {
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ continue;
+ }
#endif
- ssef dist;
- int child_mask = NODE_INTERSECT(kg,
- tnear,
- tfar,
+ ssef dist;
+ int child_mask = NODE_INTERSECT(kg,
+ tnear,
+ tfar,
#ifdef __KERNEL_AVX2__
- P_idir4,
+ P_idir4,
#endif
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- org4,
+ org4,
#endif
#if BVH_FEATURE(BVH_HAIR)
- dir4,
+ dir4,
#endif
- idir4,
- near_x, near_y, near_z,
- far_x, far_y, far_z,
- node_addr,
- &dist);
-
- if(child_mask != 0) {
- float4 cnodes;
+ idir4,
+ near_x,
+ near_y,
+ near_z,
+ far_x,
+ far_y,
+ far_z,
+ node_addr,
+ &dist);
+
+ if (child_mask != 0) {
+ float4 cnodes;
#if BVH_FEATURE(BVH_HAIR)
- if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
- cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+13);
- }
- else
+ if (__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
+ cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 13);
+ }
+ else
#endif
- {
- cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+7);
- }
-
- /* One child is hit, continue with that child. */
- int r = __bscf(child_mask);
- if(child_mask == 0) {
- node_addr = __float_as_int(cnodes[r]);
- continue;
- }
-
- /* Two children are hit, push far child, and continue with
- * closer child.
- */
- int c0 = __float_as_int(cnodes[r]);
- float d0 = ((float*)&dist)[r];
- r = __bscf(child_mask);
- int c1 = __float_as_int(cnodes[r]);
- float d1 = ((float*)&dist)[r];
- if(child_mask == 0) {
- if(d1 < d0) {
- node_addr = c1;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c0;
- traversal_stack[stack_ptr].dist = d0;
- continue;
- }
- else {
- node_addr = c0;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c1;
- traversal_stack[stack_ptr].dist = d1;
- continue;
- }
- }
-
- /* Here starts the slow path for 3 or 4 hit children. We push
- * all nodes onto the stack to sort them there.
- */
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c1;
- traversal_stack[stack_ptr].dist = d1;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c0;
- traversal_stack[stack_ptr].dist = d0;
-
- /* Three children are hit, push all onto stack and sort 3
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c2 = __float_as_int(cnodes[r]);
- float d2 = ((float*)&dist)[r];
- if(child_mask == 0) {
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c2;
- traversal_stack[stack_ptr].dist = d2;
- qbvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2]);
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
-
- /* Four children are hit, push all onto stack and sort 4
- * stack items, continue with closest child.
- */
- r = __bscf(child_mask);
- int c3 = __float_as_int(cnodes[r]);
- float d3 = ((float*)&dist)[r];
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c3;
- traversal_stack[stack_ptr].dist = d3;
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = c2;
- traversal_stack[stack_ptr].dist = d2;
- qbvh_stack_sort(&traversal_stack[stack_ptr],
- &traversal_stack[stack_ptr - 1],
- &traversal_stack[stack_ptr - 2],
- &traversal_stack[stack_ptr - 3]);
- }
-
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- }
-
- /* If node is leaf, fetch triangle list. */
- if(node_addr < 0) {
- float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
-
- if((__float_as_uint(leaf.z) & visibility) == 0) {
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- continue;
- }
-
- int prim_addr = __float_as_int(leaf.x);
+ {
+ cnodes = kernel_tex_fetch(__bvh_nodes, node_addr + 7);
+ }
+
+ /* One child is hit, continue with that child. */
+ int r = __bscf(child_mask);
+ if (child_mask == 0) {
+ node_addr = __float_as_int(cnodes[r]);
+ continue;
+ }
+
+ /* Two children are hit, push far child, and continue with
+ * closer child.
+ */
+ int c0 = __float_as_int(cnodes[r]);
+ float d0 = ((float *)&dist)[r];
+ r = __bscf(child_mask);
+ int c1 = __float_as_int(cnodes[r]);
+ float d1 = ((float *)&dist)[r];
+ if (child_mask == 0) {
+ if (d1 < d0) {
+ node_addr = c1;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c0;
+ traversal_stack[stack_ptr].dist = d0;
+ continue;
+ }
+ else {
+ node_addr = c0;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c1;
+ traversal_stack[stack_ptr].dist = d1;
+ continue;
+ }
+ }
+
+ /* Here starts the slow path for 3 or 4 hit children. We push
+ * all nodes onto the stack to sort them there.
+ */
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c1;
+ traversal_stack[stack_ptr].dist = d1;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c0;
+ traversal_stack[stack_ptr].dist = d0;
+
+ /* Three children are hit, push all onto stack and sort 3
+ * stack items, continue with closest child.
+ */
+ r = __bscf(child_mask);
+ int c2 = __float_as_int(cnodes[r]);
+ float d2 = ((float *)&dist)[r];
+ if (child_mask == 0) {
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c2;
+ traversal_stack[stack_ptr].dist = d2;
+ qbvh_stack_sort(&traversal_stack[stack_ptr],
+ &traversal_stack[stack_ptr - 1],
+ &traversal_stack[stack_ptr - 2]);
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ continue;
+ }
+
+ /* Four children are hit, push all onto stack and sort 4
+ * stack items, continue with closest child.
+ */
+ r = __bscf(child_mask);
+ int c3 = __float_as_int(cnodes[r]);
+ float d3 = ((float *)&dist)[r];
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c3;
+ traversal_stack[stack_ptr].dist = d3;
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = c2;
+ traversal_stack[stack_ptr].dist = d2;
+ qbvh_stack_sort(&traversal_stack[stack_ptr],
+ &traversal_stack[stack_ptr - 1],
+ &traversal_stack[stack_ptr - 2],
+ &traversal_stack[stack_ptr - 3]);
+ }
+
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ }
+
+ /* If node is leaf, fetch triangle list. */
+ if (node_addr < 0) {
+ float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1));
+
+ if ((__float_as_uint(leaf.z) & visibility) == 0) {
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ continue;
+ }
+
+ int prim_addr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
- if(prim_addr >= 0) {
+ if (prim_addr >= 0) {
#endif
- int prim_addr2 = __float_as_int(leaf.y);
- const uint type = __float_as_int(leaf.w);
- const uint p_type = type & PRIMITIVE_ALL;
-
- /* Pop. */
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
-
- /* Primitive intersection. */
- switch(p_type) {
- case PRIMITIVE_TRIANGLE: {
- for(; prim_addr < prim_addr2; prim_addr++) {
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
- /* Only primitives from volume object. */
- uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
- int object_flag = kernel_tex_fetch(__object_flag, tri_object);
- if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
- continue;
- }
- /* Intersect ray against primitive. */
- triangle_intersect(kg, isect, P, dir, visibility, object, prim_addr);
- }
- break;
- }
+ int prim_addr2 = __float_as_int(leaf.y);
+ const uint type = __float_as_int(leaf.w);
+ const uint p_type = type & PRIMITIVE_ALL;
+
+ /* Pop. */
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+
+ /* Primitive intersection. */
+ switch (p_type) {
+ case PRIMITIVE_TRIANGLE: {
+ for (; prim_addr < prim_addr2; prim_addr++) {
+ kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ /* Only primitives from volume object. */
+ uint tri_object = (object == OBJECT_NONE) ?
+ kernel_tex_fetch(__prim_object, prim_addr) :
+ object;
+ int object_flag = kernel_tex_fetch(__object_flag, tri_object);
+ if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
+ continue;
+ }
+ /* Intersect ray against primitive. */
+ triangle_intersect(kg, isect, P, dir, visibility, object, prim_addr);
+ }
+ break;
+ }
#if BVH_FEATURE(BVH_MOTION)
- case PRIMITIVE_MOTION_TRIANGLE: {
- for(; prim_addr < prim_addr2; prim_addr++) {
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
- /* Only primitives from volume object. */
- uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, prim_addr): object;
- int object_flag = kernel_tex_fetch(__object_flag, tri_object);
- if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
- continue;
- }
- /* Intersect ray against primitive. */
- motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, prim_addr);
- }
- break;
- }
+ case PRIMITIVE_MOTION_TRIANGLE: {
+ for (; prim_addr < prim_addr2; prim_addr++) {
+ kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ /* Only primitives from volume object. */
+ uint tri_object = (object == OBJECT_NONE) ?
+ kernel_tex_fetch(__prim_object, prim_addr) :
+ object;
+ int object_flag = kernel_tex_fetch(__object_flag, tri_object);
+ if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
+ continue;
+ }
+ /* Intersect ray against primitive. */
+ motion_triangle_intersect(
+ kg, isect, P, dir, ray->time, visibility, object, prim_addr);
+ }
+ break;
+ }
#endif
- }
- }
+ }
+ }
#if BVH_FEATURE(BVH_INSTANCING)
- else {
- /* Instance push. */
- object = kernel_tex_fetch(__prim_object, -prim_addr-1);
- int object_flag = kernel_tex_fetch(__object_flag, object);
- if(object_flag & SD_OBJECT_HAS_VOLUME) {
+ else {
+ /* Instance push. */
+ object = kernel_tex_fetch(__prim_object, -prim_addr - 1);
+ int object_flag = kernel_tex_fetch(__object_flag, object);
+ if (object_flag & SD_OBJECT_HAS_VOLUME) {
# if BVH_FEATURE(BVH_MOTION)
- isect->t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_push(
+ kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t);
+ isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- qbvh_near_far_idx_calc(idir,
- &near_x, &near_y, &near_z,
- &far_x, &far_y, &far_z);
- tfar = ssef(isect->t);
+ qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
+ tfar = ssef(isect->t);
# if BVH_FEATURE(BVH_HAIR)
- dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+ dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
- idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
- P_idir = P*idir;
- P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+ P_idir = P * idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+ org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- ++stack_ptr;
- kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
- traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
-
- node_addr = kernel_tex_fetch(__object_node, object);
- }
- else {
- /* Pop. */
- object = OBJECT_NONE;
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- }
- }
- }
-#endif /* FEATURE(BVH_INSTANCING) */
- } while(node_addr != ENTRYPOINT_SENTINEL);
+ ++stack_ptr;
+ kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
+ traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
+
+ node_addr = kernel_tex_fetch(__object_node, object);
+ }
+ else {
+ /* Pop. */
+ object = OBJECT_NONE;
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ }
+ }
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while (node_addr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
- if(stack_ptr >= 0) {
- kernel_assert(object != OBJECT_NONE);
+ if (stack_ptr >= 0) {
+ kernel_assert(object != OBJECT_NONE);
- /* Instance pop. */
+ /* Instance pop. */
# if BVH_FEATURE(BVH_MOTION)
- isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
+ isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- qbvh_near_far_idx_calc(idir,
- &near_x, &near_y, &near_z,
- &far_x, &far_y, &far_z);
- tfar = ssef(isect->t);
+ qbvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
+ tfar = ssef(isect->t);
# if BVH_FEATURE(BVH_HAIR)
- dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
+ dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z));
# endif
- idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
# ifdef __KERNEL_AVX2__
- P_idir = P*idir;
- P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+ P_idir = P * idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
# endif
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
- org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+ org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- object = OBJECT_NONE;
- node_addr = traversal_stack[stack_ptr].addr;
- --stack_ptr;
- }
-#endif /* FEATURE(BVH_INSTANCING) */
- } while(node_addr != ENTRYPOINT_SENTINEL);
+ object = OBJECT_NONE;
+ node_addr = traversal_stack[stack_ptr].addr;
+ --stack_ptr;
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while (node_addr != ENTRYPOINT_SENTINEL);
- return (isect->prim != PRIM_NONE);
+ return (isect->prim != PRIM_NONE);
}
#undef NODE_INTERSECT