Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/film/accumulate.h')
-rw-r--r--intern/cycles/kernel/film/accumulate.h559
1 files changed, 559 insertions, 0 deletions
diff --git a/intern/cycles/kernel/film/accumulate.h b/intern/cycles/kernel/film/accumulate.h
new file mode 100644
index 00000000000..30e1afea751
--- /dev/null
+++ b/intern/cycles/kernel/film/accumulate.h
@@ -0,0 +1,559 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include "kernel/film/adaptive_sampling.h"
+#include "kernel/film/write_passes.h"
+
+#include "kernel/integrator/shadow_catcher.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* --------------------------------------------------------------------
+ * BSDF Evaluation
+ *
+ * BSDF evaluation result, split between diffuse and glossy. This is used to
+ * accumulate render passes separately. Note that reflection, transmission
+ * and volume scattering are written to different render passes, but we assume
+ * that only one of those can happen at a bounce, and so do not need to accumulate
+ * them separately. */
+
+ccl_device_inline void bsdf_eval_init(ccl_private BsdfEval *eval,
+ const bool is_diffuse,
+ float3 value)
+{
+ eval->diffuse = zero_float3();
+ eval->glossy = zero_float3();
+
+ if (is_diffuse) {
+ eval->diffuse = value;
+ }
+ else {
+ eval->glossy = value;
+ }
+}
+
+ccl_device_inline void bsdf_eval_accum(ccl_private BsdfEval *eval,
+ const bool is_diffuse,
+ float3 value,
+ float mis_weight)
+{
+ value *= mis_weight;
+
+ if (is_diffuse) {
+ eval->diffuse += value;
+ }
+ else {
+ eval->glossy += value;
+ }
+}
+
+ccl_device_inline bool bsdf_eval_is_zero(ccl_private BsdfEval *eval)
+{
+ return is_zero(eval->diffuse) && is_zero(eval->glossy);
+}
+
+ccl_device_inline void bsdf_eval_mul(ccl_private BsdfEval *eval, float value)
+{
+ eval->diffuse *= value;
+ eval->glossy *= value;
+}
+
+ccl_device_inline void bsdf_eval_mul3(ccl_private BsdfEval *eval, float3 value)
+{
+ eval->diffuse *= value;
+ eval->glossy *= value;
+}
+
+ccl_device_inline float3 bsdf_eval_sum(ccl_private const BsdfEval *eval)
+{
+ return eval->diffuse + eval->glossy;
+}
+
+ccl_device_inline float3 bsdf_eval_diffuse_glossy_ratio(ccl_private const BsdfEval *eval)
+{
+ /* Ratio of diffuse and glossy to recover proportions for writing to render pass.
+ * We assume reflection, transmission and volume scatter to be exclusive. */
+ return safe_divide_float3_float3(eval->diffuse, eval->diffuse + eval->glossy);
+}
+
+/* --------------------------------------------------------------------
+ * Clamping
+ *
+ * Clamping is done on a per-contribution basis so that we can write directly
+ * to render buffers instead of using per-thread memory, and to avoid the
+ * impact of clamping on other contributions. */
+
+ccl_device_forceinline void kernel_accum_clamp(KernelGlobals kg, ccl_private float3 *L, int bounce)
+{
+#ifdef __KERNEL_DEBUG_NAN__
+ if (!isfinite3_safe(*L)) {
+ kernel_assert(!"Cycles sample with non-finite value detected");
+ }
+#endif
+ /* Make sure all components are finite, allowing the contribution to be usable by adaptive
+ * sampling convergence check, but also to make it so render result never causes issues with
+ * post-processing. */
+ *L = ensure_finite3(*L);
+
+#ifdef __CLAMP_SAMPLE__
+ float limit = (bounce > 0) ? kernel_data.integrator.sample_clamp_indirect :
+ kernel_data.integrator.sample_clamp_direct;
+ float sum = reduce_add(fabs(*L));
+ if (sum > limit) {
+ *L *= limit / sum;
+ }
+#endif
+}
+
+/* --------------------------------------------------------------------
+ * Pass accumulation utilities.
+ */
+
+/* Get pointer to pixel in render buffer. */
+ccl_device_forceinline ccl_global float *kernel_accum_pixel_render_buffer(
+ KernelGlobals kg, ConstIntegratorState state, ccl_global float *ccl_restrict render_buffer)
+{
+ const uint32_t render_pixel_index = INTEGRATOR_STATE(state, path, render_pixel_index);
+ const uint64_t render_buffer_offset = (uint64_t)render_pixel_index *
+ kernel_data.film.pass_stride;
+ return render_buffer + render_buffer_offset;
+}
+
+/* --------------------------------------------------------------------
+ * Adaptive sampling.
+ */
+
+ccl_device_inline int kernel_accum_sample(KernelGlobals kg,
+ ConstIntegratorState state,
+ ccl_global float *ccl_restrict render_buffer,
+ int sample)
+{
+ if (kernel_data.film.pass_sample_count == PASS_UNUSED) {
+ return sample;
+ }
+
+ ccl_global float *buffer = kernel_accum_pixel_render_buffer(kg, state, render_buffer);
+
+ return atomic_fetch_and_add_uint32((uint *)(buffer) + kernel_data.film.pass_sample_count, 1);
+}
+
+ccl_device void kernel_accum_adaptive_buffer(KernelGlobals kg,
+ const int sample,
+ const float3 contribution,
+ ccl_global float *ccl_restrict buffer)
+{
+ /* Adaptive Sampling. Fill the additional buffer with the odd samples and calculate our stopping
+ * criteria. This is the heuristic from "A hierarchical automatic stopping condition for Monte
+ * Carlo global illumination" except that here it is applied per pixel and not in hierarchical
+ * tiles. */
+
+ if (kernel_data.film.pass_adaptive_aux_buffer == PASS_UNUSED) {
+ return;
+ }
+
+ if (sample_is_even(kernel_data.integrator.sampling_pattern, sample)) {
+ kernel_write_pass_float4(
+ buffer + kernel_data.film.pass_adaptive_aux_buffer,
+ make_float4(contribution.x * 2.0f, contribution.y * 2.0f, contribution.z * 2.0f, 0.0f));
+ }
+}
+
+/* --------------------------------------------------------------------
+ * Shadow catcher.
+ */
+
+#ifdef __SHADOW_CATCHER__
+
+/* Accumulate contribution to the Shadow Catcher pass.
+ *
+ * Returns truth if the contribution is fully handled here and is not to be added to the other
+ * passes (like combined, adaptive sampling). */
+
+ccl_device bool kernel_accum_shadow_catcher(KernelGlobals kg,
+ const uint32_t path_flag,
+ const float3 contribution,
+ ccl_global float *ccl_restrict buffer)
+{
+ if (!kernel_data.integrator.has_shadow_catcher) {
+ return false;
+ }
+
+ kernel_assert(kernel_data.film.pass_shadow_catcher != PASS_UNUSED);
+ kernel_assert(kernel_data.film.pass_shadow_catcher_matte != PASS_UNUSED);
+
+ /* Matte pass. */
+ if (kernel_shadow_catcher_is_matte_path(path_flag)) {
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_shadow_catcher_matte, contribution);
+ /* NOTE: Accumulate the combined pass and to the samples count pass, so that the adaptive
+ * sampling is based on how noisy the combined pass is as if there were no catchers in the
+ * scene. */
+ }
+
+ /* Shadow catcher pass. */
+ if (kernel_shadow_catcher_is_object_pass(path_flag)) {
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_shadow_catcher, contribution);
+ return true;
+ }
+
+ return false;
+}
+
+ccl_device bool kernel_accum_shadow_catcher_transparent(KernelGlobals kg,
+ const uint32_t path_flag,
+ const float3 contribution,
+ const float transparent,
+ ccl_global float *ccl_restrict buffer)
+{
+ if (!kernel_data.integrator.has_shadow_catcher) {
+ return false;
+ }
+
+ kernel_assert(kernel_data.film.pass_shadow_catcher != PASS_UNUSED);
+ kernel_assert(kernel_data.film.pass_shadow_catcher_matte != PASS_UNUSED);
+
+ if (path_flag & PATH_RAY_SHADOW_CATCHER_BACKGROUND) {
+ return true;
+ }
+
+ /* Matte pass. */
+ if (kernel_shadow_catcher_is_matte_path(path_flag)) {
+ kernel_write_pass_float4(
+ buffer + kernel_data.film.pass_shadow_catcher_matte,
+ make_float4(contribution.x, contribution.y, contribution.z, transparent));
+ /* NOTE: Accumulate the combined pass and to the samples count pass, so that the adaptive
+ * sampling is based on how noisy the combined pass is as if there were no catchers in the
+ * scene. */
+ }
+
+ /* Shadow catcher pass. */
+ if (kernel_shadow_catcher_is_object_pass(path_flag)) {
+ /* NOTE: The transparency of the shadow catcher pass is ignored. It is not needed for the
+ * calculation and the alpha channel of the pass contains numbers of samples contributed to a
+ * pixel of the pass. */
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_shadow_catcher, contribution);
+ return true;
+ }
+
+ return false;
+}
+
+ccl_device void kernel_accum_shadow_catcher_transparent_only(KernelGlobals kg,
+ const uint32_t path_flag,
+ const float transparent,
+ ccl_global float *ccl_restrict buffer)
+{
+ if (!kernel_data.integrator.has_shadow_catcher) {
+ return;
+ }
+
+ kernel_assert(kernel_data.film.pass_shadow_catcher_matte != PASS_UNUSED);
+
+ /* Matte pass. */
+ if (kernel_shadow_catcher_is_matte_path(path_flag)) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_shadow_catcher_matte + 3, transparent);
+ }
+}
+
+#endif /* __SHADOW_CATCHER__ */
+
+/* --------------------------------------------------------------------
+ * Render passes.
+ */
+
+/* Write combined pass. */
+ccl_device_inline void kernel_accum_combined_pass(KernelGlobals kg,
+ const uint32_t path_flag,
+ const int sample,
+ const float3 contribution,
+ ccl_global float *ccl_restrict buffer)
+{
+#ifdef __SHADOW_CATCHER__
+ if (kernel_accum_shadow_catcher(kg, path_flag, contribution, buffer)) {
+ return;
+ }
+#endif
+
+ if (kernel_data.film.light_pass_flag & PASSMASK(COMBINED)) {
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_combined, contribution);
+ }
+
+ kernel_accum_adaptive_buffer(kg, sample, contribution, buffer);
+}
+
+/* Write combined pass with transparency. */
+ccl_device_inline void kernel_accum_combined_transparent_pass(KernelGlobals kg,
+ const uint32_t path_flag,
+ const int sample,
+ const float3 contribution,
+ const float transparent,
+ ccl_global float *ccl_restrict
+ buffer)
+{
+#ifdef __SHADOW_CATCHER__
+ if (kernel_accum_shadow_catcher_transparent(kg, path_flag, contribution, transparent, buffer)) {
+ return;
+ }
+#endif
+
+ if (kernel_data.film.light_pass_flag & PASSMASK(COMBINED)) {
+ kernel_write_pass_float4(
+ buffer + kernel_data.film.pass_combined,
+ make_float4(contribution.x, contribution.y, contribution.z, transparent));
+ }
+
+ kernel_accum_adaptive_buffer(kg, sample, contribution, buffer);
+}
+
+/* Write background or emission to appropriate pass. */
+ccl_device_inline void kernel_accum_emission_or_background_pass(KernelGlobals kg,
+ ConstIntegratorState state,
+ float3 contribution,
+ ccl_global float *ccl_restrict
+ buffer,
+ const int pass)
+{
+ if (!(kernel_data.film.light_pass_flag & PASS_ANY)) {
+ return;
+ }
+
+#ifdef __PASSES__
+ const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
+ int pass_offset = PASS_UNUSED;
+
+ /* Denoising albedo. */
+# ifdef __DENOISING_FEATURES__
+ if (path_flag & PATH_RAY_DENOISING_FEATURES) {
+ if (kernel_data.film.pass_denoising_albedo != PASS_UNUSED) {
+ const float3 denoising_feature_throughput = INTEGRATOR_STATE(
+ state, path, denoising_feature_throughput);
+ const float3 denoising_albedo = denoising_feature_throughput * contribution;
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_denoising_albedo, denoising_albedo);
+ }
+ }
+# endif /* __DENOISING_FEATURES__ */
+
+ if (!(path_flag & PATH_RAY_ANY_PASS)) {
+ /* Directly visible, write to emission or background pass. */
+ pass_offset = pass;
+ }
+ else if (path_flag & (PATH_RAY_REFLECT_PASS | PATH_RAY_TRANSMISSION_PASS)) {
+ /* Indirectly visible through reflection. */
+ const int glossy_pass_offset = (path_flag & PATH_RAY_REFLECT_PASS) ?
+ ((INTEGRATOR_STATE(state, path, bounce) == 1) ?
+ kernel_data.film.pass_glossy_direct :
+ kernel_data.film.pass_glossy_indirect) :
+ ((INTEGRATOR_STATE(state, path, bounce) == 1) ?
+ kernel_data.film.pass_transmission_direct :
+ kernel_data.film.pass_transmission_indirect);
+
+ if (glossy_pass_offset != PASS_UNUSED) {
+ /* Glossy is a subset of the throughput, reconstruct it here using the
+ * diffuse-glossy ratio. */
+ const float3 ratio = INTEGRATOR_STATE(state, path, diffuse_glossy_ratio);
+ const float3 glossy_contribution = (one_float3() - ratio) * contribution;
+ kernel_write_pass_float3(buffer + glossy_pass_offset, glossy_contribution);
+ }
+
+ /* Reconstruct diffuse subset of throughput. */
+ pass_offset = (INTEGRATOR_STATE(state, path, bounce) == 1) ?
+ kernel_data.film.pass_diffuse_direct :
+ kernel_data.film.pass_diffuse_indirect;
+ if (pass_offset != PASS_UNUSED) {
+ contribution *= INTEGRATOR_STATE(state, path, diffuse_glossy_ratio);
+ }
+ }
+ else if (path_flag & PATH_RAY_VOLUME_PASS) {
+ /* Indirectly visible through volume. */
+ pass_offset = (INTEGRATOR_STATE(state, path, bounce) == 1) ?
+ kernel_data.film.pass_volume_direct :
+ kernel_data.film.pass_volume_indirect;
+ }
+
+ /* Single write call for GPU coherence. */
+ if (pass_offset != PASS_UNUSED) {
+ kernel_write_pass_float3(buffer + pass_offset, contribution);
+ }
+#endif /* __PASSES__ */
+}
+
+/* Write light contribution to render buffer. */
+ccl_device_inline void kernel_accum_light(KernelGlobals kg,
+ ConstIntegratorShadowState state,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ /* The throughput for shadow paths already contains the light shader evaluation. */
+ float3 contribution = INTEGRATOR_STATE(state, shadow_path, throughput);
+ kernel_accum_clamp(kg, &contribution, INTEGRATOR_STATE(state, shadow_path, bounce));
+
+ const uint32_t render_pixel_index = INTEGRATOR_STATE(state, shadow_path, render_pixel_index);
+ const uint64_t render_buffer_offset = (uint64_t)render_pixel_index *
+ kernel_data.film.pass_stride;
+ ccl_global float *buffer = render_buffer + render_buffer_offset;
+
+ const uint32_t path_flag = INTEGRATOR_STATE(state, shadow_path, flag);
+ const int sample = INTEGRATOR_STATE(state, shadow_path, sample);
+
+ /* Ambient occlusion. */
+ if (path_flag & PATH_RAY_SHADOW_FOR_AO) {
+ if ((kernel_data.kernel_features & KERNEL_FEATURE_AO_PASS) && (path_flag & PATH_RAY_CAMERA)) {
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, contribution);
+ }
+ if (kernel_data.kernel_features & KERNEL_FEATURE_AO_ADDITIVE) {
+ const float3 ao_weight = INTEGRATOR_STATE(state, shadow_path, unshadowed_throughput);
+ kernel_accum_combined_pass(kg, path_flag, sample, contribution * ao_weight, buffer);
+ }
+ return;
+ }
+
+ /* Direct light shadow. */
+ kernel_accum_combined_pass(kg, path_flag, sample, contribution, buffer);
+
+#ifdef __PASSES__
+ if (kernel_data.film.light_pass_flag & PASS_ANY) {
+ const uint32_t path_flag = INTEGRATOR_STATE(state, shadow_path, flag);
+ int pass_offset = PASS_UNUSED;
+
+ if (path_flag & (PATH_RAY_REFLECT_PASS | PATH_RAY_TRANSMISSION_PASS)) {
+ /* Indirectly visible through reflection. */
+ const int glossy_pass_offset = (path_flag & PATH_RAY_REFLECT_PASS) ?
+ ((INTEGRATOR_STATE(state, shadow_path, bounce) == 0) ?
+ kernel_data.film.pass_glossy_direct :
+ kernel_data.film.pass_glossy_indirect) :
+ ((INTEGRATOR_STATE(state, shadow_path, bounce) == 0) ?
+ kernel_data.film.pass_transmission_direct :
+ kernel_data.film.pass_transmission_indirect);
+
+ if (glossy_pass_offset != PASS_UNUSED) {
+ /* Glossy is a subset of the throughput, reconstruct it here using the
+ * diffuse-glossy ratio. */
+ const float3 ratio = INTEGRATOR_STATE(state, shadow_path, diffuse_glossy_ratio);
+ const float3 glossy_contribution = (one_float3() - ratio) * contribution;
+ kernel_write_pass_float3(buffer + glossy_pass_offset, glossy_contribution);
+ }
+
+ /* Reconstruct diffuse subset of throughput. */
+ pass_offset = (INTEGRATOR_STATE(state, shadow_path, bounce) == 0) ?
+ kernel_data.film.pass_diffuse_direct :
+ kernel_data.film.pass_diffuse_indirect;
+ if (pass_offset != PASS_UNUSED) {
+ contribution *= INTEGRATOR_STATE(state, shadow_path, diffuse_glossy_ratio);
+ }
+ }
+ else if (path_flag & PATH_RAY_VOLUME_PASS) {
+ /* Indirectly visible through volume. */
+ pass_offset = (INTEGRATOR_STATE(state, shadow_path, bounce) == 0) ?
+ kernel_data.film.pass_volume_direct :
+ kernel_data.film.pass_volume_indirect;
+ }
+
+ /* Single write call for GPU coherence. */
+ if (pass_offset != PASS_UNUSED) {
+ kernel_write_pass_float3(buffer + pass_offset, contribution);
+ }
+
+ /* Write shadow pass. */
+ if (kernel_data.film.pass_shadow != PASS_UNUSED && (path_flag & PATH_RAY_SHADOW_FOR_LIGHT) &&
+ (path_flag & PATH_RAY_CAMERA)) {
+ const float3 unshadowed_throughput = INTEGRATOR_STATE(
+ state, shadow_path, unshadowed_throughput);
+ const float3 shadowed_throughput = INTEGRATOR_STATE(state, shadow_path, throughput);
+ const float3 shadow = safe_divide_float3_float3(shadowed_throughput, unshadowed_throughput) *
+ kernel_data.film.pass_shadow_scale;
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_shadow, shadow);
+ }
+ }
+#endif
+}
+
+/* Write transparency to render buffer.
+ *
+ * Note that we accumulate transparency = 1 - alpha in the render buffer.
+ * Otherwise we'd have to write alpha on path termination, which happens
+ * in many places. */
+ccl_device_inline void kernel_accum_transparent(KernelGlobals kg,
+ ConstIntegratorState state,
+ const uint32_t path_flag,
+ const float transparent,
+ ccl_global float *ccl_restrict buffer)
+{
+ if (kernel_data.film.light_pass_flag & PASSMASK(COMBINED)) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_combined + 3, transparent);
+ }
+
+ kernel_accum_shadow_catcher_transparent_only(kg, path_flag, transparent, buffer);
+}
+
+/* Write holdout to render buffer. */
+ccl_device_inline void kernel_accum_holdout(KernelGlobals kg,
+ ConstIntegratorState state,
+ const uint32_t path_flag,
+ const float transparent,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ ccl_global float *buffer = kernel_accum_pixel_render_buffer(kg, state, render_buffer);
+ kernel_accum_transparent(kg, state, path_flag, transparent, buffer);
+}
+
+/* Write background contribution to render buffer.
+ *
+ * Includes transparency, matching kernel_accum_transparent. */
+ccl_device_inline void kernel_accum_background(KernelGlobals kg,
+ ConstIntegratorState state,
+ const float3 L,
+ const float transparent,
+ const bool is_transparent_background_ray,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ float3 contribution = INTEGRATOR_STATE(state, path, throughput) * L;
+ kernel_accum_clamp(kg, &contribution, INTEGRATOR_STATE(state, path, bounce) - 1);
+
+ ccl_global float *buffer = kernel_accum_pixel_render_buffer(kg, state, render_buffer);
+ const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
+
+ if (is_transparent_background_ray) {
+ kernel_accum_transparent(kg, state, path_flag, transparent, buffer);
+ }
+ else {
+ const int sample = INTEGRATOR_STATE(state, path, sample);
+ kernel_accum_combined_transparent_pass(
+ kg, path_flag, sample, contribution, transparent, buffer);
+ }
+ kernel_accum_emission_or_background_pass(
+ kg, state, contribution, buffer, kernel_data.film.pass_background);
+}
+
+/* Write emission to render buffer. */
+ccl_device_inline void kernel_accum_emission(KernelGlobals kg,
+ ConstIntegratorState state,
+ const float3 throughput,
+ const float3 L,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ float3 contribution = throughput * L;
+ kernel_accum_clamp(kg, &contribution, INTEGRATOR_STATE(state, path, bounce) - 1);
+
+ ccl_global float *buffer = kernel_accum_pixel_render_buffer(kg, state, render_buffer);
+ const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
+ const int sample = INTEGRATOR_STATE(state, path, sample);
+
+ kernel_accum_combined_pass(kg, path_flag, sample, contribution, buffer);
+ kernel_accum_emission_or_background_pass(
+ kg, state, contribution, buffer, kernel_data.film.pass_emission);
+}
+
+CCL_NAMESPACE_END