Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/closure/bssrdf.h')
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h406
1 files changed, 43 insertions, 363 deletions
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index 562daf1286d..0f9278bba89 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -14,8 +14,7 @@
* limitations under the License.
*/
-#ifndef __KERNEL_BSSRDF_H__
-#define __KERNEL_BSSRDF_H__
+#pragma once
CCL_NAMESPACE_BEGIN
@@ -24,310 +23,71 @@ typedef ccl_addr_space struct Bssrdf {
float3 radius;
float3 albedo;
- float sharpness;
- float texture_blur;
float roughness;
- float channels;
+ float anisotropy;
} Bssrdf;
static_assert(sizeof(ShaderClosure) >= sizeof(Bssrdf), "Bssrdf is too large!");
-/* Planar Truncated Gaussian
- *
- * Note how this is different from the typical gaussian, this one integrates
- * to 1 over the plane (where you get an extra 2*pi*x factor). We are lucky
- * that integrating x*exp(-x) gives a nice closed form solution. */
-
-/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
-#define GAUSS_TRUNCATE 12.46f
-
-ccl_device float bssrdf_gaussian_eval(const float radius, float r)
-{
- /* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
- * = 1 - exp(-Rm*Rm/(2*v)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
-
- if (r >= Rm)
- return 0.0f;
-
- return expf(-r * r / (2.0f * v)) / (2.0f * M_PI_F * v);
-}
-
-ccl_device float bssrdf_gaussian_pdf(const float radius, float r)
+ccl_device float bssrdf_dipole_compute_Rd(float alpha_prime, float fourthirdA)
{
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
-
- return bssrdf_gaussian_eval(radius, r) * (1.0f / (area_truncated));
+ float s = sqrtf(3.0f * (1.0f - alpha_prime));
+ return 0.5f * alpha_prime * (1.0f + expf(-fourthirdA * s)) * expf(-s);
}
-ccl_device void bssrdf_gaussian_sample(const float radius, float xi, float *r, float *h)
+ccl_device float bssrdf_dipole_compute_alpha_prime(float rd, float fourthirdA)
{
- /* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
- * r = sqrt(-2*v*logf(xi)) */
- const float v = radius * radius * (0.25f * 0.25f);
- const float Rm = sqrtf(v * GAUSS_TRUNCATE);
-
- /* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
- const float area_truncated = 1.0f - expf(-0.5f * GAUSS_TRUNCATE);
-
- /* r(xi) */
- const float r_squared = -2.0f * v * logf(1.0f - xi * area_truncated);
- *r = sqrtf(r_squared);
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_squared);
-}
-
-/* Planar Cubic BSSRDF falloff
- *
- * This is basically (Rm - x)^3, with some factors to normalize it. For sampling
- * we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
- * far as I can tell has no closed form solution. So we get an iterative solution
- * instead with newton-raphson. */
-
-ccl_device float bssrdf_cubic_eval(const float radius, const float sharpness, float r)
-{
- if (sharpness == 0.0f) {
- const float Rm = radius;
-
- if (r >= Rm)
- return 0.0f;
-
- /* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
- const float Rm5 = (Rm * Rm) * (Rm * Rm) * Rm;
- const float f = Rm - r;
- const float num = f * f * f;
-
- return (10.0f * num) / (Rm5 * M_PI_F);
+ /* Little Newton solver. */
+ if (rd < 1e-4f) {
+ return 0.0f;
+ }
+ if (rd >= 0.995f) {
+ return 0.999999f;
}
- else {
- float Rm = radius * (1.0f + sharpness);
-
- if (r >= Rm)
- return 0.0f;
- /* custom variation with extra sharpness, to match the previous code */
- const float y = 1.0f / (1.0f + sharpness);
- float Rmy, ry, ryinv;
+ float x0 = 0.0f;
+ float x1 = 1.0f;
+ float xmid, fmid;
- if (sharpness == 1.0f) {
- Rmy = sqrtf(Rm);
- ry = sqrtf(r);
- ryinv = (ry > 0.0f) ? 1.0f / ry : 0.0f;
+ constexpr const int max_num_iterations = 12;
+ for (int i = 0; i < max_num_iterations; ++i) {
+ xmid = 0.5f * (x0 + x1);
+ fmid = bssrdf_dipole_compute_Rd(xmid, fourthirdA);
+ if (fmid < rd) {
+ x0 = xmid;
}
else {
- Rmy = powf(Rm, y);
- ry = powf(r, y);
- ryinv = (r > 0.0f) ? powf(r, y - 1.0f) : 0.0f;
+ x1 = xmid;
}
-
- const float Rmy5 = (Rmy * Rmy) * (Rmy * Rmy) * Rmy;
- const float f = Rmy - ry;
- const float num = f * (f * f) * (y * ryinv);
-
- return (10.0f * num) / (Rmy5 * M_PI_F);
- }
-}
-
-ccl_device float bssrdf_cubic_pdf(const float radius, const float sharpness, float r)
-{
- return bssrdf_cubic_eval(radius, sharpness, r);
-}
-
-/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
-ccl_device_forceinline float bssrdf_cubic_quintic_root_find(float xi)
-{
- /* newton-raphson iteration, usually succeeds in 2-4 iterations, except
- * outside 0.02 ... 0.98 where it can go up to 10, so overall performance
- * should not be too bad */
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- float x = 0.25f;
- int i;
-
- for (i = 0; i < max_iteration_count; i++) {
- float x2 = x * x;
- float x3 = x2 * x;
- float nx = (1.0f - x);
-
- float f = 10.0f * x2 - 20.0f * x3 + 15.0f * x2 * x2 - 4.0f * x2 * x3 - xi;
- float f_ = 20.0f * (x * nx) * (nx * nx);
-
- if (fabsf(f) < tolerance || f_ == 0.0f)
- break;
-
- x = saturate(x - f / f_);
}
- return x;
+ return xmid;
}
-ccl_device void bssrdf_cubic_sample(
- const float radius, const float sharpness, float xi, float *r, float *h)
+ccl_device void bssrdf_setup_radius(Bssrdf *bssrdf, const ClosureType type, const float eta)
{
- float Rm = radius;
- float r_ = bssrdf_cubic_quintic_root_find(xi);
-
- if (sharpness != 0.0f) {
- r_ = powf(r_, 1.0f + sharpness);
- Rm *= (1.0f + sharpness);
- }
-
- r_ *= Rm;
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* Approximate Reflectance Profiles
- * http://graphics.pixar.com/library/ApproxBSSRDF/paper.pdf
- */
-
-/* This is a bit arbitrary, just need big enough radius so it matches
- * the mean free length, but still not too big so sampling is still
- * effective. Might need some further tweaks.
- */
-#define BURLEY_TRUNCATE 16.0f
-#define BURLEY_TRUNCATE_CDF 0.9963790093708328f // cdf(BURLEY_TRUNCATE)
-
-ccl_device_inline float bssrdf_burley_fitting(float A)
-{
- /* Diffuse surface transmission, equation (6). */
- return 1.9f - A + 3.5f * (A - 0.8f) * (A - 0.8f);
-}
-
-/* Scale mean free path length so it gives similar looking result
- * to Cubic and Gaussian models.
- */
-ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
-{
- return 0.25f * M_1_PI_F * r;
-}
-
-ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
-{
- /* Mean free path length. */
- const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
- /* Surface albedo. */
- const float3 A = bssrdf->albedo;
- const float3 s = make_float3(
- bssrdf_burley_fitting(A.x), bssrdf_burley_fitting(A.y), bssrdf_burley_fitting(A.z));
-
- bssrdf->radius = l / s;
-}
-
-ccl_device float bssrdf_burley_eval(const float d, float r)
-{
- const float Rm = BURLEY_TRUNCATE * d;
-
- if (r >= Rm)
- return 0.0f;
-
- /* Burley reflectance profile, equation (3).
- *
- * NOTES:
- * - Surface albedo is already included into sc->weight, no need to
- * multiply by this term here.
- * - This is normalized diffuse model, so the equation is multiplied
- * by 2*pi, which also matches cdf().
- */
- float exp_r_3_d = expf(-r / (3.0f * d));
- float exp_r_d = exp_r_3_d * exp_r_3_d * exp_r_3_d;
- return (exp_r_d + exp_r_3_d) / (4.0f * d);
-}
-
-ccl_device float bssrdf_burley_pdf(const float d, float r)
-{
- return bssrdf_burley_eval(d, r) * (1.0f / BURLEY_TRUNCATE_CDF);
-}
-
-/* Find the radius for desired CDF value.
- * Returns scaled radius, meaning the result is to be scaled up by d.
- * Since there's no closed form solution we do Newton-Raphson method to find it.
- */
-ccl_device_forceinline float bssrdf_burley_root_find(float xi)
-{
- const float tolerance = 1e-6f;
- const int max_iteration_count = 10;
- /* Do initial guess based on manual curve fitting, this allows us to reduce
- * number of iterations to maximum 4 across the [0..1] range. We keep maximum
- * number of iteration higher just to be sure we didn't miss root in some
- * corner case.
- */
- float r;
- if (xi <= 0.9f) {
- r = expf(xi * xi * 2.4f) - 1.0f;
+ if (type == CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID) {
+ /* Scale mean free path length so it gives similar looking result to older
+ * Cubic, Gaussian and Burley models. */
+ bssrdf->radius *= 0.25f * M_1_PI_F;
}
else {
- /* TODO(sergey): Some nicer curve fit is possible here. */
- r = 15.0f;
- }
- /* Solve against scaled radius. */
- for (int i = 0; i < max_iteration_count; i++) {
- float exp_r_3 = expf(-r / 3.0f);
- float exp_r = exp_r_3 * exp_r_3 * exp_r_3;
- float f = 1.0f - 0.25f * exp_r - 0.75f * exp_r_3 - xi;
- float f_ = 0.25f * exp_r + 0.25f * exp_r_3;
+ /* Adjust radius based on IOR and albedo. */
+ const float inv_eta = 1.0f / eta;
+ const float F_dr = inv_eta * (-1.440f * inv_eta + 0.710f) + 0.668f + 0.0636f * eta;
+ const float fourthirdA = (4.0f / 3.0f) * (1.0f + F_dr) /
+ (1.0f - F_dr); /* From Jensen's Fdr ratio formula. */
- if (fabsf(f) < tolerance || f_ == 0.0f) {
- break;
- }
+ const float3 alpha_prime = make_float3(
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.x, fourthirdA),
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.y, fourthirdA),
+ bssrdf_dipole_compute_alpha_prime(bssrdf->albedo.z, fourthirdA));
- r = r - f / f_;
- if (r < 0.0f) {
- r = 0.0f;
- }
+ bssrdf->radius *= sqrt(3.0f * (one_float3() - alpha_prime));
}
- return r;
}
-ccl_device void bssrdf_burley_sample(const float d, float xi, float *r, float *h)
-{
- const float Rm = BURLEY_TRUNCATE * d;
- const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
-
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* None BSSRDF falloff
- *
- * Samples distributed over disk with no falloff, for reference. */
-
-ccl_device float bssrdf_none_eval(const float radius, float r)
-{
- const float Rm = radius;
- return (r < Rm) ? 1.0f : 0.0f;
-}
-
-ccl_device float bssrdf_none_pdf(const float radius, float r)
-{
- /* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
- const float Rm = radius;
- const float area = (M_PI_F * Rm * Rm);
-
- return bssrdf_none_eval(radius, r) / area;
-}
-
-ccl_device void bssrdf_none_sample(const float radius, float xi, float *r, float *h)
-{
- /* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
- * r = sqrt(xi)*Rm */
- const float Rm = radius;
- const float r_ = sqrtf(xi) * Rm;
-
- *r = r_;
-
- /* h^2 + r^2 = Rm^2 */
- *h = safe_sqrtf(Rm * Rm - r_ * r_);
-}
-
-/* Generic */
+/* Setup */
ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
{
@@ -342,7 +102,7 @@ ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
}
-ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
+ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type, const float ior)
{
int flag = 0;
int bssrdf_channels = 3;
@@ -371,7 +131,7 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
if (bssrdf_channels < 3) {
/* Add diffuse BSDF if any radius too small. */
#ifdef __PRINCIPLED__
- if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
+ if (bssrdf->roughness != FLT_MAX) {
float roughness = bssrdf->roughness;
float3 N = bssrdf->N;
@@ -401,16 +161,9 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
/* Setup BSSRDF if radius is large enough. */
if (bssrdf_channels > 0) {
bssrdf->type = type;
- bssrdf->channels = bssrdf_channels;
- bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf->channels;
- bssrdf->texture_blur = saturate(bssrdf->texture_blur);
- bssrdf->sharpness = saturate(bssrdf->sharpness);
+ bssrdf->sample_weight = fabsf(average(bssrdf->weight)) * bssrdf_channels;
- if (type == CLOSURE_BSSRDF_BURLEY_ID || type == CLOSURE_BSSRDF_PRINCIPLED_ID ||
- type == CLOSURE_BSSRDF_RANDOM_WALK_ID ||
- type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
- bssrdf_burley_setup(bssrdf);
- }
+ bssrdf_setup_radius(bssrdf, type, ior);
flag |= SD_BSSRDF;
}
@@ -422,77 +175,4 @@ ccl_device int bssrdf_setup(ShaderData *sd, Bssrdf *bssrdf, ClosureType type)
return flag;
}
-ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float radius;
-
- /* Sample color channel and reuse random number. Only a subset of channels
- * may be used if their radius was too small to handle as BSSRDF. */
- xi *= bssrdf->channels;
-
- if (xi < 1.0f) {
- radius = (bssrdf->radius.x > 0.0f) ? bssrdf->radius.x :
- (bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
- bssrdf->radius.z;
- }
- else if (xi < 2.0f) {
- xi -= 1.0f;
- radius = (bssrdf->radius.x > 0.0f && bssrdf->radius.y > 0.0f) ? bssrdf->radius.y :
- bssrdf->radius.z;
- }
- else {
- xi -= 2.0f;
- radius = bssrdf->radius.z;
- }
-
- /* Sample BSSRDF. */
- if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- bssrdf_cubic_sample(radius, bssrdf->sharpness, xi, r, h);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- bssrdf_gaussian_sample(radius, xi, r, h);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID) */
- bssrdf_burley_sample(radius, xi, r, h);
- }
-}
-
-ccl_device float bssrdf_channel_pdf(const Bssrdf *bssrdf, float radius, float r)
-{
- if (radius == 0.0f) {
- return 0.0f;
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
- return bssrdf_cubic_pdf(radius, bssrdf->sharpness, r);
- }
- else if (bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
- return bssrdf_gaussian_pdf(radius, r);
- }
- else { /* if (bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID ||
- * bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
- return bssrdf_burley_pdf(radius, r);
- }
-}
-
-ccl_device_forceinline float3 bssrdf_eval(const ShaderClosure *sc, float r)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
-
- return make_float3(bssrdf_channel_pdf(bssrdf, bssrdf->radius.x, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.y, r),
- bssrdf_channel_pdf(bssrdf, bssrdf->radius.z, r));
-}
-
-ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
-{
- const Bssrdf *bssrdf = (const Bssrdf *)sc;
- float3 pdf = bssrdf_eval(sc, r);
-
- return (pdf.x + pdf.y + pdf.z) / bssrdf->channels;
-}
-
CCL_NAMESPACE_END
-
-#endif /* __KERNEL_BSSRDF_H__ */