Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/closure')
-rw-r--r--intern/cycles/kernel/closure/alloc.h90
-rw-r--r--intern/cycles/kernel/closure/bsdf.h75
-rw-r--r--intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h44
-rw-r--r--intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h35
-rw-r--r--intern/cycles/kernel/closure/bsdf_diffuse.h33
-rw-r--r--intern/cycles/kernel/closure/bsdf_diffuse_ramp.h35
-rw-r--r--intern/cycles/kernel/closure/bsdf_hair.h71
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet.h158
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet_multi.h107
-rw-r--r--intern/cycles/kernel/closure/bsdf_oren_nayar.h45
-rw-r--r--intern/cycles/kernel/closure/bsdf_phong_ramp.h56
-rw-r--r--intern/cycles/kernel/closure/bsdf_reflection.h7
-rw-r--r--intern/cycles/kernel/closure/bsdf_refraction.h9
-rw-r--r--intern/cycles/kernel/closure/bsdf_toon.h78
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h113
-rw-r--r--intern/cycles/kernel/closure/volume.h26
16 files changed, 660 insertions, 322 deletions
diff --git a/intern/cycles/kernel/closure/alloc.h b/intern/cycles/kernel/closure/alloc.h
new file mode 100644
index 00000000000..b7abc1ec507
--- /dev/null
+++ b/intern/cycles/kernel/closure/alloc.h
@@ -0,0 +1,90 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device ShaderClosure *closure_alloc(ShaderData *sd, int size, ClosureType type, float3 weight)
+{
+ kernel_assert(size <= sizeof(ShaderClosure));
+
+ int num_closure = ccl_fetch(sd, num_closure);
+ int num_closure_extra = ccl_fetch(sd, num_closure_extra);
+ if(num_closure + num_closure_extra >= MAX_CLOSURE)
+ return NULL;
+
+ ShaderClosure *sc = &ccl_fetch(sd, closure)[num_closure];
+
+ sc->type = type;
+ sc->weight = weight;
+
+ ccl_fetch(sd, num_closure)++;
+
+ return sc;
+}
+
+ccl_device ccl_addr_space void *closure_alloc_extra(ShaderData *sd, int size)
+{
+ /* Allocate extra space for closure that need more parameters. We allocate
+ * in chunks of sizeof(ShaderClosure) starting from the end of the closure
+ * array.
+ *
+ * This lets us keep the same fast array iteration over closures, as we
+ * found linked list iteration and iteration with skipping to be slower. */
+ int num_extra = ((size + sizeof(ShaderClosure) - 1) / sizeof(ShaderClosure));
+ int num_closure = ccl_fetch(sd, num_closure);
+ int num_closure_extra = ccl_fetch(sd, num_closure_extra) + num_extra;
+
+ if(num_closure + num_closure_extra > MAX_CLOSURE) {
+ /* Remove previous closure. */
+ ccl_fetch(sd, num_closure)--;
+ ccl_fetch(sd, num_closure_extra)++;
+ return NULL;
+ }
+
+ ccl_fetch(sd, num_closure_extra) = num_closure_extra;
+ return (ccl_addr_space void*)(ccl_fetch(sd, closure) + MAX_CLOSURE - num_closure_extra);
+}
+
+ccl_device_inline ShaderClosure *bsdf_alloc(ShaderData *sd, int size, float3 weight)
+{
+ ShaderClosure *sc = closure_alloc(sd, size, CLOSURE_NONE_ID, weight);
+
+ if(!sc)
+ return NULL;
+
+ float sample_weight = fabsf(average(weight));
+ sc->sample_weight = sample_weight;
+ return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? sc : NULL;
+}
+
+#ifdef __OSL__
+ccl_device_inline ShaderClosure *bsdf_alloc_osl(ShaderData *sd, int size, float3 weight, void *data)
+{
+ ShaderClosure *sc = closure_alloc(sd, size, CLOSURE_NONE_ID, weight);
+
+ if(!sc)
+ return NULL;
+
+ memcpy(sc, data, size);
+
+ float sample_weight = fabsf(average(weight));
+ sc->weight = weight;
+ sc->sample_weight = sample_weight;
+ return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? sc : NULL;
+}
+#endif
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf.h b/intern/cycles/kernel/closure/bsdf.h
index f318a61f3a3..a251e3bdcf9 100644
--- a/intern/cycles/kernel/closure/bsdf.h
+++ b/intern/cycles/kernel/closure/bsdf.h
@@ -40,11 +40,6 @@ ccl_device int bsdf_sample(KernelGlobals *kg, ShaderData *sd, const ShaderClosur
{
int label;
-#ifdef __OSL__
- if(kg->osl && sc->prim)
- return OSLShader::bsdf_sample(sd, sc, randu, randv, *eval, *omega_in, *domega_in, *pdf);
-#endif
-
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
@@ -56,14 +51,16 @@ ccl_device int bsdf_sample(KernelGlobals *kg, ShaderData *sd, const ShaderClosur
label = bsdf_oren_nayar_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
- /*case CLOSURE_BSDF_PHONG_RAMP_ID:
+#ifdef __OSL__
+ case CLOSURE_BSDF_PHONG_RAMP_ID:
label = bsdf_phong_ramp_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
label = bsdf_diffuse_ramp_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
- break;*/
+ break;
+#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
label = bsdf_translucent_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
@@ -143,11 +140,6 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, ShaderData *sd, const ShaderClosu
{
float3 eval;
-#ifdef __OSL__
- if(kg->osl && sc->prim)
- return OSLShader::bsdf_eval(sd, sc, omega_in, *pdf);
-#endif
-
if(dot(ccl_fetch(sd, Ng), omega_in) >= 0.0f) {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
@@ -158,12 +150,14 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, ShaderData *sd, const ShaderClosu
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
- /*case CLOSURE_BSDF_PHONG_RAMP_ID:
+#ifdef __OSL__
+ case CLOSURE_BSDF_PHONG_RAMP_ID:
eval = bsdf_phong_ramp_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
eval = bsdf_diffuse_ramp_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
- break;*/
+ break;
+#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
break;
@@ -296,15 +290,7 @@ ccl_device float3 bsdf_eval(KernelGlobals *kg, ShaderData *sd, const ShaderClosu
ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
{
-/* ToDo: do we want to blur volume closures? */
-
-#ifdef __OSL__
- if(kg->osl && sc->prim) {
- OSLShader::bsdf_blur(sc, roughness);
- return;
- }
-#endif
-
+ /* ToDo: do we want to blur volume closures? */
#ifdef __SVM__
switch(sc->type) {
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
@@ -331,5 +317,48 @@ ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
#endif
}
+ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
+{
+#ifdef __SVM__
+ switch(a->type) {
+ case CLOSURE_BSDF_TRANSPARENT_ID:
+ return true;
+ case CLOSURE_BSDF_DIFFUSE_ID:
+ case CLOSURE_BSDF_BSSRDF_ID:
+ case CLOSURE_BSDF_TRANSLUCENT_ID:
+ return bsdf_diffuse_merge(a, b);
+ case CLOSURE_BSDF_OREN_NAYAR_ID:
+ return bsdf_oren_nayar_merge(a, b);
+ case CLOSURE_BSDF_REFLECTION_ID:
+ case CLOSURE_BSDF_REFRACTION_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
+ case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
+ case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
+ case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
+ return bsdf_microfacet_merge(a, b);
+ case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
+ return bsdf_ashikhmin_velvet_merge(a, b);
+ case CLOSURE_BSDF_DIFFUSE_TOON_ID:
+ case CLOSURE_BSDF_GLOSSY_TOON_ID:
+ return bsdf_toon_merge(a, b);
+ case CLOSURE_BSDF_HAIR_REFLECTION_ID:
+ case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
+ return bsdf_hair_merge(a, b);
+#ifdef __VOLUME__
+ case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
+ return volume_henyey_greenstein_merge(a, b);
+#endif
+ default:
+ return false;
+ }
+#endif
+}
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h b/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
index 3ca6532fef4..8ed76bea525 100644
--- a/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
+++ b/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
@@ -31,28 +31,30 @@ Other than that, the implementation directly follows the paper.
CCL_NAMESPACE_BEGIN
-ccl_device int bsdf_ashikhmin_shirley_setup(ShaderClosure *sc)
+ccl_device int bsdf_ashikhmin_shirley_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = clamp(sc->data0, 1e-4f, 1.0f);
- sc->data1 = sc->data0;
+ bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
+ bsdf->alpha_y = bsdf->alpha_x;
- sc->type = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID;
+ bsdf->type = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_ashikhmin_shirley_aniso_setup(ShaderClosure *sc)
+ccl_device int bsdf_ashikhmin_shirley_aniso_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = clamp(sc->data0, 1e-4f, 1.0f);
- sc->data1 = clamp(sc->data1, 1e-4f, 1.0f);
+ bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
+ bsdf->alpha_y = clamp(bsdf->alpha_y, 1e-4f, 1.0f);
- sc->type = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
+ bsdf->type = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_ashikhmin_shirley_blur(ShaderClosure *sc, float roughness)
{
- sc->data0 = fmaxf(roughness, sc->data0); /* clamp roughness */
- sc->data1 = fmaxf(roughness, sc->data1);
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
ccl_device_inline float bsdf_ashikhmin_shirley_roughness_to_exponent(float roughness)
@@ -62,14 +64,15 @@ ccl_device_inline float bsdf_ashikhmin_shirley_roughness_to_exponent(float rough
ccl_device float3 bsdf_ashikhmin_shirley_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float3 N = bsdf->N;
float NdotI = dot(N, I); /* in Cycles/OSL convention I is omega_out */
float NdotO = dot(N, omega_in); /* and consequently we use for O omaga_in ;) */
float out = 0.0f;
- if(fmaxf(sc->data0, sc->data1) <= 1e-4f)
+ if(fmaxf(bsdf->alpha_x, bsdf->alpha_y) <= 1e-4f)
return make_float3(0.0f, 0.0f, 0.0f);
if(NdotI > 0.0f && NdotO > 0.0f) {
@@ -82,8 +85,8 @@ ccl_device float3 bsdf_ashikhmin_shirley_eval_reflect(const ShaderClosure *sc, c
float pump = 1.0f / fmaxf(1e-6f, (HdotI*fmaxf(NdotO, NdotI))); /* pump from original paper (first derivative disc., but cancels the HdotI in the pdf nicely) */
/*float pump = 1.0f / fmaxf(1e-4f, ((NdotO + NdotI) * (NdotO*NdotI))); */ /* pump from d-brdf paper */
- float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(sc->data0);
- float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(sc->data1);
+ float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_x);
+ float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_y);
if(n_x == n_y) {
/* isotropic */
@@ -97,7 +100,7 @@ ccl_device float3 bsdf_ashikhmin_shirley_eval_reflect(const ShaderClosure *sc, c
else {
/* anisotropic */
float3 X, Y;
- make_orthonormals_tangent(N, sc->T, &X, &Y);
+ make_orthonormals_tangent(N, bsdf->T, &X, &Y);
float HdotX = dot(H, X);
float HdotY = dot(H, Y);
@@ -134,13 +137,14 @@ ccl_device_inline void bsdf_ashikhmin_shirley_sample_first_quadrant(float n_x, f
ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float3 N = bsdf->N;
float NdotI = dot(N, I);
if(NdotI > 0.0f) {
- float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(sc->data0);
- float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(sc->data1);
+ float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_x);
+ float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_y);
/* get x,y basis on the surface for anisotropy */
float3 X, Y;
@@ -148,7 +152,7 @@ ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng,
if(n_x == n_y)
make_orthonormals(N, &X, &Y);
else
- make_orthonormals_tangent(N, sc->T, &X, &Y);
+ make_orthonormals_tangent(N, bsdf->T, &X, &Y);
/* sample spherical coords for h in tangent space */
float phi;
@@ -199,7 +203,7 @@ ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng,
/* reflect I on H to get omega_in */
*omega_in = -I + (2.0f * HdotI) * H;
- if(fmaxf(sc->data0, sc->data1) <= 1e-4f) {
+ if(fmaxf(bsdf->alpha_x, bsdf->alpha_y) <= 1e-4f) {
/* Some high number for MIS. */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
diff --git a/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h b/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
index f1a26650078..7e0f5a7ec75 100644
--- a/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
+++ b/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
@@ -35,20 +35,38 @@
CCL_NAMESPACE_BEGIN
-ccl_device int bsdf_ashikhmin_velvet_setup(ShaderClosure *sc)
+typedef ccl_addr_space struct VelvetBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float sigma;
+ float invsigma2;
+ float3 N;
+} VelvetBsdf;
+
+ccl_device int bsdf_ashikhmin_velvet_setup(VelvetBsdf *bsdf)
{
- float sigma = fmaxf(sc->data0, 0.01f);
- sc->data0 = 1.0f/(sigma * sigma); /* m_invsigma2 */
+ float sigma = fmaxf(bsdf->sigma, 0.01f);
+ bsdf->invsigma2 = 1.0f/(sigma * sigma);
- sc->type = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
+ bsdf->type = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device bool bsdf_ashikhmin_velvet_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const VelvetBsdf *bsdf_a = (const VelvetBsdf*)a;
+ const VelvetBsdf *bsdf_b = (const VelvetBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
+ (bsdf_a->sigma == bsdf_b->sigma);
+}
+
ccl_device float3 bsdf_ashikhmin_velvet_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float m_invsigma2 = sc->data0;
- float3 N = sc->N;
+ const VelvetBsdf *bsdf = (const VelvetBsdf*)sc;
+ float m_invsigma2 = bsdf->invsigma2;
+ float3 N = bsdf->N;
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
@@ -90,8 +108,9 @@ ccl_device float3 bsdf_ashikhmin_velvet_eval_transmit(const ShaderClosure *sc, c
ccl_device int bsdf_ashikhmin_velvet_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float m_invsigma2 = sc->data0;
- float3 N = sc->N;
+ const VelvetBsdf *bsdf = (const VelvetBsdf*)sc;
+ float m_invsigma2 = bsdf->invsigma2;
+ float3 N = bsdf->N;
// we are viewing the surface from above - send a ray out with uniform
// distribution over the hemisphere
diff --git a/intern/cycles/kernel/closure/bsdf_diffuse.h b/intern/cycles/kernel/closure/bsdf_diffuse.h
index 4b29bb096d1..dcd187f9305 100644
--- a/intern/cycles/kernel/closure/bsdf_diffuse.h
+++ b/intern/cycles/kernel/closure/bsdf_diffuse.h
@@ -35,17 +35,31 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct DiffuseBsdf {
+ SHADER_CLOSURE_BASE;
+ float3 N;
+} DiffuseBsdf;
+
/* DIFFUSE */
-ccl_device int bsdf_diffuse_setup(ShaderClosure *sc)
+ccl_device int bsdf_diffuse_setup(DiffuseBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_DIFFUSE_ID;
+ bsdf->type = CLOSURE_BSDF_DIFFUSE_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device bool bsdf_diffuse_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const DiffuseBsdf *bsdf_a = (const DiffuseBsdf*)a;
+ const DiffuseBsdf *bsdf_b = (const DiffuseBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N));
+}
+
ccl_device float3 bsdf_diffuse_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
+ float3 N = bsdf->N;
float cos_pi = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
*pdf = cos_pi;
@@ -59,7 +73,8 @@ ccl_device float3 bsdf_diffuse_eval_transmit(const ShaderClosure *sc, const floa
ccl_device int bsdf_diffuse_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
+ float3 N = bsdf->N;
// distribution over the hemisphere
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
@@ -80,9 +95,9 @@ ccl_device int bsdf_diffuse_sample(const ShaderClosure *sc, float3 Ng, float3 I,
/* TRANSLUCENT */
-ccl_device int bsdf_translucent_setup(ShaderClosure *sc)
+ccl_device int bsdf_translucent_setup(DiffuseBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_TRANSLUCENT_ID;
+ bsdf->type = CLOSURE_BSDF_TRANSLUCENT_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
@@ -93,7 +108,8 @@ ccl_device float3 bsdf_translucent_eval_reflect(const ShaderClosure *sc, const f
ccl_device float3 bsdf_translucent_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
+ float3 N = bsdf->N;
float cos_pi = fmaxf(-dot(N, omega_in), 0.0f) * M_1_PI_F;
*pdf = cos_pi;
@@ -102,7 +118,8 @@ ccl_device float3 bsdf_translucent_eval_transmit(const ShaderClosure *sc, const
ccl_device int bsdf_translucent_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
+ float3 N = bsdf->N;
// we are viewing the surface from the right side - send a ray out with cosine
// distribution over the hemisphere
diff --git a/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h b/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
index e0287e7655a..2d982a95fe4 100644
--- a/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
+++ b/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
@@ -35,7 +35,16 @@
CCL_NAMESPACE_BEGIN
-ccl_device float3 bsdf_diffuse_ramp_get_color(const ShaderClosure *sc, const float3 colors[8], float pos)
+#ifdef __OSL__
+
+typedef ccl_addr_space struct DiffuseRampBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float3 N;
+ float3 *colors;
+} DiffuseRampBsdf;
+
+ccl_device float3 bsdf_diffuse_ramp_get_color(const float3 colors[8], float pos)
{
int MAXCOLORS = 8;
@@ -49,11 +58,9 @@ ccl_device float3 bsdf_diffuse_ramp_get_color(const ShaderClosure *sc, const flo
return colors[ipos] * (1.0f - offset) + colors[ipos+1] * offset;
}
-ccl_device int bsdf_diffuse_ramp_setup(ShaderClosure *sc)
+ccl_device int bsdf_diffuse_ramp_setup(DiffuseRampBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_DIFFUSE_RAMP_ID;
- sc->data0 = 0.0f;
- sc->data1 = 0.0f;
+ bsdf->type = CLOSURE_BSDF_DIFFUSE_RAMP_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
@@ -61,29 +68,31 @@ ccl_device void bsdf_diffuse_ramp_blur(ShaderClosure *sc, float roughness)
{
}
-ccl_device float3 bsdf_diffuse_ramp_eval_reflect(const ShaderClosure *sc, const float3 colors[8], const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_diffuse_ramp_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseRampBsdf *bsdf = (const DiffuseRampBsdf*)sc;
+ float3 N = bsdf->N;
float cos_pi = fmaxf(dot(N, omega_in), 0.0f);
*pdf = cos_pi * M_1_PI_F;
- return bsdf_diffuse_ramp_get_color(sc, colors, cos_pi) * M_1_PI_F;
+ return bsdf_diffuse_ramp_get_color(bsdf->colors, cos_pi) * M_1_PI_F;
}
-ccl_device float3 bsdf_diffuse_ramp_eval_transmit(const ShaderClosure *sc, const float3 colors[8], const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_diffuse_ramp_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
return make_float3(0.0f, 0.0f, 0.0f);
}
-ccl_device int bsdf_diffuse_ramp_sample(const ShaderClosure *sc, const float3 colors[8], float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+ccl_device int bsdf_diffuse_ramp_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float3 N = sc->N;
+ const DiffuseRampBsdf *bsdf = (const DiffuseRampBsdf*)sc;
+ float3 N = bsdf->N;
// distribution over the hemisphere
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
- *eval = bsdf_diffuse_ramp_get_color(sc, colors, *pdf * M_PI_F) * M_1_PI_F;
+ *eval = bsdf_diffuse_ramp_get_color(bsdf->colors, *pdf * M_PI_F) * M_1_PI_F;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
@@ -95,6 +104,8 @@ ccl_device int bsdf_diffuse_ramp_sample(const ShaderClosure *sc, const float3 co
return LABEL_REFLECT|LABEL_DIFFUSE;
}
+#endif /* __OSL__ */
+
CCL_NAMESPACE_END
#endif /* __BSDF_DIFFUSE_RAMP_H__ */
diff --git a/intern/cycles/kernel/closure/bsdf_hair.h b/intern/cycles/kernel/closure/bsdf_hair.h
index 1e81617a7d3..bede5f45e7e 100644
--- a/intern/cycles/kernel/closure/bsdf_hair.h
+++ b/intern/cycles/kernel/closure/bsdf_hair.h
@@ -35,29 +35,49 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct HairBsdf {
+ SHADER_CLOSURE_BASE;
-ccl_device int bsdf_hair_reflection_setup(ShaderClosure *sc)
+ float3 T;
+ float roughness1;
+ float roughness2;
+ float offset;
+} HairBsdf;
+
+ccl_device int bsdf_hair_reflection_setup(HairBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_HAIR_REFLECTION_ID;
- sc->data0 = clamp(sc->data0, 0.001f, 1.0f);
- sc->data1 = clamp(sc->data1, 0.001f, 1.0f);
+ bsdf->type = CLOSURE_BSDF_HAIR_REFLECTION_ID;
+ bsdf->roughness1 = clamp(bsdf->roughness1, 0.001f, 1.0f);
+ bsdf->roughness2 = clamp(bsdf->roughness2, 0.001f, 1.0f);
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_hair_transmission_setup(ShaderClosure *sc)
+ccl_device int bsdf_hair_transmission_setup(HairBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_HAIR_TRANSMISSION_ID;
- sc->data0 = clamp(sc->data0, 0.001f, 1.0f);
- sc->data1 = clamp(sc->data1, 0.001f, 1.0f);
+ bsdf->type = CLOSURE_BSDF_HAIR_TRANSMISSION_ID;
+ bsdf->roughness1 = clamp(bsdf->roughness1, 0.001f, 1.0f);
+ bsdf->roughness2 = clamp(bsdf->roughness2, 0.001f, 1.0f);
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device bool bsdf_hair_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const HairBsdf *bsdf_a = (const HairBsdf*)a;
+ const HairBsdf *bsdf_b = (const HairBsdf*)b;
+
+ return (isequal_float3(bsdf_a->T, bsdf_b->T)) &&
+ (bsdf_a->roughness1 == bsdf_b->roughness1) &&
+ (bsdf_a->roughness2 == bsdf_b->roughness2) &&
+ (bsdf_a->offset == bsdf_b->offset);
+}
+
ccl_device float3 bsdf_hair_reflection_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float offset = sc->data2;
- float3 Tg = sc->T;
- float roughness1 = sc->data0;
- float roughness2 = sc->data1;
+ const HairBsdf *bsdf = (const HairBsdf*)sc;
+ float offset = bsdf->offset;
+ float3 Tg = bsdf->T;
+ float roughness1 = bsdf->roughness1;
+ float roughness2 = bsdf->roughness2;
float Iz = dot(Tg, I);
float3 locy = normalize(I - Tg * Iz);
@@ -107,10 +127,11 @@ ccl_device float3 bsdf_hair_reflection_eval_transmit(const ShaderClosure *sc, co
ccl_device float3 bsdf_hair_transmission_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float offset = sc->data2;
- float3 Tg = sc->T;
- float roughness1 = sc->data0;
- float roughness2 = sc->data1;
+ const HairBsdf *bsdf = (const HairBsdf*)sc;
+ float offset = bsdf->offset;
+ float3 Tg = bsdf->T;
+ float roughness1 = bsdf->roughness1;
+ float roughness2 = bsdf->roughness2;
float Iz = dot(Tg, I);
float3 locy = normalize(I - Tg * Iz);
@@ -148,10 +169,11 @@ ccl_device float3 bsdf_hair_transmission_eval_transmit(const ShaderClosure *sc,
ccl_device int bsdf_hair_reflection_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float offset = sc->data2;
- float3 Tg = sc->T;
- float roughness1 = sc->data0;
- float roughness2 = sc->data1;
+ const HairBsdf *bsdf = (const HairBsdf*)sc;
+ float offset = bsdf->offset;
+ float3 Tg = bsdf->T;
+ float roughness1 = bsdf->roughness1;
+ float roughness2 = bsdf->roughness2;
float Iz = dot(Tg, I);
float3 locy = normalize(I - Tg * Iz);
float3 locx = cross(locy, Tg);
@@ -198,10 +220,11 @@ ccl_device int bsdf_hair_reflection_sample(const ShaderClosure *sc, float3 Ng, f
ccl_device int bsdf_hair_transmission_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float offset = sc->data2;
- float3 Tg = sc->T;
- float roughness1 = sc->data0;
- float roughness2 = sc->data1;
+ const HairBsdf *bsdf = (const HairBsdf*)sc;
+ float offset = bsdf->offset;
+ float3 Tg = bsdf->T;
+ float roughness1 = bsdf->roughness1;
+ float roughness2 = bsdf->roughness2;
float Iz = dot(Tg, I);
float3 locy = normalize(I - Tg * Iz);
float3 locx = cross(locy, Tg);
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet.h b/intern/cycles/kernel/closure/bsdf_microfacet.h
index 7bf7c2806d4..9da73f66da0 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet.h
@@ -35,6 +35,19 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct MicrofacetExtra {
+ float3 color;
+} MicrofacetExtra;
+
+typedef ccl_addr_space struct MicrofacetBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float alpha_x, alpha_y, ior;
+ MicrofacetExtra *extra;
+ float3 T;
+ float3 N;
+} MicrofacetBsdf;
+
/* Beckmann and GGX microfacet importance sampling. */
ccl_device_inline void microfacet_beckmann_sample_slopes(
@@ -233,48 +246,66 @@ ccl_device_inline float3 microfacet_sample_stretched(
* Anisotropy is only supported for reflection currently, but adding it for
* transmission is just a matter of copying code from reflection if needed. */
-ccl_device int bsdf_microfacet_ggx_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_ggx_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = sc->data0; /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- sc->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_microfacet_ggx_aniso_setup(ShaderClosure *sc)
+ccl_device bool bsdf_microfacet_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const MicrofacetBsdf *bsdf_a = (const MicrofacetBsdf*)a;
+ const MicrofacetBsdf *bsdf_b = (const MicrofacetBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
+ (bsdf_a->alpha_x == bsdf_b->alpha_x) &&
+ (bsdf_a->alpha_y == bsdf_b->alpha_y) &&
+ (isequal_float3(bsdf_a->T, bsdf_b->T)) &&
+ (bsdf_a->ior == bsdf_b->ior) &&
+ ((!bsdf_a->extra && !bsdf_b->extra) ||
+ ((bsdf_a->extra && bsdf_b->extra) &&
+ (isequal_float3(bsdf_a->extra->color, bsdf_b->extra->color))));
+}
+
+ccl_device int bsdf_microfacet_ggx_aniso_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = saturate(sc->data1); /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
- sc->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_microfacet_ggx_refraction_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_ggx_refraction_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = sc->data0; /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- sc->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness)
{
- sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
- sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
if(m_refractive || alpha_x*alpha_y <= 1e-7f)
return make_float3(0.0f, 0.0f, 0.0f);
@@ -305,7 +336,7 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
else {
/* anisotropic */
float3 X, Y, Z = N;
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
/* distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
@@ -361,11 +392,12 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
ccl_device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- float m_eta = sc->data2;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ float m_eta = bsdf->ior;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
if(!m_refractive || alpha_x*alpha_y <= 1e-7f)
return make_float3(0.0f, 0.0f, 0.0f);
@@ -415,10 +447,11 @@ ccl_device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderClosure *sc, con
ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 N = bsdf->N;
float cosNO = dot(N, I);
if(cosNO > 0) {
@@ -427,7 +460,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
if(alpha_x == alpha_y)
make_orthonormals(Z, &X, &Y);
else
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
/* importance sampling with distribution of visible normals. vectors are
* transformed to local space before and after */
@@ -522,7 +555,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
- float m_eta = sc->data2, fresnel;
+ float m_eta = bsdf->ior, fresnel;
bool inside;
fresnel = fresnel_dielectric(m_eta, m, I, &R, &T,
@@ -582,37 +615,39 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
* Microfacet Models for Refraction through Rough Surfaces
* B. Walter, S. R. Marschner, H. Li, K. E. Torrance, EGSR 2007 */
-ccl_device int bsdf_microfacet_beckmann_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_beckmann_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = sc->data0; /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_microfacet_beckmann_aniso_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_beckmann_aniso_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = saturate(sc->data1); /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
- sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device int bsdf_microfacet_beckmann_refraction_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_beckmann_refraction_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = saturate(sc->data0); /* alpha_x */
- sc->data1 = sc->data0; /* alpha_y */
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
- sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness)
{
- sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
- sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
ccl_device_inline float bsdf_beckmann_G1(float alpha, float cos_n)
@@ -647,10 +682,11 @@ ccl_device_inline float bsdf_beckmann_aniso_G1(float alpha_x, float alpha_y, flo
ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
if(m_refractive || alpha_x*alpha_y <= 1e-7f)
return make_float3(0.0f, 0.0f, 0.0f);
@@ -682,7 +718,7 @@ ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc,
else {
/* anisotropic */
float3 X, Y, Z = N;
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
/* distribution */
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
@@ -722,11 +758,12 @@ ccl_device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderClosure *sc,
ccl_device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- float m_eta = sc->data2;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ float m_eta = bsdf->ior;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
if(!m_refractive || alpha_x*alpha_y <= 1e-7f)
return make_float3(0.0f, 0.0f, 0.0f);
@@ -773,10 +810,11 @@ ccl_device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderClosure *sc
ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float alpha_x = sc->data0;
- float alpha_y = sc->data1;
- bool m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float alpha_x = bsdf->alpha_x;
+ float alpha_y = bsdf->alpha_y;
+ bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 N = bsdf->N;
float cosNO = dot(N, I);
if(cosNO > 0) {
@@ -785,7 +823,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
if(alpha_x == alpha_y)
make_orthonormals(Z, &X, &Y);
else
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
/* importance sampling with distribution of visible normals. vectors are
* transformed to local space before and after */
@@ -872,7 +910,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
- float m_eta = sc->data2, fresnel;
+ float m_eta = bsdf->ior, fresnel;
bool inside;
fresnel = fresnel_dielectric(m_eta, m, I, &R, &T,
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet_multi.h b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
index acb50ce6faa..df848c3d179 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
@@ -328,40 +328,42 @@ ccl_device_inline float mf_glass_pdf(const float3 wi, const float3 wo, const flo
ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
{
- sc->data0 = fmaxf(roughness, sc->data0); /* alpha_x */
- sc->data1 = fmaxf(roughness, sc->data1); /* alpha_y */
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)sc;
+
+ bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
+ bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
}
/* === Closure implementations === */
/* Multiscattering GGX Glossy closure */
-ccl_device int bsdf_microfacet_multi_ggx_common_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_multi_ggx_common_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
- sc->data1 = clamp(sc->data1, 1e-4f, 1.0f);
- sc->custom1 = saturate(sc->custom1); /* color */
- sc->custom2 = saturate(sc->custom2);
- sc->custom3 = saturate(sc->custom3);
+ bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
+ bsdf->alpha_y = clamp(bsdf->alpha_y, 1e-4f, 1.0f);
+ bsdf->extra->color.x = saturate(bsdf->extra->color.x);
+ bsdf->extra->color.y = saturate(bsdf->extra->color.y);
+ bsdf->extra->color.z = saturate(bsdf->extra->color.z);
- sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}
-ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(MicrofacetBsdf *bsdf)
{
- if(is_zero(sc->T))
- sc->T = make_float3(1.0f, 0.0f, 0.0f);
+ if(is_zero(bsdf->T))
+ bsdf->T = make_float3(1.0f, 0.0f, 0.0f);
- return bsdf_microfacet_multi_ggx_common_setup(sc);
+ return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}
-ccl_device int bsdf_microfacet_multi_ggx_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_multi_ggx_setup(MicrofacetBsdf *bsdf)
{
- sc->data1 = sc->data0;
+ bsdf->alpha_y = bsdf->alpha_x;
- return bsdf_microfacet_multi_ggx_common_setup(sc);
+ return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}
ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
@@ -370,11 +372,12 @@ ccl_device float3 bsdf_microfacet_multi_ggx_eval_transmit(const ShaderClosure *s
}
ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
- bool is_aniso = (sc->data0 != sc->data1);
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
float3 X, Y, Z;
- Z = sc->N;
+ Z = bsdf->N;
if(is_aniso)
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
else
make_orthonormals(Z, &X, &Y);
@@ -382,30 +385,31 @@ ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
if(is_aniso)
- *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
+ *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
else
- *pdf = mf_ggx_pdf(localI, localO, sc->data0);
- return mf_eval_glossy(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
+ *pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
+ return mf_eval_glossy(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL);
}
ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
{
- bool is_aniso = (sc->data0 != sc->data1);
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
float3 X, Y, Z;
- Z = sc->N;
+ Z = bsdf->N;
if(is_aniso)
- make_orthonormals_tangent(Z, sc->T, &X, &Y);
+ make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
else
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
- *eval = mf_sample_glossy(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, NULL, NULL);
+ *eval = mf_sample_glossy(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL);
if(is_aniso)
- *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(sc->data0, sc->data1));
+ *pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
else
- *pdf = mf_ggx_pdf(localI, localO, sc->data0);
+ *pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
*eval *= *pdf;
*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
@@ -418,55 +422,58 @@ ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderC
/* Multiscattering GGX Glass closure */
-ccl_device int bsdf_microfacet_multi_ggx_glass_setup(ShaderClosure *sc)
+ccl_device int bsdf_microfacet_multi_ggx_glass_setup(MicrofacetBsdf *bsdf)
{
- sc->data0 = clamp(sc->data0, 1e-4f, 1.0f); /* alpha */
- sc->data1 = sc->data0;
- sc->data2 = max(0.0f, sc->data2); /* ior */
- sc->custom1 = saturate(sc->custom1); /* color */
- sc->custom2 = saturate(sc->custom2);
- sc->custom3 = saturate(sc->custom3);
+ bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
+ bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->ior = max(0.0f, bsdf->ior);
+ bsdf->extra->color.x = saturate(bsdf->extra->color.x);
+ bsdf->extra->color.y = saturate(bsdf->extra->color.y);
+ bsdf->extra->color.z = saturate(bsdf->extra->color.z);
- sc->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
- return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG|SD_BSDF_HAS_CUSTOM;
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
float3 X, Y, Z;
- Z = sc->N;
+ Z = bsdf->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
- *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
- return mf_eval_glass(localI, localO, false, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
+ *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
+ return mf_eval_glass(localI, localO, false, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
}
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
float3 X, Y, Z;
- Z = sc->N;
+ Z = bsdf->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
- *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
- return mf_eval_glass(localI, localO, true, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
+ *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
+ return mf_eval_glass(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
}
ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
{
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
float3 X, Y, Z;
- Z = sc->N;
+ Z = bsdf->N;
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
- *eval = mf_sample_glass(localI, &localO, make_float3(sc->custom1, sc->custom2, sc->custom3), sc->data0, sc->data1, lcg_state, sc->data2);
- *pdf = mf_glass_pdf(localI, localO, sc->data0, sc->data2);
+ *eval = mf_sample_glass(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
+ *pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
*eval *= *pdf;
*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
@@ -480,9 +487,9 @@ ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const S
else {
#ifdef __RAY_DIFFERENTIALS__
float cosI = dot(Z, I);
- float dnp = max(sqrtf(1.0f - (sc->data2 * sc->data2 * (1.0f - cosI*cosI))), 1e-7f);
- *domega_in_dx = -(sc->data2 * dIdx) + ((sc->data2 - sc->data2 * sc->data2 * cosI / dnp) * dot(dIdx, Z)) * Z;
- *domega_in_dy = -(sc->data2 * dIdy) + ((sc->data2 - sc->data2 * sc->data2 * cosI / dnp) * dot(dIdy, Z)) * Z;
+ float dnp = max(sqrtf(1.0f - (bsdf->ior * bsdf->ior * (1.0f - cosI*cosI))), 1e-7f);
+ *domega_in_dx = -(bsdf->ior * dIdx) + ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdx, Z)) * Z;
+ *domega_in_dy = -(bsdf->ior * dIdy) + ((bsdf->ior - bsdf->ior * bsdf->ior * cosI / dnp) * dot(dIdy, Z)) * Z;
#endif
return LABEL_TRANSMIT|LABEL_GLOSSY;
diff --git a/intern/cycles/kernel/closure/bsdf_oren_nayar.h b/intern/cycles/kernel/closure/bsdf_oren_nayar.h
index 61b7cb11b02..cb342a026ef 100644
--- a/intern/cycles/kernel/closure/bsdf_oren_nayar.h
+++ b/intern/cycles/kernel/closure/bsdf_oren_nayar.h
@@ -19,39 +19,59 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct OrenNayarBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float3 N;
+ float roughness;
+ float a;
+ float b;
+} OrenNayarBsdf;
+
ccl_device float3 bsdf_oren_nayar_get_intensity(const ShaderClosure *sc, float3 n, float3 v, float3 l)
{
+ const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
float nl = max(dot(n, l), 0.0f);
float nv = max(dot(n, v), 0.0f);
float t = dot(l, v) - nl * nv;
if(t > 0.0f)
t /= max(nl, nv) + FLT_MIN;
- float is = nl * (sc->data0 + sc->data1 * t);
+ float is = nl * (bsdf->a + bsdf->b * t);
return make_float3(is, is, is);
}
-ccl_device int bsdf_oren_nayar_setup(ShaderClosure *sc)
+ccl_device int bsdf_oren_nayar_setup(OrenNayarBsdf *bsdf)
{
- float sigma = sc->data0;
+ float sigma = bsdf->roughness;
- sc->type = CLOSURE_BSDF_OREN_NAYAR_ID;
+ bsdf->type = CLOSURE_BSDF_OREN_NAYAR_ID;
sigma = saturate(sigma);
float div = 1.0f / (M_PI_F + ((3.0f * M_PI_F - 4.0f) / 6.0f) * sigma);
- sc->data0 = 1.0f * div;
- sc->data1 = sigma * div;
+ bsdf->a = 1.0f * div;
+ bsdf->b = sigma * div;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device bool bsdf_oren_nayar_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const OrenNayarBsdf *bsdf_a = (const OrenNayarBsdf*)a;
+ const OrenNayarBsdf *bsdf_b = (const OrenNayarBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
+ (bsdf_a->roughness == bsdf_b->roughness);
+}
+
ccl_device float3 bsdf_oren_nayar_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- if(dot(sc->N, omega_in) > 0.0f) {
+ const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
+ if(dot(bsdf->N, omega_in) > 0.0f) {
*pdf = 0.5f * M_1_PI_F;
- return bsdf_oren_nayar_get_intensity(sc, sc->N, I, omega_in);
+ return bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, omega_in);
}
else {
*pdf = 0.0f;
@@ -66,15 +86,16 @@ ccl_device float3 bsdf_oren_nayar_eval_transmit(const ShaderClosure *sc, const f
ccl_device int bsdf_oren_nayar_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- sample_uniform_hemisphere(sc->N, randu, randv, omega_in, pdf);
+ const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
+ sample_uniform_hemisphere(bsdf->N, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
- *eval = bsdf_oren_nayar_get_intensity(sc, sc->N, I, *omega_in);
+ *eval = bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, *omega_in);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the bounce
- *domega_in_dx = (2.0f * dot(sc->N, dIdx)) * sc->N - dIdx;
- *domega_in_dy = (2.0f * dot(sc->N, dIdy)) * sc->N - dIdy;
+ *domega_in_dx = (2.0f * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
+ *domega_in_dy = (2.0f * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
#endif
}
else {
diff --git a/intern/cycles/kernel/closure/bsdf_phong_ramp.h b/intern/cycles/kernel/closure/bsdf_phong_ramp.h
index 1ab15eee954..e152a8780db 100644
--- a/intern/cycles/kernel/closure/bsdf_phong_ramp.h
+++ b/intern/cycles/kernel/closure/bsdf_phong_ramp.h
@@ -35,7 +35,17 @@
CCL_NAMESPACE_BEGIN
-ccl_device float3 bsdf_phong_ramp_get_color(const ShaderClosure *sc, const float3 colors[8], float pos)
+#ifdef __OSL__
+
+typedef ccl_addr_space struct PhongRampBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float3 N;
+ float exponent;
+ float3 *colors;
+} PhongRampBsdf;
+
+ccl_device float3 bsdf_phong_ramp_get_color(const float3 colors[8], float pos)
{
int MAXCOLORS = 8;
@@ -49,57 +59,54 @@ ccl_device float3 bsdf_phong_ramp_get_color(const ShaderClosure *sc, const float
return colors[ipos] * (1.0f - offset) + colors[ipos+1] * offset;
}
-ccl_device int bsdf_phong_ramp_setup(ShaderClosure *sc)
+ccl_device int bsdf_phong_ramp_setup(PhongRampBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_PHONG_RAMP_ID;
- sc->data0 = max(sc->data0, 0.0f);
- sc->data1 = 0.0f;
+ bsdf->type = CLOSURE_BSDF_PHONG_RAMP_ID;
+ bsdf->exponent = max(bsdf->exponent, 0.0f);
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
-ccl_device void bsdf_phong_ramp_blur(ShaderClosure *sc, float roughness)
-{
-}
-
-ccl_device float3 bsdf_phong_ramp_eval_reflect(const ShaderClosure *sc, const float3 colors[8], const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_phong_ramp_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float m_exponent = sc->data0;
- float cosNI = dot(sc->N, omega_in);
- float cosNO = dot(sc->N, I);
+ const PhongRampBsdf *bsdf = (const PhongRampBsdf*)sc;
+ float m_exponent = bsdf->exponent;
+ float cosNI = dot(bsdf->N, omega_in);
+ float cosNO = dot(bsdf->N, I);
if(cosNI > 0 && cosNO > 0) {
// reflect the view vector
- float3 R = (2 * cosNO) * sc->N - I;
+ float3 R = (2 * cosNO) * bsdf->N - I;
float cosRI = dot(R, omega_in);
if(cosRI > 0) {
float cosp = powf(cosRI, m_exponent);
float common = 0.5f * M_1_PI_F * cosp;
float out = cosNI * (m_exponent + 2) * common;
*pdf = (m_exponent + 1) * common;
- return bsdf_phong_ramp_get_color(sc, colors, cosp) * out;
+ return bsdf_phong_ramp_get_color(bsdf->colors, cosp) * out;
}
}
return make_float3(0.0f, 0.0f, 0.0f);
}
-ccl_device float3 bsdf_phong_ramp_eval_transmit(const ShaderClosure *sc, const float3 colors[8], const float3 I, const float3 omega_in, float *pdf)
+ccl_device float3 bsdf_phong_ramp_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
return make_float3(0.0f, 0.0f, 0.0f);
}
-ccl_device int bsdf_phong_ramp_sample(const ShaderClosure *sc, const float3 colors[8], float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+ccl_device int bsdf_phong_ramp_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float cosNO = dot(sc->N, I);
- float m_exponent = sc->data0;
+ const PhongRampBsdf *bsdf = (const PhongRampBsdf*)sc;
+ float cosNO = dot(bsdf->N, I);
+ float m_exponent = bsdf->exponent;
if(cosNO > 0) {
// reflect the view vector
- float3 R = (2 * cosNO) * sc->N - I;
+ float3 R = (2 * cosNO) * bsdf->N - I;
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(sc->N, dIdx)) * sc->N - dIdx;
- *domega_in_dy = (2 * dot(sc->N, dIdy)) * sc->N - dIdy;
+ *domega_in_dx = (2 * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
+ *domega_in_dy = (2 * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
#endif
float3 T, B;
@@ -114,7 +121,7 @@ ccl_device int bsdf_phong_ramp_sample(const ShaderClosure *sc, const float3 colo
if(dot(Ng, *omega_in) > 0.0f)
{
// common terms for pdf and eval
- float cosNI = dot(sc->N, *omega_in);
+ float cosNI = dot(bsdf->N, *omega_in);
// make sure the direction we chose is still in the right hemisphere
if(cosNI > 0)
{
@@ -122,13 +129,14 @@ ccl_device int bsdf_phong_ramp_sample(const ShaderClosure *sc, const float3 colo
float common = 0.5f * M_1_PI_F * cosp;
*pdf = (m_exponent + 1) * common;
float out = cosNI * (m_exponent + 2) * common;
- *eval = bsdf_phong_ramp_get_color(sc, colors, cosp) * out;
+ *eval = bsdf_phong_ramp_get_color(bsdf->colors, cosp) * out;
}
}
}
return LABEL_REFLECT|LABEL_GLOSSY;
}
+#endif /* __OSL__ */
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf_reflection.h b/intern/cycles/kernel/closure/bsdf_reflection.h
index 303f4c9ce34..1d21614ecee 100644
--- a/intern/cycles/kernel/closure/bsdf_reflection.h
+++ b/intern/cycles/kernel/closure/bsdf_reflection.h
@@ -37,9 +37,9 @@ CCL_NAMESPACE_BEGIN
/* REFLECTION */
-ccl_device int bsdf_reflection_setup(ShaderClosure *sc)
+ccl_device int bsdf_reflection_setup(MicrofacetBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_REFLECTION_ID;
+ bsdf->type = CLOSURE_BSDF_REFLECTION_ID;
return SD_BSDF;
}
@@ -55,7 +55,8 @@ ccl_device float3 bsdf_reflection_eval_transmit(const ShaderClosure *sc, const f
ccl_device int bsdf_reflection_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float3 N = bsdf->N;
// only one direction is possible
float cosNO = dot(N, I);
diff --git a/intern/cycles/kernel/closure/bsdf_refraction.h b/intern/cycles/kernel/closure/bsdf_refraction.h
index c78a4b67134..050a4e76fa9 100644
--- a/intern/cycles/kernel/closure/bsdf_refraction.h
+++ b/intern/cycles/kernel/closure/bsdf_refraction.h
@@ -37,9 +37,9 @@ CCL_NAMESPACE_BEGIN
/* REFRACTION */
-ccl_device int bsdf_refraction_setup(ShaderClosure *sc)
+ccl_device int bsdf_refraction_setup(MicrofacetBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_REFRACTION_ID;
+ bsdf->type = CLOSURE_BSDF_REFRACTION_ID;
return SD_BSDF;
}
@@ -55,8 +55,9 @@ ccl_device float3 bsdf_refraction_eval_transmit(const ShaderClosure *sc, const f
ccl_device int bsdf_refraction_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float m_eta = sc->data0;
- float3 N = sc->N;
+ const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
+ float m_eta = bsdf->ior;
+ float3 N = bsdf->N;
float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
diff --git a/intern/cycles/kernel/closure/bsdf_toon.h b/intern/cycles/kernel/closure/bsdf_toon.h
index e5b6ab93a64..28e775bcbc8 100644
--- a/intern/cycles/kernel/closure/bsdf_toon.h
+++ b/intern/cycles/kernel/closure/bsdf_toon.h
@@ -35,17 +35,35 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct ToonBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float3 N;
+ float size;
+ float smooth;
+} ToonBsdf;
+
/* DIFFUSE TOON */
-ccl_device int bsdf_diffuse_toon_setup(ShaderClosure *sc)
+ccl_device int bsdf_diffuse_toon_setup(ToonBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_DIFFUSE_TOON_ID;
- sc->data0 = saturate(sc->data0);
- sc->data1 = saturate(sc->data1);
+ bsdf->type = CLOSURE_BSDF_DIFFUSE_TOON_ID;
+ bsdf->size = saturate(bsdf->size);
+ bsdf->smooth = saturate(bsdf->smooth);
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device bool bsdf_toon_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const ToonBsdf *bsdf_a = (const ToonBsdf*)a;
+ const ToonBsdf *bsdf_b = (const ToonBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
+ (bsdf_a->size == bsdf_b->size) &&
+ (bsdf_a->smooth == bsdf_b->smooth);
+}
+
ccl_device float3 bsdf_toon_get_intensity(float max_angle, float smooth, float angle)
{
float is;
@@ -67,9 +85,10 @@ ccl_device float bsdf_toon_get_sample_angle(float max_angle, float smooth)
ccl_device float3 bsdf_diffuse_toon_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float max_angle = sc->data0*M_PI_2_F;
- float smooth = sc->data1*M_PI_2_F;
- float angle = safe_acosf(fmaxf(dot(sc->N, omega_in), 0.0f));
+ const ToonBsdf *bsdf = (const ToonBsdf*)sc;
+ float max_angle = bsdf->size*M_PI_2_F;
+ float smooth = bsdf->smooth*M_PI_2_F;
+ float angle = safe_acosf(fmaxf(dot(bsdf->N, omega_in), 0.0f));
float3 eval = bsdf_toon_get_intensity(max_angle, smooth, angle);
@@ -90,21 +109,22 @@ ccl_device float3 bsdf_diffuse_toon_eval_transmit(const ShaderClosure *sc, const
ccl_device int bsdf_diffuse_toon_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float max_angle = sc->data0*M_PI_2_F;
- float smooth = sc->data1*M_PI_2_F;
+ const ToonBsdf *bsdf = (const ToonBsdf*)sc;
+ float max_angle = bsdf->size*M_PI_2_F;
+ float smooth = bsdf->smooth*M_PI_2_F;
float sample_angle = bsdf_toon_get_sample_angle(max_angle, smooth);
float angle = sample_angle*randu;
if(sample_angle > 0.0f) {
- sample_uniform_cone(sc->N, sample_angle, randu, randv, omega_in, pdf);
+ sample_uniform_cone(bsdf->N, sample_angle, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
*eval = *pdf * bsdf_toon_get_intensity(max_angle, smooth, angle);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the bounce
- *domega_in_dx = (2.0f * dot(sc->N, dIdx)) * sc->N - dIdx;
- *domega_in_dy = (2.0f * dot(sc->N, dIdy)) * sc->N - dIdy;
+ *domega_in_dx = (2.0f * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
+ *domega_in_dy = (2.0f * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
#endif
}
else
@@ -117,25 +137,26 @@ ccl_device int bsdf_diffuse_toon_sample(const ShaderClosure *sc, float3 Ng, floa
/* GLOSSY TOON */
-ccl_device int bsdf_glossy_toon_setup(ShaderClosure *sc)
+ccl_device int bsdf_glossy_toon_setup(ToonBsdf *bsdf)
{
- sc->type = CLOSURE_BSDF_GLOSSY_TOON_ID;
- sc->data0 = saturate(sc->data0);
- sc->data1 = saturate(sc->data1);
+ bsdf->type = CLOSURE_BSDF_GLOSSY_TOON_ID;
+ bsdf->size = saturate(bsdf->size);
+ bsdf->smooth = saturate(bsdf->smooth);
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device float3 bsdf_glossy_toon_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
- float max_angle = sc->data0*M_PI_2_F;
- float smooth = sc->data1*M_PI_2_F;
- float cosNI = dot(sc->N, omega_in);
- float cosNO = dot(sc->N, I);
+ const ToonBsdf *bsdf = (const ToonBsdf*)sc;
+ float max_angle = bsdf->size*M_PI_2_F;
+ float smooth = bsdf->smooth*M_PI_2_F;
+ float cosNI = dot(bsdf->N, omega_in);
+ float cosNO = dot(bsdf->N, I);
if(cosNI > 0 && cosNO > 0) {
/* reflect the view vector */
- float3 R = (2 * cosNO) * sc->N - I;
+ float3 R = (2 * cosNO) * bsdf->N - I;
float cosRI = dot(R, omega_in);
float angle = safe_acosf(fmaxf(cosRI, 0.0f));
@@ -157,13 +178,14 @@ ccl_device float3 bsdf_glossy_toon_eval_transmit(const ShaderClosure *sc, const
ccl_device int bsdf_glossy_toon_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float max_angle = sc->data0*M_PI_2_F;
- float smooth = sc->data1*M_PI_2_F;
- float cosNO = dot(sc->N, I);
+ const ToonBsdf *bsdf = (const ToonBsdf*)sc;
+ float max_angle = bsdf->size*M_PI_2_F;
+ float smooth = bsdf->smooth*M_PI_2_F;
+ float cosNO = dot(bsdf->N, I);
if(cosNO > 0) {
/* reflect the view vector */
- float3 R = (2 * cosNO) * sc->N - I;
+ float3 R = (2 * cosNO) * bsdf->N - I;
float sample_angle = bsdf_toon_get_sample_angle(max_angle, smooth);
float angle = sample_angle*randu;
@@ -171,15 +193,15 @@ ccl_device int bsdf_glossy_toon_sample(const ShaderClosure *sc, float3 Ng, float
sample_uniform_cone(R, sample_angle, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
- float cosNI = dot(sc->N, *omega_in);
+ float cosNI = dot(bsdf->N, *omega_in);
/* make sure the direction we chose is still in the right hemisphere */
if(cosNI > 0) {
*eval = *pdf * bsdf_toon_get_intensity(max_angle, smooth, angle);
#ifdef __RAY_DIFFERENTIALS__
- *domega_in_dx = (2 * dot(sc->N, dIdx)) * sc->N - dIdx;
- *domega_in_dy = (2 * dot(sc->N, dIdy)) * sc->N - dIdy;
+ *domega_in_dx = (2 * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
+ *domega_in_dy = (2 * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
#endif
}
else
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index c24720cefbe..a260ae9a31b 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -19,6 +19,17 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct Bssrdf {
+ SHADER_CLOSURE_BASE;
+
+ float radius;
+ float sharpness;
+ float d;
+ float texture_blur;
+ float albedo;
+ float3 N;
+} Bssrdf;
+
/* Planar Truncated Gaussian
*
* Note how this is different from the typical gaussian, this one integrates
@@ -28,11 +39,12 @@ CCL_NAMESPACE_BEGIN
/* paper suggests 1/12.46 which is much too small, suspect it's *12.46 */
#define GAUSS_TRUNCATE 12.46f
-ccl_device float bssrdf_gaussian_eval(ShaderClosure *sc, float r)
+ccl_device float bssrdf_gaussian_eval(const ShaderClosure *sc, float r)
{
/* integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) from 0 to Rm
* = 1 - exp(-Rm*Rm/(2*v)) */
- const float v = sc->data0*sc->data0*(0.25f*0.25f);
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float v = bssrdf->radius*bssrdf->radius*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
if(r >= Rm)
@@ -41,7 +53,7 @@ ccl_device float bssrdf_gaussian_eval(ShaderClosure *sc, float r)
return expf(-r*r/(2.0f*v))/(2.0f*M_PI_F*v);
}
-ccl_device float bssrdf_gaussian_pdf(ShaderClosure *sc, float r)
+ccl_device float bssrdf_gaussian_pdf(const ShaderClosure *sc, float r)
{
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
const float area_truncated = 1.0f - expf(-0.5f*GAUSS_TRUNCATE);
@@ -49,12 +61,12 @@ ccl_device float bssrdf_gaussian_pdf(ShaderClosure *sc, float r)
return bssrdf_gaussian_eval(sc, r) * (1.0f/(area_truncated));
}
-ccl_device void bssrdf_gaussian_sample(ShaderClosure *sc, float xi, float *r, float *h)
+ccl_device void bssrdf_gaussian_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r * exp(-r*r/(2*v)))/(2*pi*v)) = -exp(-r^2/(2*v))
* r = sqrt(-2*v*logf(xi)) */
-
- const float v = sc->data0*sc->data0*(0.25f*0.25f);
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float v = bssrdf->radius*bssrdf->radius*(0.25f*0.25f);
const float Rm = sqrtf(v*GAUSS_TRUNCATE);
/* 1.0 - expf(-Rm*Rm/(2*v)) simplified */
@@ -75,12 +87,13 @@ ccl_device void bssrdf_gaussian_sample(ShaderClosure *sc, float xi, float *r, fl
* far as I can tell has no closed form solution. So we get an iterative solution
* instead with newton-raphson. */
-ccl_device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
+ccl_device float bssrdf_cubic_eval(const ShaderClosure *sc, float r)
{
- const float sharpness = sc->T.x;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float sharpness = bssrdf->sharpness;
if(sharpness == 0.0f) {
- const float Rm = sc->data0;
+ const float Rm = bssrdf->radius;
if(r >= Rm)
return 0.0f;
@@ -94,7 +107,7 @@ ccl_device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
}
else {
- float Rm = sc->data0*(1.0f + sharpness);
+ float Rm = bssrdf->radius*(1.0f + sharpness);
if(r >= Rm)
return 0.0f;
@@ -122,7 +135,7 @@ ccl_device float bssrdf_cubic_eval(ShaderClosure *sc, float r)
}
}
-ccl_device float bssrdf_cubic_pdf(ShaderClosure *sc, float r)
+ccl_device float bssrdf_cubic_pdf(const ShaderClosure *sc, float r)
{
return bssrdf_cubic_eval(sc, r);
}
@@ -155,12 +168,13 @@ ccl_device float bssrdf_cubic_quintic_root_find(float xi)
return x;
}
-ccl_device void bssrdf_cubic_sample(ShaderClosure *sc, float xi, float *r, float *h)
+ccl_device void bssrdf_cubic_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
- float Rm = sc->data0;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float sharpness = bssrdf->sharpness;
+ float Rm = bssrdf->radius;
float r_ = bssrdf_cubic_quintic_root_find(xi);
- const float sharpness = sc->T.x;
if(sharpness != 0.0f) {
r_ = powf(r_, 1.0f + sharpness);
Rm *= (1.0f + sharpness);
@@ -198,21 +212,22 @@ ccl_device_inline float bssrdf_burley_compatible_mfp(float r)
return 0.25f * M_1_PI_F * r;
}
-ccl_device void bssrdf_burley_setup(ShaderClosure *sc)
+ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
{
/* Mean free path length. */
- const float l = bssrdf_burley_compatible_mfp(sc->data0);
+ const float l = bssrdf_burley_compatible_mfp(bssrdf->radius);
/* Surface albedo. */
- const float A = sc->data2;
+ const float A = bssrdf->albedo;
const float s = bssrdf_burley_fitting(A);
const float d = l / s;
- sc->custom1 = d;
+ bssrdf->d = d;
}
-ccl_device float bssrdf_burley_eval(ShaderClosure *sc, float r)
+ccl_device float bssrdf_burley_eval(const ShaderClosure *sc, float r)
{
- const float d = sc->custom1;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float d = bssrdf->d;
const float Rm = BURLEY_TRUNCATE * d;
if(r >= Rm)
@@ -231,7 +246,7 @@ ccl_device float bssrdf_burley_eval(ShaderClosure *sc, float r)
return (exp_r_d + exp_r_3_d) / (4.0f*d);
}
-ccl_device float bssrdf_burley_pdf(ShaderClosure *sc, float r)
+ccl_device float bssrdf_burley_pdf(const ShaderClosure *sc, float r)
{
return bssrdf_burley_eval(sc, r) * (1.0f/BURLEY_TRUNCATE_CDF);
}
@@ -276,12 +291,13 @@ ccl_device float bssrdf_burley_root_find(float xi)
return r;
}
-ccl_device void bssrdf_burley_sample(ShaderClosure *sc,
+ccl_device void bssrdf_burley_sample(const ShaderClosure *sc,
float xi,
float *r,
float *h)
{
- const float d = sc->custom1;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float d = bssrdf->d;
const float Rm = BURLEY_TRUNCATE * d;
const float r_ = bssrdf_burley_root_find(xi * BURLEY_TRUNCATE_CDF) * d;
@@ -295,26 +311,29 @@ ccl_device void bssrdf_burley_sample(ShaderClosure *sc,
*
* Samples distributed over disk with no falloff, for reference. */
-ccl_device float bssrdf_none_eval(ShaderClosure *sc, float r)
+ccl_device float bssrdf_none_eval(const ShaderClosure *sc, float r)
{
- const float Rm = sc->data0;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float Rm = bssrdf->radius;
return (r < Rm)? 1.0f: 0.0f;
}
-ccl_device float bssrdf_none_pdf(ShaderClosure *sc, float r)
+ccl_device float bssrdf_none_pdf(const ShaderClosure *sc, float r)
{
/* integrate (2*pi*r)/(pi*Rm*Rm) from 0 to Rm = 1 */
- const float Rm = sc->data0;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float Rm = bssrdf->radius;
const float area = (M_PI_F*Rm*Rm);
return bssrdf_none_eval(sc, r) / area;
}
-ccl_device void bssrdf_none_sample(ShaderClosure *sc, float xi, float *r, float *h)
+ccl_device void bssrdf_none_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
/* xi = integrate (2*pi*r)/(pi*Rm*Rm) = r^2/Rm^2
* r = sqrt(xi)*Rm */
- const float Rm = sc->data0;
+ const Bssrdf *bssrdf = (const Bssrdf*)sc;
+ const float Rm = bssrdf->radius;
const float r_ = sqrtf(xi)*Rm;
*r = r_;
@@ -325,30 +344,42 @@ ccl_device void bssrdf_none_sample(ShaderClosure *sc, float xi, float *r, float
/* Generic */
-ccl_device int bssrdf_setup(ShaderClosure *sc, ClosureType type)
+ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
+{
+ Bssrdf *bssrdf = (Bssrdf*)closure_alloc(sd, sizeof(Bssrdf), CLOSURE_NONE_ID, weight);
+
+ if(!bssrdf)
+ return NULL;
+
+ float sample_weight = fabsf(average(weight));
+ bssrdf->sample_weight = sample_weight;
+ return (sample_weight >= CLOSURE_WEIGHT_CUTOFF) ? bssrdf : NULL;
+}
+
+ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
{
- if(sc->data0 < BSSRDF_MIN_RADIUS) {
+ if(bssrdf->radius < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */
- sc->data0 = 0.0f;
- sc->data1 = 0.0f;
- int flag = bsdf_diffuse_setup(sc);
- sc->type = CLOSURE_BSDF_BSSRDF_ID;
+ DiffuseBsdf *bsdf = (DiffuseBsdf*)bssrdf;
+ bsdf->N = bssrdf->N;
+ int flag = bsdf_diffuse_setup(bsdf);
+ bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
return flag;
}
else {
- sc->data1 = saturate(sc->data1); /* texture blur */
- sc->T.x = saturate(sc->T.x); /* sharpness */
- sc->type = type;
+ bssrdf->texture_blur = saturate(bssrdf->texture_blur);
+ bssrdf->sharpness = saturate(bssrdf->sharpness);
+ bssrdf->type = type;
if(type == CLOSURE_BSSRDF_BURLEY_ID) {
- bssrdf_burley_setup(sc);
+ bssrdf_burley_setup(bssrdf);
}
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
}
}
-ccl_device void bssrdf_sample(ShaderClosure *sc, float xi, float *r, float *h)
+ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
bssrdf_cubic_sample(sc, xi, r, h);
@@ -358,7 +389,7 @@ ccl_device void bssrdf_sample(ShaderClosure *sc, float xi, float *r, float *h)
bssrdf_burley_sample(sc, xi, r, h);
}
-ccl_device float bssrdf_pdf(ShaderClosure *sc, float r)
+ccl_device float bssrdf_pdf(const ShaderClosure *sc, float r)
{
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
return bssrdf_cubic_pdf(sc, r);
diff --git a/intern/cycles/kernel/closure/volume.h b/intern/cycles/kernel/closure/volume.h
index 4d71ba50ec3..01e67c7c2fd 100644
--- a/intern/cycles/kernel/closure/volume.h
+++ b/intern/cycles/kernel/closure/volume.h
@@ -19,6 +19,12 @@
CCL_NAMESPACE_BEGIN
+typedef ccl_addr_space struct HenyeyGreensteinVolume {
+ SHADER_CLOSURE_BASE;
+
+ float g;
+} HenyeyGreensteinVolume;
+
/* HENYEY-GREENSTEIN CLOSURE */
/* Given cosine between rays, return probability density that a photon bounces
@@ -29,19 +35,28 @@ ccl_device float single_peaked_henyey_greenstein(float cos_theta, float g)
return ((1.0f - g * g) / safe_powf(1.0f + g * g - 2.0f * g * cos_theta, 1.5f)) * (M_1_PI_F * 0.25f);
};
-ccl_device int volume_henyey_greenstein_setup(ShaderClosure *sc)
+ccl_device int volume_henyey_greenstein_setup(HenyeyGreensteinVolume *volume)
{
- sc->type = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
+ volume->type = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
/* clamp anisotropy to avoid delta function */
- sc->data0 = signf(sc->data0) * min(fabsf(sc->data0), 1.0f - 1e-3f);
+ volume->g = signf(volume->g) * min(fabsf(volume->g), 1.0f - 1e-3f);
return SD_SCATTER;
}
+ccl_device bool volume_henyey_greenstein_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const HenyeyGreensteinVolume *volume_a = (const HenyeyGreensteinVolume*)a;
+ const HenyeyGreensteinVolume *volume_b = (const HenyeyGreensteinVolume*)b;
+
+ return (volume_a->g == volume_b->g);
+}
+
ccl_device float3 volume_henyey_greenstein_eval_phase(const ShaderClosure *sc, const float3 I, float3 omega_in, float *pdf)
{
- float g = sc->data0;
+ const HenyeyGreensteinVolume *volume = (const HenyeyGreensteinVolume*)sc;
+ float g = volume->g;
/* note that I points towards the viewer */
if(fabsf(g) < 1e-3f) {
@@ -58,7 +73,8 @@ ccl_device float3 volume_henyey_greenstein_eval_phase(const ShaderClosure *sc, c
ccl_device int volume_henyey_greenstein_sample(const ShaderClosure *sc, float3 I, float3 dIdx, float3 dIdy, float randu, float randv,
float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
- float g = sc->data0;
+ const HenyeyGreensteinVolume *volume = (const HenyeyGreensteinVolume*)sc;
+ float g = volume->g;
float cos_phi, sin_phi, cos_theta;
/* match pdf for small g */