Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/closure/bsdf_hair_principled.h')
-rw-r--r--intern/cycles/kernel/closure/bsdf_hair_principled.h502
1 files changed, 502 insertions, 0 deletions
diff --git a/intern/cycles/kernel/closure/bsdf_hair_principled.h b/intern/cycles/kernel/closure/bsdf_hair_principled.h
new file mode 100644
index 00000000000..4ee58089384
--- /dev/null
+++ b/intern/cycles/kernel/closure/bsdf_hair_principled.h
@@ -0,0 +1,502 @@
+/*
+ * Copyright 2018 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifdef __KERNEL_CPU__
+#include <fenv.h>
+#endif
+
+#include "kernel/kernel_color.h"
+
+#ifndef __BSDF_HAIR_PRINCIPLED_H__
+#define __BSDF_HAIR_PRINCIPLED_H__
+
+CCL_NAMESPACE_BEGIN
+
+typedef ccl_addr_space struct PrincipledHairExtra {
+ /* Geometry data. */
+ float4 geom;
+} PrincipledHairExtra;
+
+typedef ccl_addr_space struct PrincipledHairBSDF {
+ SHADER_CLOSURE_BASE;
+
+ /* Absorption coefficient. */
+ float3 sigma;
+ /* Variance of the underlying logistic distribution. */
+ float v;
+ /* Scale factor of the underlying logistic distribution. */
+ float s;
+ /* Cuticle tilt angle. */
+ float alpha;
+ /* IOR. */
+ float eta;
+ /* Effective variance for the diffuse bounce only. */
+ float m0_roughness;
+
+ /* Extra closure. */
+ PrincipledHairExtra *extra;
+} PrincipledHairBSDF;
+
+static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledHairBSDF), "PrincipledHairBSDF is too large!");
+static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledHairExtra), "PrincipledHairExtra is too large!");
+
+ccl_device_inline float cos_from_sin(const float s)
+{
+ return safe_sqrtf(1.0f - s*s);
+}
+
+/* Gives the change in direction in the normal plane for the given angles and p-th-order scattering. */
+ccl_device_inline float delta_phi(int p, float gamma_o, float gamma_t)
+{
+ return 2.0f * p * gamma_t - 2.0f * gamma_o + p * M_PI_F;
+}
+
+/* Remaps the given angle to [-pi, pi]. */
+ccl_device_inline float wrap_angle(float a)
+{
+ while(a > M_PI_F) {
+ a -= M_2PI_F;
+ }
+ while(a < -M_PI_F) {
+ a += M_2PI_F;
+ }
+ return a;
+}
+
+/* Logistic distribution function. */
+ccl_device_inline float logistic(float x, float s)
+{
+ float v = expf(-fabsf(x)/s);
+ return v / (s * sqr(1.0f + v));
+}
+
+/* Logistic cumulative density function. */
+ccl_device_inline float logistic_cdf(float x, float s)
+{
+ float arg = -x/s;
+ /* expf() overflows if arg >= 89.0. */
+ if(arg > 88.0f) {
+ return 0.0f;
+ }
+ else {
+ return 1.0f / (1.0f + expf(arg));
+ }
+}
+
+/* Numerical approximation to the Bessel function of the first kind. */
+ccl_device_inline float bessel_I0(float x)
+{
+ x = sqr(x);
+ float val = 1.0f + 0.25f*x;
+ float pow_x_2i = sqr(x);
+ uint64_t i_fac_2 = 1;
+ int pow_4_i = 16;
+ for(int i = 2; i < 10; i++) {
+ i_fac_2 *= i*i;
+ float newval = val + pow_x_2i / (pow_4_i * i_fac_2);
+ if(val == newval) {
+ return val;
+ }
+ val = newval;
+ pow_x_2i *= x;
+ pow_4_i *= 4;
+ }
+ return val;
+}
+
+/* Logarithm of the Bessel function of the first kind. */
+ccl_device_inline float log_bessel_I0(float x)
+{
+ if (x > 12.0f) {
+ /* log(1/x) == -log(x) iff x > 0.
+ * This is only used with positive cosines */
+ return x + 0.5f * (1.f / (8.0f * x) - M_LN_2PI_F - logf(x));
+ }
+ else {
+ return logf(bessel_I0(x));
+ }
+}
+
+/* Logistic distribution limited to the interval [-pi, pi]. */
+ccl_device_inline float trimmed_logistic(float x, float s)
+{
+ /* The logistic distribution is symmetric and centered around zero,
+ * so logistic_cdf(x, s) = 1 - logistic_cdf(-x, s).
+ * Therefore, logistic_cdf(x, s)-logistic_cdf(-x, s) = 1 - 2*logistic_cdf(-x, s) */
+ float scaling_fac = 1.0f - 2.0f*logistic_cdf(-M_PI_F, s);
+ float val = logistic(x, s);
+ return safe_divide(val, scaling_fac);
+}
+
+/* Sampling function for the trimmed logistic function. */
+ccl_device_inline float sample_trimmed_logistic(float u, float s)
+{
+ float cdf_minuspi = logistic_cdf(-M_PI_F, s);
+ float x = -s*logf(1.0f / (u*(1.0f - 2.0f*cdf_minuspi) + cdf_minuspi) - 1.0f);
+ return clamp(x, -M_PI_F, M_PI_F);
+}
+
+/* Azimuthal scattering function Np. */
+ccl_device_inline float azimuthal_scattering(float phi,
+ int p,
+ float s,
+ float gamma_o,
+ float gamma_t)
+{
+ float phi_o = wrap_angle(phi - delta_phi(p, gamma_o, gamma_t));
+ float val = trimmed_logistic(phi_o, s);
+ return val;
+}
+
+/* Longitudinal scattering function Mp. */
+ccl_device_inline float longitudinal_scattering(float sin_theta_i,
+ float cos_theta_i,
+ float sin_theta_o,
+ float cos_theta_o,
+ float v)
+{
+ float inv_v = 1.0f/v;
+ float cos_arg = cos_theta_i * cos_theta_o * inv_v;
+ float sin_arg = sin_theta_i * sin_theta_o * inv_v;
+ if(v <= 0.1f) {
+ float i0 = log_bessel_I0(cos_arg);
+ float val = expf(i0 - sin_arg - inv_v + 0.6931f + logf(0.5f*inv_v));
+ return val;
+ }
+ else {
+ float i0 = bessel_I0(cos_arg);
+ float val = (expf(-sin_arg) * i0) / (sinhf(inv_v) * 2.0f * v);
+ return val;
+ }
+}
+
+/* Combine the three values using their luminances. */
+ccl_device_inline float4 combine_with_energy(KernelGlobals *kg, float3 c)
+{
+ return make_float4(c.x, c.y, c.z, linear_rgb_to_gray(kg, c));
+}
+
+#ifdef __HAIR__
+/* Set up the hair closure. */
+ccl_device int bsdf_principled_hair_setup(ShaderData *sd, PrincipledHairBSDF *bsdf)
+{
+ bsdf->type = CLOSURE_BSDF_HAIR_PRINCIPLED_ID;
+ bsdf->v = clamp(bsdf->v, 0.001f, 1.0f);
+ bsdf->s = clamp(bsdf->s, 0.001f, 1.0f);
+ /* Apply Primary Reflection Roughness modifier. */
+ bsdf->m0_roughness = clamp(bsdf->m0_roughness*bsdf->v, 0.001f, 1.0f);
+
+ /* Map from roughness_u and roughness_v to variance and scale factor. */
+ bsdf->v = sqr(0.726f*bsdf->v + 0.812f*sqr(bsdf->v) + 3.700f*pow20(bsdf->v));
+ bsdf->s = (0.265f*bsdf->s + 1.194f*sqr(bsdf->s) + 5.372f*pow22(bsdf->s))*M_SQRT_PI_8_F;
+ bsdf->m0_roughness = sqr(0.726f*bsdf->m0_roughness + 0.812f*sqr(bsdf->m0_roughness) + 3.700f*pow20(bsdf->m0_roughness));
+
+ /* Compute local frame, aligned to curve tangent and ray direction. */
+ float3 X = safe_normalize(sd->dPdu);
+ float3 Y = safe_normalize(cross(X, sd->I));
+ float3 Z = safe_normalize(cross(X, Y));
+ /* TODO: the solution below works where sd->Ng is the normal
+ * pointing from the center of the curve to the shading point.
+ * It doesn't work for triangles, see https://developer.blender.org/T43625 */
+
+ /* h -1..0..1 means the rays goes from grazing the hair, to hitting it at
+ * the center, to grazing the other edge. This is the sine of the angle
+ * between sd->Ng and Z, as seen from the tangent X. */
+
+ /* TODO: we convert this value to a cosine later and discard the sign, so
+ * we could probably save some operations. */
+ float h = dot(cross(sd->Ng, X), Z);
+
+ kernel_assert(fabsf(h) < 1.0f + 1e-4f);
+ kernel_assert(isfinite3_safe(Y));
+ kernel_assert(isfinite_safe(h));
+
+ bsdf->extra->geom = make_float4(Y.x, Y.y, Y.z, h);
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
+}
+
+#endif /* __HAIR__ */
+
+/* Given the Fresnel term and transmittance, generate the attenuation terms for each bounce. */
+ccl_device_inline void hair_attenuation(KernelGlobals *kg,
+ float f,
+ float3 T,
+ float4 *Ap)
+{
+ /* Primary specular (R). */
+ Ap[0] = make_float4(f, f, f, f);
+
+ /* Transmission (TT). */
+ float3 col = sqr(1.0f - f) * T;
+ Ap[1] = combine_with_energy(kg, col);
+
+ /* Secondary specular (TRT). */
+ col *= T*f;
+ Ap[2] = combine_with_energy(kg, col);
+
+ /* Residual component (TRRT+). */
+ col *= safe_divide_color(T*f, make_float3(1.0f, 1.0f, 1.0f) - T*f);
+ Ap[3] = combine_with_energy(kg, col);
+
+ /* Normalize sampling weights. */
+ float totweight = Ap[0].w + Ap[1].w + Ap[2].w + Ap[3].w;
+ float fac = safe_divide(1.0f, totweight);
+
+ Ap[0].w *= fac;
+ Ap[1].w *= fac;
+ Ap[2].w *= fac;
+ Ap[3].w *= fac;
+}
+
+/* Given the tilt angle, generate the rotated theta_i for the different bounces. */
+ccl_device_inline void hair_alpha_angles(float sin_theta_i,
+ float cos_theta_i,
+ float alpha,
+ float *angles)
+{
+ float sin_1alpha = sinf(alpha);
+ float cos_1alpha = cos_from_sin(sin_1alpha);
+ float sin_2alpha = 2.0f*sin_1alpha*cos_1alpha;
+ float cos_2alpha = sqr(cos_1alpha) - sqr(sin_1alpha);
+ float sin_4alpha = 2.0f*sin_2alpha*cos_2alpha;
+ float cos_4alpha = sqr(cos_2alpha) - sqr(sin_2alpha);
+
+ angles[0] = sin_theta_i*cos_2alpha + cos_theta_i*sin_2alpha;
+ angles[1] = fabsf(cos_theta_i*cos_2alpha - sin_theta_i*sin_2alpha);
+ angles[2] = sin_theta_i*cos_1alpha - cos_theta_i*sin_1alpha;
+ angles[3] = fabsf(cos_theta_i*cos_1alpha + sin_theta_i*sin_1alpha);
+ angles[4] = sin_theta_i*cos_4alpha - cos_theta_i*sin_4alpha;
+ angles[5] = fabsf(cos_theta_i*cos_4alpha + sin_theta_i*sin_4alpha);
+}
+
+/* Evaluation function for our shader. */
+ccl_device float3 bsdf_principled_hair_eval(KernelGlobals *kg,
+ const ShaderData *sd,
+ const ShaderClosure *sc,
+ const float3 omega_in,
+ float *pdf)
+{
+ kernel_assert(isfinite3_safe(sd->P) && isfinite_safe(sd->ray_length));
+
+ const PrincipledHairBSDF *bsdf = (const PrincipledHairBSDF*) sc;
+ float3 Y = float4_to_float3(bsdf->extra->geom);
+
+ float3 X = safe_normalize(sd->dPdu);
+ kernel_assert(fabsf(dot(X, Y)) < 1e-4f);
+ float3 Z = safe_normalize(cross(X, Y));
+
+ float3 wo = make_float3(dot(sd->I, X), dot(sd->I, Y), dot(sd->I, Z));
+ float3 wi = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
+
+ float sin_theta_o = wo.x;
+ float cos_theta_o = cos_from_sin(sin_theta_o);
+ float phi_o = atan2f(wo.z, wo.y);
+
+ float sin_theta_t = sin_theta_o / bsdf->eta;
+ float cos_theta_t = cos_from_sin(sin_theta_t);
+
+ float sin_gamma_o = bsdf->extra->geom.w;
+ float cos_gamma_o = cos_from_sin(sin_gamma_o);
+ float gamma_o = safe_asinf(sin_gamma_o);
+
+ float sin_gamma_t = sin_gamma_o * cos_theta_o / sqrtf(sqr(bsdf->eta) - sqr(sin_theta_o));
+ float cos_gamma_t = cos_from_sin(sin_gamma_t);
+ float gamma_t = safe_asinf(sin_gamma_t);
+
+ float3 T = exp3(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
+ float4 Ap[4];
+ hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
+
+ float sin_theta_i = wi.x;
+ float cos_theta_i = cos_from_sin(sin_theta_i);
+ float phi_i = atan2f(wi.z, wi.y);
+
+ float phi = phi_i - phi_o;
+
+ float angles[6];
+ hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
+
+ float4 F;
+ float Mp, Np;
+
+ /* Primary specular (R). */
+ Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
+ Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
+ F = Ap[0] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Transmission (TT). */
+ Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f*bsdf->v);
+ Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
+ F += Ap[1] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Secondary specular (TRT). */
+ Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f*bsdf->v);
+ Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
+ F += Ap[2] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Residual component (TRRT+). */
+ Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f*bsdf->v);
+ Np = M_1_2PI_F;
+ F += Ap[3] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ *pdf = F.w;
+ return float4_to_float3(F);
+}
+
+/* Sampling function for the hair shader. */
+ccl_device int bsdf_principled_hair_sample(KernelGlobals *kg,
+ const ShaderClosure *sc,
+ ShaderData *sd,
+ float randu,
+ float randv,
+ float3 *eval,
+ float3 *omega_in,
+ float3 *domega_in_dx,
+ float3 *domega_in_dy,
+ float *pdf)
+{
+ PrincipledHairBSDF *bsdf = (PrincipledHairBSDF*) sc;
+
+ float3 Y = float4_to_float3(bsdf->extra->geom);
+
+ float3 X = safe_normalize(sd->dPdu);
+ kernel_assert(fabsf(dot(X, Y)) < 1e-4f);
+ float3 Z = safe_normalize(cross(X, Y));
+
+ float3 wo = make_float3(dot(sd->I, X), dot(sd->I, Y), dot(sd->I, Z));
+
+ float2 u[2];
+ u[0] = make_float2(randu, randv);
+ u[1].x = lcg_step_float_addrspace(&sd->lcg_state);
+ u[1].y = lcg_step_float_addrspace(&sd->lcg_state);
+
+ float sin_theta_o = wo.x;
+ float cos_theta_o = cos_from_sin(sin_theta_o);
+ float phi_o = atan2f(wo.z, wo.y);
+
+ float sin_theta_t = sin_theta_o / bsdf->eta;
+ float cos_theta_t = cos_from_sin(sin_theta_t);
+
+ float sin_gamma_o = bsdf->extra->geom.w;
+ float cos_gamma_o = cos_from_sin(sin_gamma_o);
+ float gamma_o = safe_asinf(sin_gamma_o);
+
+ float sin_gamma_t = sin_gamma_o * cos_theta_o / sqrtf(sqr(bsdf->eta) - sqr(sin_theta_o));
+ float cos_gamma_t = cos_from_sin(sin_gamma_t);
+ float gamma_t = safe_asinf(sin_gamma_t);
+
+ float3 T = exp3(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
+ float4 Ap[4];
+ hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
+
+ int p = 0;
+ for(; p < 3; p++) {
+ if(u[0].x < Ap[p].w) {
+ break;
+ }
+ u[0].x -= Ap[p].w;
+ }
+
+ float v = bsdf->v;
+ if(p == 1) {
+ v *= 0.25f;
+ }
+ if(p >= 2) {
+ v *= 4.0f;
+ }
+
+ u[1].x = max(u[1].x, 1e-5f);
+ float fac = 1.0f + v*logf(u[1].x + (1.0f - u[1].x)*expf(-2.0f/v));
+ float sin_theta_i = -fac * sin_theta_o + cos_from_sin(fac) * cosf(M_2PI_F * u[1].y) * cos_theta_o;
+ float cos_theta_i = cos_from_sin(sin_theta_i);
+
+ float angles[6];
+ if(p < 3) {
+ hair_alpha_angles(sin_theta_i, cos_theta_i, -bsdf->alpha, angles);
+ sin_theta_i = angles[2*p];
+ cos_theta_i = angles[2*p+1];
+ }
+
+ float phi;
+ if(p < 3) {
+ phi = delta_phi(p, gamma_o, gamma_t) + sample_trimmed_logistic(u[0].y, bsdf->s);
+ }
+ else {
+ phi = M_2PI_F*u[0].y;
+ }
+ float phi_i = phi_o + phi;
+
+ hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
+
+ float4 F;
+ float Mp, Np;
+
+ /* Primary specular (R). */
+ Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
+ Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
+ F = Ap[0] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Transmission (TT). */
+ Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f*bsdf->v);
+ Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
+ F += Ap[1] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Secondary specular (TRT). */
+ Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f*bsdf->v);
+ Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
+ F += Ap[2] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ /* Residual component (TRRT+). */
+ Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f*bsdf->v);
+ Np = M_1_2PI_F;
+ F += Ap[3] * Mp * Np;
+ kernel_assert(isfinite3_safe(float4_to_float3(F)));
+
+ *eval = float4_to_float3(F);
+ *pdf = F.w;
+
+ *omega_in = X*sin_theta_i + Y*cos_theta_i*cosf(phi_i) + Z*cos_theta_i*sinf(phi_i);
+
+#ifdef __RAY_DIFFERENTIALS__
+ float3 N = safe_normalize(sd->I + *omega_in);
+ *domega_in_dx = (2 * dot(N, sd->dI.dx)) * N - sd->dI.dx;
+ *domega_in_dy = (2 * dot(N, sd->dI.dy)) * N - sd->dI.dy;
+#endif
+
+ return LABEL_GLOSSY|((p == 0)? LABEL_REFLECT : LABEL_TRANSMIT);
+}
+
+/* Implements Filter Glossy by capping the effective roughness. */
+ccl_device void bsdf_principled_hair_blur(ShaderClosure *sc, float roughness)
+{
+ PrincipledHairBSDF *bsdf = (PrincipledHairBSDF*)sc;
+
+ bsdf->v = fmaxf(roughness, bsdf->v);
+ bsdf->s = fmaxf(roughness, bsdf->s);
+ bsdf->m0_roughness = fmaxf(roughness, bsdf->m0_roughness);
+}
+
+CCL_NAMESPACE_END
+
+#endif /* __BSDF_HAIR_PRINCIPLED_H__ */