Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/geom/geom_qbvh_volume_all.h')
-rw-r--r--intern/cycles/kernel/geom/geom_qbvh_volume_all.h446
1 files changed, 446 insertions, 0 deletions
diff --git a/intern/cycles/kernel/geom/geom_qbvh_volume_all.h b/intern/cycles/kernel/geom/geom_qbvh_volume_all.h
new file mode 100644
index 00000000000..d5131919944
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_qbvh_volume_all.h
@@ -0,0 +1,446 @@
+/*
+ * Adapted from code Copyright 2009-2010 NVIDIA Corporation,
+ * and code copyright 2009-2012 Intel Corporation
+ *
+ * Modifications Copyright 2011-2014, Blender Foundation.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* This is a template BVH traversal function for volumes, where
+ * various features can be enabled/disabled. This way we can compile optimized
+ * versions for each case without new features slowing things down.
+ *
+ * BVH_INSTANCING: object instancing
+ * BVH_HAIR: hair curve rendering
+ * BVH_MOTION: motion blur rendering
+ *
+ */
+
+ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
+ const Ray *ray,
+ Intersection *isect_array,
+ const uint max_hits)
+{
+ /* TODO(sergey):
+ * - Test if pushing distance on the stack helps.
+ * - Likely and unlikely for if() statements.
+ * - Test restrict attribute for pointers.
+ */
+
+ /* Traversal stack in CUDA thread-local memory. */
+ QBVHStackItem traversalStack[BVH_QSTACK_SIZE];
+ traversalStack[0].addr = ENTRYPOINT_SENTINEL;
+
+ /* Traversal variables in registers. */
+ int stackPtr = 0;
+ int nodeAddr = kernel_data.bvh.root;
+
+ /* Ray parameters in registers. */
+ const float tmax = ray->t;
+ float3 P = ray->P;
+ float3 dir = bvh_clamp_direction(ray->D);
+ float3 idir = bvh_inverse_direction(dir);
+ int object = OBJECT_NONE;
+ float isect_t = tmax;
+
+ const uint visibility = PATH_RAY_ALL_VISIBILITY;
+
+#if BVH_FEATURE(BVH_MOTION)
+ Transform ob_tfm;
+#endif
+
+#ifndef __KERNEL_SSE41__
+ if(!isfinite(P.x)) {
+ return false;
+ }
+#endif
+
+#if BVH_FEATURE(BVH_INSTANCING)
+ int num_hits_in_instance = 0;
+#endif
+
+ uint num_hits = 0;
+ isect_array->t = tmax;
+
+ ssef tnear(0.0f), tfar(isect_t);
+ sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+
+#ifdef __KERNEL_AVX2__
+ float3 P_idir = P*idir;
+ sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+#else
+ sse3f org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+#endif
+
+ /* Offsets to select the side that becomes the lower or upper bound. */
+ int near_x, near_y, near_z;
+ int far_x, far_y, far_z;
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+
+ IsectPrecalc isect_precalc;
+ triangle_intersect_precalc(dir, &isect_precalc);
+
+ /* Traversal loop. */
+ do {
+ do {
+ /* Traverse internal nodes. */
+ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) {
+ ssef dist;
+ int traverseChild = qbvh_node_intersect(kg,
+ tnear,
+ tfar,
+#ifdef __KERNEL_AVX2__
+ P_idir4,
+#else
+ org,
+#endif
+ idir4,
+ near_x, near_y, near_z,
+ far_x, far_y, far_z,
+ nodeAddr,
+ &dist);
+
+ if(traverseChild != 0) {
+ float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_QNODE_SIZE+6);
+
+ /* One child is hit, continue with that child. */
+ int r = __bscf(traverseChild);
+ if(traverseChild == 0) {
+ nodeAddr = __float_as_int(cnodes[r]);
+ continue;
+ }
+
+ /* Two children are hit, push far child, and continue with
+ * closer child.
+ */
+ int c0 = __float_as_int(cnodes[r]);
+ float d0 = ((float*)&dist)[r];
+ r = __bscf(traverseChild);
+ int c1 = __float_as_int(cnodes[r]);
+ float d1 = ((float*)&dist)[r];
+ if(traverseChild == 0) {
+ if(d1 < d0) {
+ nodeAddr = c1;
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c0;
+ traversalStack[stackPtr].dist = d0;
+ continue;
+ }
+ else {
+ nodeAddr = c0;
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c1;
+ traversalStack[stackPtr].dist = d1;
+ continue;
+ }
+ }
+
+ /* Here starts the slow path for 3 or 4 hit children. We push
+ * all nodes onto the stack to sort them there.
+ */
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c1;
+ traversalStack[stackPtr].dist = d1;
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c0;
+ traversalStack[stackPtr].dist = d0;
+
+ /* Three children are hit, push all onto stack and sort 3
+ * stack items, continue with closest child.
+ */
+ r = __bscf(traverseChild);
+ int c2 = __float_as_int(cnodes[r]);
+ float d2 = ((float*)&dist)[r];
+ if(traverseChild == 0) {
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c2;
+ traversalStack[stackPtr].dist = d2;
+ qbvh_stack_sort(&traversalStack[stackPtr],
+ &traversalStack[stackPtr - 1],
+ &traversalStack[stackPtr - 2]);
+ nodeAddr = traversalStack[stackPtr].addr;
+ --stackPtr;
+ continue;
+ }
+
+ /* Four children are hit, push all onto stack and sort 4
+ * stack items, continue with closest child.
+ */
+ r = __bscf(traverseChild);
+ int c3 = __float_as_int(cnodes[r]);
+ float d3 = ((float*)&dist)[r];
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c3;
+ traversalStack[stackPtr].dist = d3;
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = c2;
+ traversalStack[stackPtr].dist = d2;
+ qbvh_stack_sort(&traversalStack[stackPtr],
+ &traversalStack[stackPtr - 1],
+ &traversalStack[stackPtr - 2],
+ &traversalStack[stackPtr - 3]);
+ }
+
+ nodeAddr = traversalStack[stackPtr].addr;
+ --stackPtr;
+ }
+
+ /* If node is leaf, fetch triangle list. */
+ if(nodeAddr < 0) {
+ float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)*BVH_QNODE_LEAF_SIZE);
+ int primAddr = __float_as_int(leaf.x);
+
+#if BVH_FEATURE(BVH_INSTANCING)
+ if(primAddr >= 0) {
+#endif
+ int primAddr2 = __float_as_int(leaf.y);
+ const uint type = __float_as_int(leaf.w);
+ const uint p_type = type & PRIMITIVE_ALL;
+ bool hit;
+
+ /* Pop. */
+ nodeAddr = traversalStack[stackPtr].addr;
+ --stackPtr;
+
+ /* Primitive intersection. */
+ switch(p_type) {
+ case PRIMITIVE_TRIANGLE: {
+ for(; primAddr < primAddr2; primAddr++) {
+ kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
+ /* Only primitives from volume object. */
+ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
+ int object_flag = kernel_tex_fetch(__object_flag, tri_object);
+ if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
+ continue;
+ }
+ /* Intersect ray against primitive. */
+ hit = triangle_intersect(kg, &isect_precalc, isect_array, P, visibility, object, primAddr);
+ if(hit) {
+ /* Move on to next entry in intersections array. */
+ isect_array++;
+ num_hits++;
+#if BVH_FEATURE(BVH_INSTANCING)
+ num_hits_in_instance++;
+#endif
+ isect_array->t = isect_t;
+ if(num_hits == max_hits) {
+#if BVH_FEATURE(BVH_INSTANCING)
+#if BVH_FEATURE(BVH_MOTION)
+ float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
+#else
+ Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
+ float t_fac = len(transform_direction(&tfm, 1.0f/idir));
+#endif
+ for(int i = 0; i < num_hits_in_instance; i++) {
+ (isect_array-i-1)->t *= t_fac;
+ }
+#endif /* BVH_FEATURE(BVH_INSTANCING) */
+ return num_hits;
+ }
+ }
+ }
+ break;
+ }
+#if BVH_FEATURE(BVH_MOTION)
+ case PRIMITIVE_MOTION_TRIANGLE: {
+ for(; primAddr < primAddr2; primAddr++) {
+ kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
+ /* Only primitives from volume object. */
+ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
+ int object_flag = kernel_tex_fetch(__object_flag, tri_object);
+ if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
+ continue;
+ }
+ /* Intersect ray against primitive. */
+ hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, primAddr);
+ if(hit) {
+ /* Move on to next entry in intersections array. */
+ isect_array++;
+ num_hits++;
+#if BVH_FEATURE(BVH_INSTANCING)
+ num_hits_in_instance++;
+#endif
+ isect_array->t = isect_t;
+ if(num_hits == max_hits) {
+#if BVH_FEATURE(BVH_INSTANCING)
+# if BVH_FEATURE(BVH_MOTION)
+ float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
+# else
+ Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
+ float t_fac = len(transform_direction(&tfm, 1.0f/idir));
+#endif
+ for(int i = 0; i < num_hits_in_instance; i++) {
+ (isect_array-i-1)->t *= t_fac;
+ }
+#endif /* BVH_FEATURE(BVH_INSTANCING) */
+ return num_hits;
+ }
+ }
+ }
+ break;
+ }
+#endif
+#if BVH_FEATURE(BVH_HAIR)
+ case PRIMITIVE_CURVE:
+ case PRIMITIVE_MOTION_CURVE: {
+ for(; primAddr < primAddr2; primAddr++) {
+ kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
+ /* Only primitives from volume object. */
+ uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
+ int object_flag = kernel_tex_fetch(__object_flag, tri_object);
+ if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
+ continue;
+ }
+ /* Intersect ray against primitive. */
+ if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE)
+ hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
+ else
+ hit = bvh_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
+ if(hit) {
+ /* Move on to next entry in intersections array. */
+ isect_array++;
+ num_hits++;
+#if BVH_FEATURE(BVH_INSTANCING)
+ num_hits_in_instance++;
+#endif
+ isect_array->t = isect_t;
+ if(num_hits == max_hits) {
+#if BVH_FEATURE(BVH_INSTANCING)
+# if BVH_FEATURE(BVH_MOTION)
+ float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
+# else
+ Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
+ float t_fac = len(transform_direction(&tfm, 1.0f/idir));
+#endif
+ for(int i = 0; i < num_hits_in_instance; i++) {
+ (isect_array-i-1)->t *= t_fac;
+ }
+#endif /* BVH_FEATURE(BVH_INSTANCING) */
+ return num_hits;
+ }
+ }
+ }
+ break;
+ }
+#endif
+ }
+ }
+#if BVH_FEATURE(BVH_INSTANCING)
+ else {
+ /* Instance push. */
+ object = kernel_tex_fetch(__prim_object, -primAddr-1);
+ int object_flag = kernel_tex_fetch(__object_flag, object);
+
+ if(object_flag & SD_OBJECT_HAS_VOLUME) {
+
+#if BVH_FEATURE(BVH_MOTION)
+ bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm);
+#else
+ bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
+#endif
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+ tfar = ssef(isect_t);
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+#ifdef __KERNEL_AVX2__
+ P_idir = P*idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+#else
+ org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+#endif
+ triangle_intersect_precalc(dir, &isect_precalc);
+ num_hits_in_instance = 0;
+ isect_array->t = isect_t;
+
+ ++stackPtr;
+ kernel_assert(stackPtr < BVH_QSTACK_SIZE);
+ traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL;
+
+ nodeAddr = kernel_tex_fetch(__object_node, object);
+ }
+ else {
+ /* Pop. */
+ object = OBJECT_NONE;
+ nodeAddr = traversalStack[stackPtr].addr;
+ --stackPtr;
+ }
+ }
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while(nodeAddr != ENTRYPOINT_SENTINEL);
+
+#if BVH_FEATURE(BVH_INSTANCING)
+ if(stackPtr >= 0) {
+ kernel_assert(object != OBJECT_NONE);
+
+ /* Instance pop. */
+ if(num_hits_in_instance) {
+ float t_fac;
+#if BVH_FEATURE(BVH_MOTION)
+ bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm);
+#else
+ bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
+#endif
+ triangle_intersect_precalc(dir, &isect_precalc);
+ /* Scale isect->t to adjust for instancing. */
+ for(int i = 0; i < num_hits_in_instance; i++) {
+ (isect_array-i-1)->t *= t_fac;
+ }
+ }
+ else {
+ float ignore_t = FLT_MAX;
+#if BVH_FEATURE(BVH_MOTION)
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm);
+#else
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
+#endif
+ triangle_intersect_precalc(dir, &isect_precalc);
+ }
+
+ if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
+ if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
+ if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
+ tfar = ssef(isect_t);
+ idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
+#ifdef __KERNEL_AVX2__
+ P_idir = P*idir;
+ P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
+#else
+ org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
+#endif
+ triangle_intersect_precalc(dir, &isect_precalc);
+ isect_t = tmax;
+ isect_array->t = isect_t;
+
+ object = OBJECT_NONE;
+ nodeAddr = traversalStack[stackPtr].addr;
+ --stackPtr;
+ }
+#endif /* FEATURE(BVH_INSTANCING) */
+ } while(nodeAddr != ENTRYPOINT_SENTINEL);
+
+ return num_hits;
+}