Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/closure/bsdf_microfacet.h')
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet.h1847
1 files changed, 957 insertions, 890 deletions
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet.h b/intern/cycles/kernel/closure/bsdf_microfacet.h
index 32b6e50b09a..b4da3123f28 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet.h
@@ -36,95 +36,98 @@
CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct MicrofacetExtra {
- float3 color, cspec0;
- float clearcoat;
+ float3 color, cspec0;
+ float clearcoat;
} MicrofacetExtra;
typedef ccl_addr_space struct MicrofacetBsdf {
- SHADER_CLOSURE_BASE;
+ SHADER_CLOSURE_BASE;
- float alpha_x, alpha_y, ior;
- MicrofacetExtra *extra;
- float3 T;
+ float alpha_x, alpha_y, ior;
+ MicrofacetExtra *extra;
+ float3 T;
} MicrofacetBsdf;
/* Beckmann and GGX microfacet importance sampling. */
-ccl_device_inline void microfacet_beckmann_sample_slopes(
- KernelGlobals *kg,
- const float cos_theta_i, const float sin_theta_i,
- float randu, float randv, float *slope_x, float *slope_y,
- float *G1i)
+ccl_device_inline void microfacet_beckmann_sample_slopes(KernelGlobals *kg,
+ const float cos_theta_i,
+ const float sin_theta_i,
+ float randu,
+ float randv,
+ float *slope_x,
+ float *slope_y,
+ float *G1i)
{
- /* special case (normal incidence) */
- if(cos_theta_i >= 0.99999f) {
- const float r = sqrtf(-logf(randu));
- const float phi = M_2PI_F * randv;
- *slope_x = r * cosf(phi);
- *slope_y = r * sinf(phi);
- *G1i = 1.0f;
- return;
- }
-
- /* precomputations */
- const float tan_theta_i = sin_theta_i/cos_theta_i;
- const float inv_a = tan_theta_i;
- const float cot_theta_i = 1.0f/tan_theta_i;
- const float erf_a = fast_erff(cot_theta_i);
- const float exp_a2 = expf(-cot_theta_i*cot_theta_i);
- const float SQRT_PI_INV = 0.56418958354f;
- const float Lambda = 0.5f*(erf_a - 1.0f) + (0.5f*SQRT_PI_INV)*(exp_a2*inv_a);
- const float G1 = 1.0f/(1.0f + Lambda); /* masking */
-
- *G1i = G1;
+ /* special case (normal incidence) */
+ if (cos_theta_i >= 0.99999f) {
+ const float r = sqrtf(-logf(randu));
+ const float phi = M_2PI_F * randv;
+ *slope_x = r * cosf(phi);
+ *slope_y = r * sinf(phi);
+ *G1i = 1.0f;
+ return;
+ }
+
+ /* precomputations */
+ const float tan_theta_i = sin_theta_i / cos_theta_i;
+ const float inv_a = tan_theta_i;
+ const float cot_theta_i = 1.0f / tan_theta_i;
+ const float erf_a = fast_erff(cot_theta_i);
+ const float exp_a2 = expf(-cot_theta_i * cot_theta_i);
+ const float SQRT_PI_INV = 0.56418958354f;
+ const float Lambda = 0.5f * (erf_a - 1.0f) + (0.5f * SQRT_PI_INV) * (exp_a2 * inv_a);
+ const float G1 = 1.0f / (1.0f + Lambda); /* masking */
+
+ *G1i = G1;
#if defined(__KERNEL_GPU__)
- /* Based on paper from Wenzel Jakob
- * An Improved Visible Normal Sampling Routine for the Beckmann Distribution
- *
- * http://www.mitsuba-renderer.org/~wenzel/files/visnormal.pdf
- *
- * Reformulation from OpenShadingLanguage which avoids using inverse
- * trigonometric functions.
- */
-
- /* Sample slope X.
- *
- * Compute a coarse approximation using the approximation:
- * exp(-ierf(x)^2) ~= 1 - x * x
- * solve y = 1 + b + K * (1 - b * b)
- */
- float K = tan_theta_i * SQRT_PI_INV;
- float y_approx = randu * (1.0f + erf_a + K * (1 - erf_a * erf_a));
- float y_exact = randu * (1.0f + erf_a + K * exp_a2);
- float b = K > 0 ? (0.5f - sqrtf(K * (K - y_approx + 1.0f) + 0.25f)) / K : y_approx - 1.0f;
-
- /* Perform newton step to refine toward the true root. */
- float inv_erf = fast_ierff(b);
- float value = 1.0f + b + K * expf(-inv_erf * inv_erf) - y_exact;
- /* Check if we are close enough already,
- * this also avoids NaNs as we get close to the root.
- */
- if(fabsf(value) > 1e-6f) {
- b -= value / (1.0f - inv_erf * tan_theta_i); /* newton step 1. */
- inv_erf = fast_ierff(b);
- value = 1.0f + b + K * expf(-inv_erf * inv_erf) - y_exact;
- b -= value / (1.0f - inv_erf * tan_theta_i); /* newton step 2. */
- /* Compute the slope from the refined value. */
- *slope_x = fast_ierff(b);
- }
- else {
- /* We are close enough already. */
- *slope_x = inv_erf;
- }
- *slope_y = fast_ierff(2.0f*randv - 1.0f);
+ /* Based on paper from Wenzel Jakob
+ * An Improved Visible Normal Sampling Routine for the Beckmann Distribution
+ *
+ * http://www.mitsuba-renderer.org/~wenzel/files/visnormal.pdf
+ *
+ * Reformulation from OpenShadingLanguage which avoids using inverse
+ * trigonometric functions.
+ */
+
+ /* Sample slope X.
+ *
+ * Compute a coarse approximation using the approximation:
+ * exp(-ierf(x)^2) ~= 1 - x * x
+ * solve y = 1 + b + K * (1 - b * b)
+ */
+ float K = tan_theta_i * SQRT_PI_INV;
+ float y_approx = randu * (1.0f + erf_a + K * (1 - erf_a * erf_a));
+ float y_exact = randu * (1.0f + erf_a + K * exp_a2);
+ float b = K > 0 ? (0.5f - sqrtf(K * (K - y_approx + 1.0f) + 0.25f)) / K : y_approx - 1.0f;
+
+ /* Perform newton step to refine toward the true root. */
+ float inv_erf = fast_ierff(b);
+ float value = 1.0f + b + K * expf(-inv_erf * inv_erf) - y_exact;
+ /* Check if we are close enough already,
+ * this also avoids NaNs as we get close to the root.
+ */
+ if (fabsf(value) > 1e-6f) {
+ b -= value / (1.0f - inv_erf * tan_theta_i); /* newton step 1. */
+ inv_erf = fast_ierff(b);
+ value = 1.0f + b + K * expf(-inv_erf * inv_erf) - y_exact;
+ b -= value / (1.0f - inv_erf * tan_theta_i); /* newton step 2. */
+ /* Compute the slope from the refined value. */
+ *slope_x = fast_ierff(b);
+ }
+ else {
+ /* We are close enough already. */
+ *slope_x = inv_erf;
+ }
+ *slope_y = fast_ierff(2.0f * randv - 1.0f);
#else
- /* Use precomputed table on CPU, it gives better perfomance. */
- int beckmann_table_offset = kernel_data.tables.beckmann_offset;
+ /* Use precomputed table on CPU, it gives better perfomance. */
+ int beckmann_table_offset = kernel_data.tables.beckmann_offset;
- *slope_x = lookup_table_read_2D(kg, randu, cos_theta_i,
- beckmann_table_offset, BECKMANN_TABLE_SIZE, BECKMANN_TABLE_SIZE);
- *slope_y = fast_ierff(2.0f*randv - 1.0f);
+ *slope_x = lookup_table_read_2D(
+ kg, randu, cos_theta_i, beckmann_table_offset, BECKMANN_TABLE_SIZE, BECKMANN_TABLE_SIZE);
+ *slope_y = fast_ierff(2.0f * randv - 1.0f);
#endif
}
@@ -134,103 +137,109 @@ ccl_device_inline void microfacet_beckmann_sample_slopes(
* E. Heitz and E. d'Eon, EGSR 2014
*/
-ccl_device_inline void microfacet_ggx_sample_slopes(
- const float cos_theta_i, const float sin_theta_i,
- float randu, float randv, float *slope_x, float *slope_y,
- float *G1i)
+ccl_device_inline void microfacet_ggx_sample_slopes(const float cos_theta_i,
+ const float sin_theta_i,
+ float randu,
+ float randv,
+ float *slope_x,
+ float *slope_y,
+ float *G1i)
{
- /* special case (normal incidence) */
- if(cos_theta_i >= 0.99999f) {
- const float r = sqrtf(randu/(1.0f - randu));
- const float phi = M_2PI_F * randv;
- *slope_x = r * cosf(phi);
- *slope_y = r * sinf(phi);
- *G1i = 1.0f;
-
- return;
- }
-
- /* precomputations */
- const float tan_theta_i = sin_theta_i/cos_theta_i;
- const float G1_inv = 0.5f * (1.0f + safe_sqrtf(1.0f + tan_theta_i*tan_theta_i));
-
- *G1i = 1.0f/G1_inv;
-
- /* sample slope_x */
- const float A = 2.0f*randu*G1_inv - 1.0f;
- const float AA = A*A;
- const float tmp = 1.0f/(AA - 1.0f);
- const float B = tan_theta_i;
- const float BB = B*B;
- const float D = safe_sqrtf(BB*(tmp*tmp) - (AA - BB)*tmp);
- const float slope_x_1 = B*tmp - D;
- const float slope_x_2 = B*tmp + D;
- *slope_x = (A < 0.0f || slope_x_2*tan_theta_i > 1.0f)? slope_x_1: slope_x_2;
-
- /* sample slope_y */
- float S;
-
- if(randv > 0.5f) {
- S = 1.0f;
- randv = 2.0f*(randv - 0.5f);
- }
- else {
- S = -1.0f;
- randv = 2.0f*(0.5f - randv);
- }
-
- const float z = (randv*(randv*(randv*0.27385f - 0.73369f) + 0.46341f)) / (randv*(randv*(randv*0.093073f + 0.309420f) - 1.000000f) + 0.597999f);
- *slope_y = S * z * safe_sqrtf(1.0f + (*slope_x)*(*slope_x));
+ /* special case (normal incidence) */
+ if (cos_theta_i >= 0.99999f) {
+ const float r = sqrtf(randu / (1.0f - randu));
+ const float phi = M_2PI_F * randv;
+ *slope_x = r * cosf(phi);
+ *slope_y = r * sinf(phi);
+ *G1i = 1.0f;
+
+ return;
+ }
+
+ /* precomputations */
+ const float tan_theta_i = sin_theta_i / cos_theta_i;
+ const float G1_inv = 0.5f * (1.0f + safe_sqrtf(1.0f + tan_theta_i * tan_theta_i));
+
+ *G1i = 1.0f / G1_inv;
+
+ /* sample slope_x */
+ const float A = 2.0f * randu * G1_inv - 1.0f;
+ const float AA = A * A;
+ const float tmp = 1.0f / (AA - 1.0f);
+ const float B = tan_theta_i;
+ const float BB = B * B;
+ const float D = safe_sqrtf(BB * (tmp * tmp) - (AA - BB) * tmp);
+ const float slope_x_1 = B * tmp - D;
+ const float slope_x_2 = B * tmp + D;
+ *slope_x = (A < 0.0f || slope_x_2 * tan_theta_i > 1.0f) ? slope_x_1 : slope_x_2;
+
+ /* sample slope_y */
+ float S;
+
+ if (randv > 0.5f) {
+ S = 1.0f;
+ randv = 2.0f * (randv - 0.5f);
+ }
+ else {
+ S = -1.0f;
+ randv = 2.0f * (0.5f - randv);
+ }
+
+ const float z = (randv * (randv * (randv * 0.27385f - 0.73369f) + 0.46341f)) /
+ (randv * (randv * (randv * 0.093073f + 0.309420f) - 1.000000f) + 0.597999f);
+ *slope_y = S * z * safe_sqrtf(1.0f + (*slope_x) * (*slope_x));
}
-ccl_device_forceinline float3 microfacet_sample_stretched(
- KernelGlobals *kg, const float3 omega_i,
- const float alpha_x, const float alpha_y,
- const float randu, const float randv,
- bool beckmann, float *G1i)
+ccl_device_forceinline float3 microfacet_sample_stretched(KernelGlobals *kg,
+ const float3 omega_i,
+ const float alpha_x,
+ const float alpha_y,
+ const float randu,
+ const float randv,
+ bool beckmann,
+ float *G1i)
{
- /* 1. stretch omega_i */
- float3 omega_i_ = make_float3(alpha_x * omega_i.x, alpha_y * omega_i.y, omega_i.z);
- omega_i_ = normalize(omega_i_);
-
- /* get polar coordinates of omega_i_ */
- float costheta_ = 1.0f;
- float sintheta_ = 0.0f;
- float cosphi_ = 1.0f;
- float sinphi_ = 0.0f;
-
- if(omega_i_.z < 0.99999f) {
- costheta_ = omega_i_.z;
- sintheta_ = safe_sqrtf(1.0f - costheta_*costheta_);
-
- float invlen = 1.0f/sintheta_;
- cosphi_ = omega_i_.x * invlen;
- sinphi_ = omega_i_.y * invlen;
- }
-
- /* 2. sample P22_{omega_i}(x_slope, y_slope, 1, 1) */
- float slope_x, slope_y;
-
- if(beckmann) {
- microfacet_beckmann_sample_slopes(kg, costheta_, sintheta_,
- randu, randv, &slope_x, &slope_y, G1i);
- }
- else {
- microfacet_ggx_sample_slopes(costheta_, sintheta_,
- randu, randv, &slope_x, &slope_y, G1i);
- }
-
- /* 3. rotate */
- float tmp = cosphi_*slope_x - sinphi_*slope_y;
- slope_y = sinphi_*slope_x + cosphi_*slope_y;
- slope_x = tmp;
-
- /* 4. unstretch */
- slope_x = alpha_x * slope_x;
- slope_y = alpha_y * slope_y;
-
- /* 5. compute normal */
- return normalize(make_float3(-slope_x, -slope_y, 1.0f));
+ /* 1. stretch omega_i */
+ float3 omega_i_ = make_float3(alpha_x * omega_i.x, alpha_y * omega_i.y, omega_i.z);
+ omega_i_ = normalize(omega_i_);
+
+ /* get polar coordinates of omega_i_ */
+ float costheta_ = 1.0f;
+ float sintheta_ = 0.0f;
+ float cosphi_ = 1.0f;
+ float sinphi_ = 0.0f;
+
+ if (omega_i_.z < 0.99999f) {
+ costheta_ = omega_i_.z;
+ sintheta_ = safe_sqrtf(1.0f - costheta_ * costheta_);
+
+ float invlen = 1.0f / sintheta_;
+ cosphi_ = omega_i_.x * invlen;
+ sinphi_ = omega_i_.y * invlen;
+ }
+
+ /* 2. sample P22_{omega_i}(x_slope, y_slope, 1, 1) */
+ float slope_x, slope_y;
+
+ if (beckmann) {
+ microfacet_beckmann_sample_slopes(
+ kg, costheta_, sintheta_, randu, randv, &slope_x, &slope_y, G1i);
+ }
+ else {
+ microfacet_ggx_sample_slopes(costheta_, sintheta_, randu, randv, &slope_x, &slope_y, G1i);
+ }
+
+ /* 3. rotate */
+ float tmp = cosphi_ * slope_x - sinphi_ * slope_y;
+ slope_y = sinphi_ * slope_x + cosphi_ * slope_y;
+ slope_x = tmp;
+
+ /* 4. unstretch */
+ slope_x = alpha_x * slope_x;
+ slope_y = alpha_y * slope_y;
+
+ /* 5. compute normal */
+ return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
/* Calculate the reflection color
@@ -240,27 +249,29 @@ ccl_device_forceinline float3 microfacet_sample_stretched(
*
* Else it is simply white
*/
-ccl_device_forceinline float3 reflection_color(const MicrofacetBsdf *bsdf, float3 L, float3 H) {
- float3 F = make_float3(1.0f, 1.0f, 1.0f);
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID
- || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID
- || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
+ccl_device_forceinline float3 reflection_color(const MicrofacetBsdf *bsdf, float3 L, float3 H)
+{
+ float3 F = make_float3(1.0f, 1.0f, 1.0f);
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID ||
+ bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID ||
+ bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
- if(use_fresnel) {
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ if (use_fresnel) {
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- F = interpolate_fresnel_color(L, H, bsdf->ior, F0, bsdf->extra->cspec0);
- }
+ F = interpolate_fresnel_color(L, H, bsdf->ior, F0, bsdf->extra->cspec0);
+ }
- return F;
+ return F;
}
ccl_device_forceinline float D_GTR1(float NdotH, float alpha)
{
- if(alpha >= 1.0f) return M_1_PI_F;
- float alpha2 = alpha*alpha;
- float t = 1.0f + (alpha2 - 1.0f) * NdotH*NdotH;
- return (alpha2 - 1.0f) / (M_PI_F * logf(alpha2) * t);
+ if (alpha >= 1.0f)
+ return M_1_PI_F;
+ float alpha2 = alpha * alpha;
+ float t = 1.0f + (alpha2 - 1.0f) * NdotH * NdotH;
+ return (alpha2 - 1.0f) / (M_PI_F * logf(alpha2) * t);
}
/* GGX microfacet with Smith shadow-masking from:
@@ -278,483 +289,511 @@ ccl_device_forceinline float D_GTR1(float NdotH, float alpha)
ccl_device int bsdf_microfacet_ggx_setup(MicrofacetBsdf *bsdf)
{
- bsdf->extra = NULL;
+ bsdf->extra = NULL;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_ggx_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
{
- bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
- bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
- bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= F;
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_ggx_clearcoat_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
{
- bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
- bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
- bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= 0.25f * bsdf->extra->clearcoat * F;
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= 0.25f * bsdf->extra->clearcoat * F;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device bool bsdf_microfacet_merge(const ShaderClosure *a, const ShaderClosure *b)
{
- const MicrofacetBsdf *bsdf_a = (const MicrofacetBsdf*)a;
- const MicrofacetBsdf *bsdf_b = (const MicrofacetBsdf*)b;
-
- return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
- (bsdf_a->alpha_x == bsdf_b->alpha_x) &&
- (bsdf_a->alpha_y == bsdf_b->alpha_y) &&
- (isequal_float3(bsdf_a->T, bsdf_b->T)) &&
- (bsdf_a->ior == bsdf_b->ior) &&
- ((bsdf_a->extra == NULL && bsdf_b->extra == NULL) ||
- ((bsdf_a->extra && bsdf_b->extra) &&
- (isequal_float3(bsdf_a->extra->color, bsdf_b->extra->color)) &&
- (isequal_float3(bsdf_a->extra->cspec0, bsdf_b->extra->cspec0)) &&
- (bsdf_a->extra->clearcoat == bsdf_b->extra->clearcoat)));
+ const MicrofacetBsdf *bsdf_a = (const MicrofacetBsdf *)a;
+ const MicrofacetBsdf *bsdf_b = (const MicrofacetBsdf *)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N)) && (bsdf_a->alpha_x == bsdf_b->alpha_x) &&
+ (bsdf_a->alpha_y == bsdf_b->alpha_y) && (isequal_float3(bsdf_a->T, bsdf_b->T)) &&
+ (bsdf_a->ior == bsdf_b->ior) &&
+ ((bsdf_a->extra == NULL && bsdf_b->extra == NULL) ||
+ ((bsdf_a->extra && bsdf_b->extra) &&
+ (isequal_float3(bsdf_a->extra->color, bsdf_b->extra->color)) &&
+ (isequal_float3(bsdf_a->extra->cspec0, bsdf_b->extra->cspec0)) &&
+ (bsdf_a->extra->clearcoat == bsdf_b->extra->clearcoat)));
}
ccl_device int bsdf_microfacet_ggx_aniso_setup(MicrofacetBsdf *bsdf)
{
- bsdf->extra = NULL;
+ bsdf->extra = NULL;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = saturate(bsdf->alpha_y);
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_ggx_aniso_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
{
- bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
- bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
- bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
- float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
- float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
- bsdf->sample_weight *= F;
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = saturate(bsdf->alpha_y);
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_ggx_refraction_setup(MicrofacetBsdf *bsdf)
{
- bsdf->extra = NULL;
+ bsdf->extra = NULL;
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness)
{
- MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
- bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
- bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
-ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc,
+ const float3 I,
+ const float3 omega_in,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = bsdf->N;
-
- if(m_refractive || alpha_x*alpha_y <= 1e-7f)
- return make_float3(0.0f, 0.0f, 0.0f);
-
- float cosNO = dot(N, I);
- float cosNI = dot(N, omega_in);
-
- if(cosNI > 0 && cosNO > 0) {
- /* get half vector */
- float3 m = normalize(omega_in + I);
- float alpha2 = alpha_x * alpha_y;
- float D, G1o, G1i;
-
- if(alpha_x == alpha_y) {
- /* isotropic
- * eq. 20: (F*G*D)/(4*in*on)
- * eq. 33: first we calculate D(m) */
- float cosThetaM = dot(N, m);
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
-
- if(bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
- /* use GTR1 for clearcoat */
- D = D_GTR1(cosThetaM, bsdf->alpha_x);
-
- /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
- alpha2 = 0.0625f;
- }
- else {
- /* use GTR2 otherwise */
- D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
- }
-
- /* eq. 34: now calculate G1(i,m) and G1(o,m) */
- G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
- G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
- }
- else {
- /* anisotropic */
- float3 X, Y, Z = N;
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
-
- /* distribution */
- float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
- float slope_x = -local_m.x/(local_m.z*alpha_x);
- float slope_y = -local_m.y/(local_m.z*alpha_y);
- float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
-
- float cosThetaM = local_m.z;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
-
- D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
-
- /* G1(i,m) and G1(o,m) */
- float tanThetaO2 = (1 - cosNO * cosNO) / (cosNO * cosNO);
- float cosPhiO = dot(I, X);
- float sinPhiO = dot(I, Y);
-
- float alphaO2 = (cosPhiO*cosPhiO)*(alpha_x*alpha_x) + (sinPhiO*sinPhiO)*(alpha_y*alpha_y);
- alphaO2 /= cosPhiO*cosPhiO + sinPhiO*sinPhiO;
-
- G1o = 2 / (1 + safe_sqrtf(1 + alphaO2 * tanThetaO2));
-
- float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
- float cosPhiI = dot(omega_in, X);
- float sinPhiI = dot(omega_in, Y);
-
- float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
- alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
-
- G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
- }
-
- float G = G1o * G1i;
-
- /* eq. 20 */
- float common = D * 0.25f / cosNO;
-
- float3 F = reflection_color(bsdf, omega_in, m);
- if(bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
- F *= 0.25f * bsdf->extra->clearcoat;
- }
-
- float3 out = F * G * common;
-
- /* eq. 2 in distribution of visible normals sampling
- * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
-
- /* eq. 38 - but see also:
- * eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
- * pdf = pm * 0.25 / dot(m, I); */
- *pdf = G1o * common;
-
- return out;
- }
-
- return make_float3(0.0f, 0.0f, 0.0f);
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
+
+ if (m_refractive || alpha_x * alpha_y <= 1e-7f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float cosNO = dot(N, I);
+ float cosNI = dot(N, omega_in);
+
+ if (cosNI > 0 && cosNO > 0) {
+ /* get half vector */
+ float3 m = normalize(omega_in + I);
+ float alpha2 = alpha_x * alpha_y;
+ float D, G1o, G1i;
+
+ if (alpha_x == alpha_y) {
+ /* isotropic
+ * eq. 20: (F*G*D)/(4*in*on)
+ * eq. 33: first we calculate D(m) */
+ float cosThetaM = dot(N, m);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+
+ if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
+ /* use GTR1 for clearcoat */
+ D = D_GTR1(cosThetaM, bsdf->alpha_x);
+
+ /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
+ alpha2 = 0.0625f;
+ }
+ else {
+ /* use GTR2 otherwise */
+ D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ }
+
+ /* eq. 34: now calculate G1(i,m) and G1(o,m) */
+ G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ }
+ else {
+ /* anisotropic */
+ float3 X, Y, Z = N;
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
+
+ /* distribution */
+ float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
+ float slope_x = -local_m.x / (local_m.z * alpha_x);
+ float slope_y = -local_m.y / (local_m.z * alpha_y);
+ float slope_len = 1 + slope_x * slope_x + slope_y * slope_y;
+
+ float cosThetaM = local_m.z;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+
+ D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
+
+ /* G1(i,m) and G1(o,m) */
+ float tanThetaO2 = (1 - cosNO * cosNO) / (cosNO * cosNO);
+ float cosPhiO = dot(I, X);
+ float sinPhiO = dot(I, Y);
+
+ float alphaO2 = (cosPhiO * cosPhiO) * (alpha_x * alpha_x) +
+ (sinPhiO * sinPhiO) * (alpha_y * alpha_y);
+ alphaO2 /= cosPhiO * cosPhiO + sinPhiO * sinPhiO;
+
+ G1o = 2 / (1 + safe_sqrtf(1 + alphaO2 * tanThetaO2));
+
+ float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
+ float cosPhiI = dot(omega_in, X);
+ float sinPhiI = dot(omega_in, Y);
+
+ float alphaI2 = (cosPhiI * cosPhiI) * (alpha_x * alpha_x) +
+ (sinPhiI * sinPhiI) * (alpha_y * alpha_y);
+ alphaI2 /= cosPhiI * cosPhiI + sinPhiI * sinPhiI;
+
+ G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
+ }
+
+ float G = G1o * G1i;
+
+ /* eq. 20 */
+ float common = D * 0.25f / cosNO;
+
+ float3 F = reflection_color(bsdf, omega_in, m);
+ if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
+ F *= 0.25f * bsdf->extra->clearcoat;
+ }
+
+ float3 out = F * G * common;
+
+ /* eq. 2 in distribution of visible normals sampling
+ * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
+
+ /* eq. 38 - but see also:
+ * eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ * pdf = pm * 0.25 / dot(m, I); */
+ *pdf = G1o * common;
+
+ return out;
+ }
+
+ return make_float3(0.0f, 0.0f, 0.0f);
}
-ccl_device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc,
+ const float3 I,
+ const float3 omega_in,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- float m_eta = bsdf->ior;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = bsdf->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ float m_eta = bsdf->ior;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
- if(!m_refractive || alpha_x*alpha_y <= 1e-7f)
- return make_float3(0.0f, 0.0f, 0.0f);
+ if (!m_refractive || alpha_x * alpha_y <= 1e-7f)
+ return make_float3(0.0f, 0.0f, 0.0f);
- float cosNO = dot(N, I);
- float cosNI = dot(N, omega_in);
+ float cosNO = dot(N, I);
+ float cosNI = dot(N, omega_in);
- if(cosNO <= 0 || cosNI >= 0)
- return make_float3(0.0f, 0.0f, 0.0f); /* vectors on same side -- not possible */
+ if (cosNO <= 0 || cosNI >= 0)
+ return make_float3(0.0f, 0.0f, 0.0f); /* vectors on same side -- not possible */
- /* compute half-vector of the refraction (eq. 16) */
- float3 ht = -(m_eta * omega_in + I);
- float3 Ht = normalize(ht);
- float cosHO = dot(Ht, I);
- float cosHI = dot(Ht, omega_in);
+ /* compute half-vector of the refraction (eq. 16) */
+ float3 ht = -(m_eta * omega_in + I);
+ float3 Ht = normalize(ht);
+ float cosHO = dot(Ht, I);
+ float cosHI = dot(Ht, omega_in);
- float D, G1o, G1i;
+ float D, G1o, G1i;
- /* eq. 33: first we calculate D(m) with m=Ht: */
- float alpha2 = alpha_x * alpha_y;
- float cosThetaM = dot(N, Ht);
- float cosThetaM2 = cosThetaM * cosThetaM;
- float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ /* eq. 33: first we calculate D(m) with m=Ht: */
+ float alpha2 = alpha_x * alpha_y;
+ float cosThetaM = dot(N, Ht);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
- /* eq. 34: now calculate G1(i,m) and G1(o,m) */
- G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
- G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ /* eq. 34: now calculate G1(i,m) and G1(o,m) */
+ G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
- float G = G1o * G1i;
+ float G = G1o * G1i;
- /* probability */
- float Ht2 = dot(ht, ht);
+ /* probability */
+ float Ht2 = dot(ht, ht);
- /* eq. 2 in distribution of visible normals sampling
- * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
+ /* eq. 2 in distribution of visible normals sampling
+ * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
- /* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
- * pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
- float common = D * (m_eta * m_eta) / (cosNO * Ht2);
- float out = G * fabsf(cosHI * cosHO) * common;
- *pdf = G1o * fabsf(cosHO * cosHI) * common;
+ /* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
+ * pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
+ float common = D * (m_eta * m_eta) / (cosNO * Ht2);
+ float out = G * fabsf(cosHI * cosHO) * common;
+ *pdf = G1o * fabsf(cosHO * cosHI) * common;
- return make_float3(out, out, out);
+ return make_float3(out, out, out);
}
-ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg,
+ const ShaderClosure *sc,
+ float3 Ng,
+ float3 I,
+ float3 dIdx,
+ float3 dIdy,
+ float randu,
+ float randv,
+ float3 *eval,
+ float3 *omega_in,
+ float3 *domega_in_dx,
+ float3 *domega_in_dy,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = bsdf->N;
- int label;
-
- float cosNO = dot(N, I);
- if(cosNO > 0) {
- float3 X, Y, Z = N;
-
- if(alpha_x == alpha_y)
- make_orthonormals(Z, &X, &Y);
- else
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
-
- /* importance sampling with distribution of visible normals. vectors are
- * transformed to local space before and after */
- float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
- float3 local_m;
- float G1o;
-
- local_m = microfacet_sample_stretched(kg, local_I, alpha_x, alpha_y,
- randu, randv, false, &G1o);
-
- float3 m = X*local_m.x + Y*local_m.y + Z*local_m.z;
- float cosThetaM = local_m.z;
-
- /* reflection or refraction? */
- if(!m_refractive) {
- float cosMO = dot(m, I);
- label = LABEL_REFLECT | LABEL_GLOSSY;
-
- if(cosMO > 0) {
- /* eq. 39 - compute actual reflected direction */
- *omega_in = 2 * cosMO * m - I;
-
- if(dot(Ng, *omega_in) > 0) {
- if(alpha_x*alpha_y <= 1e-7f) {
- /* some high number for MIS */
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
-
- bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID
- || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID
- || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
-
- /* if fresnel is used, calculate the color with reflection_color(...) */
- if(use_fresnel) {
- *eval *= reflection_color(bsdf, *omega_in, m);
- }
-
- label = LABEL_REFLECT | LABEL_SINGULAR;
- }
- else {
- /* microfacet normal is visible to this ray */
- /* eq. 33 */
- float alpha2 = alpha_x * alpha_y;
- float D, G1i;
-
- if(alpha_x == alpha_y) {
- /* isotropic */
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float tanThetaM2 = 1/(cosThetaM2) - 1;
-
- /* eval BRDF*cosNI */
- float cosNI = dot(N, *omega_in);
-
- if(bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
- /* use GTR1 for clearcoat */
- D = D_GTR1(cosThetaM, bsdf->alpha_x);
-
- /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
- alpha2 = 0.0625f;
-
- /* recalculate G1o */
- G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
- }
- else {
- /* use GTR2 otherwise */
- D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
- }
-
- /* eq. 34: now calculate G1(i,m) */
- G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
- }
- else {
- /* anisotropic distribution */
- float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
- float slope_x = -local_m.x/(local_m.z*alpha_x);
- float slope_y = -local_m.y/(local_m.z*alpha_y);
- float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
-
- float cosThetaM = local_m.z;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
-
- D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
-
- /* calculate G1(i,m) */
- float cosNI = dot(N, *omega_in);
-
- float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
- float cosPhiI = dot(*omega_in, X);
- float sinPhiI = dot(*omega_in, Y);
-
- float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
- alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
-
- G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
- }
-
- /* see eval function for derivation */
- float common = (G1o * D) * 0.25f / cosNO;
- *pdf = common;
-
- float3 F = reflection_color(bsdf, *omega_in, m);
-
- *eval = G1i * common * F;
- }
-
- if(bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
- *eval *= 0.25f * bsdf->extra->clearcoat;
- }
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
+ int label;
+
+ float cosNO = dot(N, I);
+ if (cosNO > 0) {
+ float3 X, Y, Z = N;
+
+ if (alpha_x == alpha_y)
+ make_orthonormals(Z, &X, &Y);
+ else
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
+
+ /* importance sampling with distribution of visible normals. vectors are
+ * transformed to local space before and after */
+ float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
+ float3 local_m;
+ float G1o;
+
+ local_m = microfacet_sample_stretched(
+ kg, local_I, alpha_x, alpha_y, randu, randv, false, &G1o);
+
+ float3 m = X * local_m.x + Y * local_m.y + Z * local_m.z;
+ float cosThetaM = local_m.z;
+
+ /* reflection or refraction? */
+ if (!m_refractive) {
+ float cosMO = dot(m, I);
+ label = LABEL_REFLECT | LABEL_GLOSSY;
+
+ if (cosMO > 0) {
+ /* eq. 39 - compute actual reflected direction */
+ *omega_in = 2 * cosMO * m - I;
+
+ if (dot(Ng, *omega_in) > 0) {
+ if (alpha_x * alpha_y <= 1e-7f) {
+ /* some high number for MIS */
+ *pdf = 1e6f;
+ *eval = make_float3(1e6f, 1e6f, 1e6f);
+
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID ||
+ bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID ||
+ bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
+
+ /* if fresnel is used, calculate the color with reflection_color(...) */
+ if (use_fresnel) {
+ *eval *= reflection_color(bsdf, *omega_in, m);
+ }
+
+ label = LABEL_REFLECT | LABEL_SINGULAR;
+ }
+ else {
+ /* microfacet normal is visible to this ray */
+ /* eq. 33 */
+ float alpha2 = alpha_x * alpha_y;
+ float D, G1i;
+
+ if (alpha_x == alpha_y) {
+ /* isotropic */
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float tanThetaM2 = 1 / (cosThetaM2)-1;
+
+ /* eval BRDF*cosNI */
+ float cosNI = dot(N, *omega_in);
+
+ if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
+ /* use GTR1 for clearcoat */
+ D = D_GTR1(cosThetaM, bsdf->alpha_x);
+
+ /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
+ alpha2 = 0.0625f;
+
+ /* recalculate G1o */
+ G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ }
+ else {
+ /* use GTR2 otherwise */
+ D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ }
+
+ /* eq. 34: now calculate G1(i,m) */
+ G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ }
+ else {
+ /* anisotropic distribution */
+ float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
+ float slope_x = -local_m.x / (local_m.z * alpha_x);
+ float slope_y = -local_m.y / (local_m.z * alpha_y);
+ float slope_len = 1 + slope_x * slope_x + slope_y * slope_y;
+
+ float cosThetaM = local_m.z;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+
+ D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
+
+ /* calculate G1(i,m) */
+ float cosNI = dot(N, *omega_in);
+
+ float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
+ float cosPhiI = dot(*omega_in, X);
+ float sinPhiI = dot(*omega_in, Y);
+
+ float alphaI2 = (cosPhiI * cosPhiI) * (alpha_x * alpha_x) +
+ (sinPhiI * sinPhiI) * (alpha_y * alpha_y);
+ alphaI2 /= cosPhiI * cosPhiI + sinPhiI * sinPhiI;
+
+ G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
+ }
+
+ /* see eval function for derivation */
+ float common = (G1o * D) * 0.25f / cosNO;
+ *pdf = common;
+
+ float3 F = reflection_color(bsdf, *omega_in, m);
+
+ *eval = G1i * common * F;
+ }
+
+ if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
+ *eval *= 0.25f * bsdf->extra->clearcoat;
+ }
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
- *domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
+ *domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
+ *domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
- }
- }
- }
- else {
- label = LABEL_TRANSMIT | LABEL_GLOSSY;
-
- /* CAUTION: the i and o variables are inverted relative to the paper
- * eq. 39 - compute actual refractive direction */
- float3 R, T;
+ }
+ }
+ }
+ else {
+ label = LABEL_TRANSMIT | LABEL_GLOSSY;
+
+ /* CAUTION: the i and o variables are inverted relative to the paper
+ * eq. 39 - compute actual refractive direction */
+ float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
- float3 dRdx, dRdy, dTdx, dTdy;
+ float3 dRdx, dRdy, dTdx, dTdy;
#endif
- float m_eta = bsdf->ior, fresnel;
- bool inside;
-
- fresnel = fresnel_dielectric(m_eta, m, I, &R, &T,
+ float m_eta = bsdf->ior, fresnel;
+ bool inside;
+
+ fresnel = fresnel_dielectric(m_eta,
+ m,
+ I,
+ &R,
+ &T,
#ifdef __RAY_DIFFERENTIALS__
- dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
+ dIdx,
+ dIdy,
+ &dRdx,
+ &dRdy,
+ &dTdx,
+ &dTdy,
#endif
- &inside);
+ &inside);
- if(!inside && fresnel != 1.0f) {
+ if (!inside && fresnel != 1.0f) {
- *omega_in = T;
+ *omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = dTdx;
- *domega_in_dy = dTdy;
+ *domega_in_dx = dTdx;
+ *domega_in_dy = dTdy;
#endif
- if(alpha_x*alpha_y <= 1e-7f || fabsf(m_eta - 1.0f) < 1e-4f) {
- /* some high number for MIS */
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
- label = LABEL_TRANSMIT | LABEL_SINGULAR;
- }
- else {
- /* eq. 33 */
- float alpha2 = alpha_x * alpha_y;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float tanThetaM2 = 1/(cosThetaM2) - 1;
- float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
-
- /* eval BRDF*cosNI */
- float cosNI = dot(N, *omega_in);
-
- /* eq. 34: now calculate G1(i,m) */
- float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
-
- /* eq. 21 */
- float cosHI = dot(m, *omega_in);
- float cosHO = dot(m, I);
- float Ht2 = m_eta * cosHI + cosHO;
- Ht2 *= Ht2;
-
- /* see eval function for derivation */
- float common = (G1o * D) * (m_eta * m_eta) / (cosNO * Ht2);
- float out = G1i * fabsf(cosHI * cosHO) * common;
- *pdf = cosHO * fabsf(cosHI) * common;
-
- *eval = make_float3(out, out, out);
- }
- }
- }
- }
- else {
- label = (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
- }
- return label;
+ if (alpha_x * alpha_y <= 1e-7f || fabsf(m_eta - 1.0f) < 1e-4f) {
+ /* some high number for MIS */
+ *pdf = 1e6f;
+ *eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_TRANSMIT | LABEL_SINGULAR;
+ }
+ else {
+ /* eq. 33 */
+ float alpha2 = alpha_x * alpha_y;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float tanThetaM2 = 1 / (cosThetaM2)-1;
+ float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+
+ /* eval BRDF*cosNI */
+ float cosNI = dot(N, *omega_in);
+
+ /* eq. 34: now calculate G1(i,m) */
+ float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+
+ /* eq. 21 */
+ float cosHI = dot(m, *omega_in);
+ float cosHO = dot(m, I);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+
+ /* see eval function for derivation */
+ float common = (G1o * D) * (m_eta * m_eta) / (cosNO * Ht2);
+ float out = G1i * fabsf(cosHI * cosHO) * common;
+ *pdf = cosHO * fabsf(cosHI) * common;
+
+ *eval = make_float3(out, out, out);
+ }
+ }
+ }
+ }
+ else {
+ label = (m_refractive) ? LABEL_TRANSMIT | LABEL_GLOSSY : LABEL_REFLECT | LABEL_GLOSSY;
+ }
+ return label;
}
/* Beckmann microfacet with Smith shadow-masking from:
@@ -764,364 +803,392 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
ccl_device int bsdf_microfacet_beckmann_setup(MicrofacetBsdf *bsdf)
{
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_beckmann_aniso_setup(MicrofacetBsdf *bsdf)
{
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = saturate(bsdf->alpha_y);
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
- bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device int bsdf_microfacet_beckmann_refraction_setup(MicrofacetBsdf *bsdf)
{
- bsdf->alpha_x = saturate(bsdf->alpha_x);
- bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ return SD_BSDF | SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness)
{
- MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
- bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
- bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
ccl_device_inline float bsdf_beckmann_G1(float alpha, float cos_n)
{
- cos_n *= cos_n;
- float invA = alpha * safe_sqrtf((1.0f - cos_n) / cos_n);
- if(invA < 0.625f) {
- return 1.0f;
- }
-
- float a = 1.0f / invA;
- return ((2.181f*a + 3.535f)*a) / ((2.577f*a + 2.276f)*a + 1.0f);
+ cos_n *= cos_n;
+ float invA = alpha * safe_sqrtf((1.0f - cos_n) / cos_n);
+ if (invA < 0.625f) {
+ return 1.0f;
+ }
+
+ float a = 1.0f / invA;
+ return ((2.181f * a + 3.535f) * a) / ((2.577f * a + 2.276f) * a + 1.0f);
}
-ccl_device_inline float bsdf_beckmann_aniso_G1(float alpha_x, float alpha_y, float cos_n, float cos_phi, float sin_phi)
+ccl_device_inline float bsdf_beckmann_aniso_G1(
+ float alpha_x, float alpha_y, float cos_n, float cos_phi, float sin_phi)
{
- cos_n *= cos_n;
- sin_phi *= sin_phi;
- cos_phi *= cos_phi;
- alpha_x *= alpha_x;
- alpha_y *= alpha_y;
-
- float alphaO2 = (cos_phi*alpha_x + sin_phi*alpha_y) / (cos_phi + sin_phi);
- float invA = safe_sqrtf(alphaO2 * (1 - cos_n) / cos_n);
- if(invA < 0.625f) {
- return 1.0f;
- }
-
- float a = 1.0f / invA;
- return ((2.181f*a + 3.535f)*a) / ((2.577f*a + 2.276f)*a + 1.0f);
+ cos_n *= cos_n;
+ sin_phi *= sin_phi;
+ cos_phi *= cos_phi;
+ alpha_x *= alpha_x;
+ alpha_y *= alpha_y;
+
+ float alphaO2 = (cos_phi * alpha_x + sin_phi * alpha_y) / (cos_phi + sin_phi);
+ float invA = safe_sqrtf(alphaO2 * (1 - cos_n) / cos_n);
+ if (invA < 0.625f) {
+ return 1.0f;
+ }
+
+ float a = 1.0f / invA;
+ return ((2.181f * a + 3.535f) * a) / ((2.577f * a + 2.276f) * a + 1.0f);
}
-ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc,
+ const float3 I,
+ const float3 omega_in,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = bsdf->N;
-
- if(m_refractive || alpha_x*alpha_y <= 1e-7f)
- return make_float3(0.0f, 0.0f, 0.0f);
-
- float cosNO = dot(N, I);
- float cosNI = dot(N, omega_in);
-
- if(cosNO > 0 && cosNI > 0) {
- /* get half vector */
- float3 m = normalize(omega_in + I);
-
- float alpha2 = alpha_x * alpha_y;
- float D, G1o, G1i;
-
- if(alpha_x == alpha_y) {
- /* isotropic
- * eq. 20: (F*G*D)/(4*in*on)
- * eq. 25: first we calculate D(m) */
- float cosThetaM = dot(N, m);
- float cosThetaM2 = cosThetaM * cosThetaM;
- float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
- G1o = bsdf_beckmann_G1(alpha_x, cosNO);
- G1i = bsdf_beckmann_G1(alpha_x, cosNI);
- }
- else {
- /* anisotropic */
- float3 X, Y, Z = N;
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
-
- /* distribution */
- float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
- float slope_x = -local_m.x/(local_m.z*alpha_x);
- float slope_y = -local_m.y/(local_m.z*alpha_y);
-
- float cosThetaM = local_m.z;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
-
- D = expf(-slope_x*slope_x - slope_y*slope_y) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* G1(i,m) and G1(o,m) */
- G1o = bsdf_beckmann_aniso_G1(alpha_x, alpha_y, cosNO, dot(I, X), dot(I, Y));
- G1i = bsdf_beckmann_aniso_G1(alpha_x, alpha_y, cosNI, dot(omega_in, X), dot(omega_in, Y));
- }
-
- float G = G1o * G1i;
-
- /* eq. 20 */
- float common = D * 0.25f / cosNO;
- float out = G * common;
-
- /* eq. 2 in distribution of visible normals sampling
- * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
-
- /* eq. 38 - but see also:
- * eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
- * pdf = pm * 0.25 / dot(m, I); */
- *pdf = G1o * common;
-
- return make_float3(out, out, out);
- }
-
- return make_float3(0.0f, 0.0f, 0.0f);
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
+
+ if (m_refractive || alpha_x * alpha_y <= 1e-7f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float cosNO = dot(N, I);
+ float cosNI = dot(N, omega_in);
+
+ if (cosNO > 0 && cosNI > 0) {
+ /* get half vector */
+ float3 m = normalize(omega_in + I);
+
+ float alpha2 = alpha_x * alpha_y;
+ float D, G1o, G1i;
+
+ if (alpha_x == alpha_y) {
+ /* isotropic
+ * eq. 20: (F*G*D)/(4*in*on)
+ * eq. 25: first we calculate D(m) */
+ float cosThetaM = dot(N, m);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
+ G1o = bsdf_beckmann_G1(alpha_x, cosNO);
+ G1i = bsdf_beckmann_G1(alpha_x, cosNI);
+ }
+ else {
+ /* anisotropic */
+ float3 X, Y, Z = N;
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
+
+ /* distribution */
+ float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
+ float slope_x = -local_m.x / (local_m.z * alpha_x);
+ float slope_y = -local_m.y / (local_m.z * alpha_y);
+
+ float cosThetaM = local_m.z;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+
+ D = expf(-slope_x * slope_x - slope_y * slope_y) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* G1(i,m) and G1(o,m) */
+ G1o = bsdf_beckmann_aniso_G1(alpha_x, alpha_y, cosNO, dot(I, X), dot(I, Y));
+ G1i = bsdf_beckmann_aniso_G1(alpha_x, alpha_y, cosNI, dot(omega_in, X), dot(omega_in, Y));
+ }
+
+ float G = G1o * G1i;
+
+ /* eq. 20 */
+ float common = D * 0.25f / cosNO;
+ float out = G * common;
+
+ /* eq. 2 in distribution of visible normals sampling
+ * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
+
+ /* eq. 38 - but see also:
+ * eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ * pdf = pm * 0.25 / dot(m, I); */
+ *pdf = G1o * common;
+
+ return make_float3(out, out, out);
+ }
+
+ return make_float3(0.0f, 0.0f, 0.0f);
}
-ccl_device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc,
+ const float3 I,
+ const float3 omega_in,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- float m_eta = bsdf->ior;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = bsdf->N;
-
- if(!m_refractive || alpha_x*alpha_y <= 1e-7f)
- return make_float3(0.0f, 0.0f, 0.0f);
-
- float cosNO = dot(N, I);
- float cosNI = dot(N, omega_in);
-
- if(cosNO <= 0 || cosNI >= 0)
- return make_float3(0.0f, 0.0f, 0.0f);
-
- /* compute half-vector of the refraction (eq. 16) */
- float3 ht = -(m_eta * omega_in + I);
- float3 Ht = normalize(ht);
- float cosHO = dot(Ht, I);
- float cosHI = dot(Ht, omega_in);
-
- /* eq. 25: first we calculate D(m) with m=Ht: */
- float alpha2 = alpha_x * alpha_y;
- float cosThetaM = min(dot(N, Ht), 1.0f);
- float cosThetaM2 = cosThetaM * cosThetaM;
- float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
- float G1o = bsdf_beckmann_G1(alpha_x, cosNO);
- float G1i = bsdf_beckmann_G1(alpha_x, cosNI);
- float G = G1o * G1i;
-
- /* probability */
- float Ht2 = dot(ht, ht);
-
- /* eq. 2 in distribution of visible normals sampling
- * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
-
- /* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
- * pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
- float common = D * (m_eta * m_eta) / (cosNO * Ht2);
- float out = G * fabsf(cosHI * cosHO) * common;
- *pdf = G1o * fabsf(cosHO * cosHI) * common;
-
- return make_float3(out, out, out);
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ float m_eta = bsdf->ior;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
+
+ if (!m_refractive || alpha_x * alpha_y <= 1e-7f)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ float cosNO = dot(N, I);
+ float cosNI = dot(N, omega_in);
+
+ if (cosNO <= 0 || cosNI >= 0)
+ return make_float3(0.0f, 0.0f, 0.0f);
+
+ /* compute half-vector of the refraction (eq. 16) */
+ float3 ht = -(m_eta * omega_in + I);
+ float3 Ht = normalize(ht);
+ float cosHO = dot(Ht, I);
+ float cosHI = dot(Ht, omega_in);
+
+ /* eq. 25: first we calculate D(m) with m=Ht: */
+ float alpha2 = alpha_x * alpha_y;
+ float cosThetaM = min(dot(N, Ht), 1.0f);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* eq. 26, 27: now calculate G1(i,m) and G1(o,m) */
+ float G1o = bsdf_beckmann_G1(alpha_x, cosNO);
+ float G1i = bsdf_beckmann_G1(alpha_x, cosNI);
+ float G = G1o * G1i;
+
+ /* probability */
+ float Ht2 = dot(ht, ht);
+
+ /* eq. 2 in distribution of visible normals sampling
+ * pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
+
+ /* out = fabsf(cosHI * cosHO) * (m_eta * m_eta) * G * D / (cosNO * Ht2)
+ * pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2 */
+ float common = D * (m_eta * m_eta) / (cosNO * Ht2);
+ float out = G * fabsf(cosHI * cosHO) * common;
+ *pdf = G1o * fabsf(cosHO * cosHI) * common;
+
+ return make_float3(out, out, out);
}
-ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg,
+ const ShaderClosure *sc,
+ float3 Ng,
+ float3 I,
+ float3 dIdx,
+ float3 dIdy,
+ float randu,
+ float randv,
+ float3 *eval,
+ float3 *omega_in,
+ float3 *domega_in_dx,
+ float3 *domega_in_dy,
+ float *pdf)
{
- const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
- float alpha_x = bsdf->alpha_x;
- float alpha_y = bsdf->alpha_y;
- bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = bsdf->N;
- int label;
-
- float cosNO = dot(N, I);
- if(cosNO > 0) {
- float3 X, Y, Z = N;
-
- if(alpha_x == alpha_y)
- make_orthonormals(Z, &X, &Y);
- else
- make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
-
- /* importance sampling with distribution of visible normals. vectors are
- * transformed to local space before and after */
- float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
- float3 local_m;
- float G1o;
-
- local_m = microfacet_sample_stretched(kg, local_I, alpha_x, alpha_x,
- randu, randv, true, &G1o);
-
- float3 m = X*local_m.x + Y*local_m.y + Z*local_m.z;
- float cosThetaM = local_m.z;
-
- /* reflection or refraction? */
- if(!m_refractive) {
- label = LABEL_REFLECT | LABEL_GLOSSY;
- float cosMO = dot(m, I);
-
- if(cosMO > 0) {
- /* eq. 39 - compute actual reflected direction */
- *omega_in = 2 * cosMO * m - I;
-
- if(dot(Ng, *omega_in) > 0) {
- if(alpha_x*alpha_y <= 1e-7f) {
- /* some high number for MIS */
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
- label = LABEL_REFLECT | LABEL_SINGULAR;
- }
- else {
- /* microfacet normal is visible to this ray
- * eq. 25 */
- float alpha2 = alpha_x * alpha_y;
- float D, G1i;
-
- if(alpha_x == alpha_y) {
- /* istropic distribution */
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float tanThetaM2 = 1/(cosThetaM2) - 1;
- D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* eval BRDF*cosNI */
- float cosNI = dot(N, *omega_in);
-
- /* eq. 26, 27: now calculate G1(i,m) */
- G1i = bsdf_beckmann_G1(alpha_x, cosNI);
- }
- else {
- /* anisotropic distribution */
- float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
- float slope_x = -local_m.x/(local_m.z*alpha_x);
- float slope_y = -local_m.y/(local_m.z*alpha_y);
-
- float cosThetaM = local_m.z;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
-
- D = expf(-slope_x*slope_x - slope_y*slope_y) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* G1(i,m) */
- G1i = bsdf_beckmann_aniso_G1(alpha_x, alpha_y, dot(*omega_in, N), dot(*omega_in, X), dot(*omega_in, Y));
- }
-
- float G = G1o * G1i;
-
- /* see eval function for derivation */
- float common = D * 0.25f / cosNO;
- float out = G * common;
- *pdf = G1o * common;
-
- *eval = make_float3(out, out, out);
- }
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
+ int label;
+
+ float cosNO = dot(N, I);
+ if (cosNO > 0) {
+ float3 X, Y, Z = N;
+
+ if (alpha_x == alpha_y)
+ make_orthonormals(Z, &X, &Y);
+ else
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
+
+ /* importance sampling with distribution of visible normals. vectors are
+ * transformed to local space before and after */
+ float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
+ float3 local_m;
+ float G1o;
+
+ local_m = microfacet_sample_stretched(kg, local_I, alpha_x, alpha_x, randu, randv, true, &G1o);
+
+ float3 m = X * local_m.x + Y * local_m.y + Z * local_m.z;
+ float cosThetaM = local_m.z;
+
+ /* reflection or refraction? */
+ if (!m_refractive) {
+ label = LABEL_REFLECT | LABEL_GLOSSY;
+ float cosMO = dot(m, I);
+
+ if (cosMO > 0) {
+ /* eq. 39 - compute actual reflected direction */
+ *omega_in = 2 * cosMO * m - I;
+
+ if (dot(Ng, *omega_in) > 0) {
+ if (alpha_x * alpha_y <= 1e-7f) {
+ /* some high number for MIS */
+ *pdf = 1e6f;
+ *eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_REFLECT | LABEL_SINGULAR;
+ }
+ else {
+ /* microfacet normal is visible to this ray
+ * eq. 25 */
+ float alpha2 = alpha_x * alpha_y;
+ float D, G1i;
+
+ if (alpha_x == alpha_y) {
+ /* istropic distribution */
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float tanThetaM2 = 1 / (cosThetaM2)-1;
+ D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* eval BRDF*cosNI */
+ float cosNI = dot(N, *omega_in);
+
+ /* eq. 26, 27: now calculate G1(i,m) */
+ G1i = bsdf_beckmann_G1(alpha_x, cosNI);
+ }
+ else {
+ /* anisotropic distribution */
+ float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
+ float slope_x = -local_m.x / (local_m.z * alpha_x);
+ float slope_y = -local_m.y / (local_m.z * alpha_y);
+
+ float cosThetaM = local_m.z;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+
+ D = expf(-slope_x * slope_x - slope_y * slope_y) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* G1(i,m) */
+ G1i = bsdf_beckmann_aniso_G1(
+ alpha_x, alpha_y, dot(*omega_in, N), dot(*omega_in, X), dot(*omega_in, Y));
+ }
+
+ float G = G1o * G1i;
+
+ /* see eval function for derivation */
+ float common = D * 0.25f / cosNO;
+ float out = G * common;
+ *pdf = G1o * common;
+
+ *eval = make_float3(out, out, out);
+ }
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
- *domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
+ *domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
+ *domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
- }
- }
- }
- else {
- label = LABEL_TRANSMIT | LABEL_GLOSSY;
-
- /* CAUTION: the i and o variables are inverted relative to the paper
- * eq. 39 - compute actual refractive direction */
- float3 R, T;
+ }
+ }
+ }
+ else {
+ label = LABEL_TRANSMIT | LABEL_GLOSSY;
+
+ /* CAUTION: the i and o variables are inverted relative to the paper
+ * eq. 39 - compute actual refractive direction */
+ float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
- float3 dRdx, dRdy, dTdx, dTdy;
+ float3 dRdx, dRdy, dTdx, dTdy;
#endif
- float m_eta = bsdf->ior, fresnel;
- bool inside;
-
- fresnel = fresnel_dielectric(m_eta, m, I, &R, &T,
+ float m_eta = bsdf->ior, fresnel;
+ bool inside;
+
+ fresnel = fresnel_dielectric(m_eta,
+ m,
+ I,
+ &R,
+ &T,
#ifdef __RAY_DIFFERENTIALS__
- dIdx, dIdy, &dRdx, &dRdy, &dTdx, &dTdy,
+ dIdx,
+ dIdy,
+ &dRdx,
+ &dRdy,
+ &dTdx,
+ &dTdy,
#endif
- &inside);
+ &inside);
- if(!inside && fresnel != 1.0f) {
- *omega_in = T;
+ if (!inside && fresnel != 1.0f) {
+ *omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = dTdx;
- *domega_in_dy = dTdy;
+ *domega_in_dx = dTdx;
+ *domega_in_dy = dTdy;
#endif
- if(alpha_x*alpha_y <= 1e-7f || fabsf(m_eta - 1.0f) < 1e-4f) {
- /* some high number for MIS */
- *pdf = 1e6f;
- *eval = make_float3(1e6f, 1e6f, 1e6f);
- label = LABEL_TRANSMIT | LABEL_SINGULAR;
- }
- else {
- /* eq. 33 */
- float alpha2 = alpha_x * alpha_y;
- float cosThetaM2 = cosThetaM * cosThetaM;
- float cosThetaM4 = cosThetaM2 * cosThetaM2;
- float tanThetaM2 = 1/(cosThetaM2) - 1;
- float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
-
- /* eval BRDF*cosNI */
- float cosNI = dot(N, *omega_in);
-
- /* eq. 26, 27: now calculate G1(i,m) */
- float G1i = bsdf_beckmann_G1(alpha_x, cosNI);
- float G = G1o * G1i;
-
- /* eq. 21 */
- float cosHI = dot(m, *omega_in);
- float cosHO = dot(m, I);
- float Ht2 = m_eta * cosHI + cosHO;
- Ht2 *= Ht2;
-
- /* see eval function for derivation */
- float common = D * (m_eta * m_eta) / (cosNO * Ht2);
- float out = G * fabsf(cosHI * cosHO) * common;
- *pdf = G1o * cosHO * fabsf(cosHI) * common;
-
- *eval = make_float3(out, out, out);
- }
- }
- }
- }
- else {
- label = (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
- }
- return label;
+ if (alpha_x * alpha_y <= 1e-7f || fabsf(m_eta - 1.0f) < 1e-4f) {
+ /* some high number for MIS */
+ *pdf = 1e6f;
+ *eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_TRANSMIT | LABEL_SINGULAR;
+ }
+ else {
+ /* eq. 33 */
+ float alpha2 = alpha_x * alpha_y;
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float tanThetaM2 = 1 / (cosThetaM2)-1;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+
+ /* eval BRDF*cosNI */
+ float cosNI = dot(N, *omega_in);
+
+ /* eq. 26, 27: now calculate G1(i,m) */
+ float G1i = bsdf_beckmann_G1(alpha_x, cosNI);
+ float G = G1o * G1i;
+
+ /* eq. 21 */
+ float cosHI = dot(m, *omega_in);
+ float cosHO = dot(m, I);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+
+ /* see eval function for derivation */
+ float common = D * (m_eta * m_eta) / (cosNO * Ht2);
+ float out = G * fabsf(cosHI * cosHO) * common;
+ *pdf = G1o * cosHO * fabsf(cosHI) * common;
+
+ *eval = make_float3(out, out, out);
+ }
+ }
+ }
+ }
+ else {
+ label = (m_refractive) ? LABEL_TRANSMIT | LABEL_GLOSSY : LABEL_REFLECT | LABEL_GLOSSY;
+ }
+ return label;
}
CCL_NAMESPACE_END
-#endif /* __BSDF_MICROFACET_H__ */
+#endif /* __BSDF_MICROFACET_H__ */