Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/kernel_volume.h')
-rw-r--r--intern/cycles/kernel/kernel_volume.h1440
1 files changed, 0 insertions, 1440 deletions
diff --git a/intern/cycles/kernel/kernel_volume.h b/intern/cycles/kernel/kernel_volume.h
deleted file mode 100644
index f6b34be040e..00000000000
--- a/intern/cycles/kernel/kernel_volume.h
+++ /dev/null
@@ -1,1440 +0,0 @@
-/*
- * Copyright 2011-2013 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-CCL_NAMESPACE_BEGIN
-
-/* Ignore paths that have volume throughput below this value, to avoid unnecessary work
- * and precision issues.
- * todo: this value could be tweaked or turned into a probability to avoid unnecessary
- * work in volumes and subsurface scattering. */
-#define VOLUME_THROUGHPUT_EPSILON 1e-6f
-
-/* Events for probalistic scattering */
-
-typedef enum VolumeIntegrateResult {
- VOLUME_PATH_SCATTERED = 0,
- VOLUME_PATH_ATTENUATED = 1,
- VOLUME_PATH_MISSED = 2
-} VolumeIntegrateResult;
-
-/* Volume shader properties
- *
- * extinction coefficient = absorption coefficient + scattering coefficient
- * sigma_t = sigma_a + sigma_s */
-
-typedef struct VolumeShaderCoefficients {
- float3 sigma_t;
- float3 sigma_s;
- float3 emission;
-} VolumeShaderCoefficients;
-
-#ifdef __VOLUME__
-
-/* evaluate shader to get extinction coefficient at P */
-ccl_device_inline bool volume_shader_extinction_sample(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space PathState *state,
- float3 P,
- float3 *extinction)
-{
- sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, PATH_RAY_SHADOW);
-
- if (sd->flag & SD_EXTINCTION) {
- const float density = object_volume_density(kg, sd->object);
- *extinction = sd->closure_transparent_extinction * density;
- return true;
- }
- else {
- return false;
- }
-}
-
-/* evaluate shader to get absorption, scattering and emission at P */
-ccl_device_inline bool volume_shader_sample(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space PathState *state,
- float3 P,
- VolumeShaderCoefficients *coeff)
-{
- sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, state->flag);
-
- if (!(sd->flag & (SD_EXTINCTION | SD_SCATTER | SD_EMISSION)))
- return false;
-
- coeff->sigma_s = zero_float3();
- coeff->sigma_t = (sd->flag & SD_EXTINCTION) ? sd->closure_transparent_extinction : zero_float3();
- coeff->emission = (sd->flag & SD_EMISSION) ? sd->closure_emission_background : zero_float3();
-
- if (sd->flag & SD_SCATTER) {
- for (int i = 0; i < sd->num_closure; i++) {
- const ShaderClosure *sc = &sd->closure[i];
-
- if (CLOSURE_IS_VOLUME(sc->type))
- coeff->sigma_s += sc->weight;
- }
- }
-
- const float density = object_volume_density(kg, sd->object);
- coeff->sigma_s *= density;
- coeff->sigma_t *= density;
- coeff->emission *= density;
-
- return true;
-}
-
-#endif /* __VOLUME__ */
-
-ccl_device float3 volume_color_transmittance(float3 sigma, float t)
-{
- return exp3(-sigma * t);
-}
-
-ccl_device float kernel_volume_channel_get(float3 value, int channel)
-{
- return (channel == 0) ? value.x : ((channel == 1) ? value.y : value.z);
-}
-
-#ifdef __VOLUME__
-
-ccl_device float volume_stack_step_size(KernelGlobals *kg, ccl_addr_space VolumeStack *stack)
-{
- float step_size = FLT_MAX;
-
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- int shader_flag = kernel_tex_fetch(__shaders, (stack[i].shader & SHADER_MASK)).flags;
-
- bool heterogeneous = false;
-
- if (shader_flag & SD_HETEROGENEOUS_VOLUME) {
- heterogeneous = true;
- }
- else if (shader_flag & SD_NEED_VOLUME_ATTRIBUTES) {
- /* We want to render world or objects without any volume grids
- * as homogeneous, but can only verify this at run-time since other
- * heterogeneous volume objects may be using the same shader. */
- int object = stack[i].object;
- if (object != OBJECT_NONE) {
- int object_flag = kernel_tex_fetch(__object_flag, object);
- if (object_flag & SD_OBJECT_HAS_VOLUME_ATTRIBUTES) {
- heterogeneous = true;
- }
- }
- }
-
- if (heterogeneous) {
- float object_step_size = object_volume_step_size(kg, stack[i].object);
- object_step_size *= kernel_data.integrator.volume_step_rate;
- step_size = fminf(object_step_size, step_size);
- }
- }
-
- return step_size;
-}
-
-ccl_device int volume_stack_sampling_method(KernelGlobals *kg, VolumeStack *stack)
-{
- if (kernel_data.integrator.num_all_lights == 0)
- return 0;
-
- int method = -1;
-
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- int shader_flag = kernel_tex_fetch(__shaders, (stack[i].shader & SHADER_MASK)).flags;
-
- if (shader_flag & SD_VOLUME_MIS) {
- return SD_VOLUME_MIS;
- }
- else if (shader_flag & SD_VOLUME_EQUIANGULAR) {
- if (method == 0)
- return SD_VOLUME_MIS;
-
- method = SD_VOLUME_EQUIANGULAR;
- }
- else {
- if (method == SD_VOLUME_EQUIANGULAR)
- return SD_VOLUME_MIS;
-
- method = 0;
- }
- }
-
- return method;
-}
-
-ccl_device_inline void kernel_volume_step_init(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- const float object_step_size,
- float t,
- float *step_size,
- float *step_shade_offset,
- float *steps_offset)
-{
- const int max_steps = kernel_data.integrator.volume_max_steps;
- float step = min(object_step_size, t);
-
- /* compute exact steps in advance for malloc */
- if (t > max_steps * step) {
- step = t / (float)max_steps;
- }
-
- *step_size = step;
-
- /* Perform shading at this offset within a step, to integrate over
- * over the entire step segment. */
- *step_shade_offset = path_state_rng_1D_hash(kg, state, 0x1e31d8a4);
-
- /* Shift starting point of all segment by this random amount to avoid
- * banding artifacts from the volume bounding shape. */
- *steps_offset = path_state_rng_1D_hash(kg, state, 0x3d22c7b3);
-}
-
-/* Volume Shadows
- *
- * These functions are used to attenuate shadow rays to lights. Both absorption
- * and scattering will block light, represented by the extinction coefficient. */
-
-/* homogeneous volume: assume shader evaluation at the starts gives
- * the extinction coefficient for the entire line segment */
-ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput)
-{
- float3 sigma_t = zero_float3();
-
- if (volume_shader_extinction_sample(kg, sd, state, ray->P, &sigma_t))
- *throughput *= volume_color_transmittance(sigma_t, ray->t);
-}
-
-/* heterogeneous volume: integrate stepping through the volume until we
- * reach the end, get absorbed entirely, or run out of iterations */
-ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput,
- const float object_step_size)
-{
- float3 tp = *throughput;
-
- /* Prepare for stepping.
- * For shadows we do not offset all segments, since the starting point is
- * already a random distance inside the volume. It also appears to create
- * banding artifacts for unknown reasons. */
- int max_steps = kernel_data.integrator.volume_max_steps;
- float step_size, step_shade_offset, unused;
- kernel_volume_step_init(
- kg, state, object_step_size, ray->t, &step_size, &step_shade_offset, &unused);
- const float steps_offset = 1.0f;
-
- /* compute extinction at the start */
- float t = 0.0f;
-
- float3 sum = zero_float3();
-
- for (int i = 0; i < max_steps; i++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + steps_offset) * step_size);
- float dt = new_t - t;
-
- float3 new_P = ray->P + ray->D * (t + dt * step_shade_offset);
- float3 sigma_t = zero_float3();
-
- /* compute attenuation over segment */
- if (volume_shader_extinction_sample(kg, sd, state, new_P, &sigma_t)) {
- /* Compute expf() only for every Nth step, to save some calculations
- * because exp(a)*exp(b) = exp(a+b), also do a quick VOLUME_THROUGHPUT_EPSILON
- * check then. */
- sum += (-sigma_t * dt);
- if ((i & 0x07) == 0) { /* ToDo: Other interval? */
- tp = *throughput * exp3(sum);
-
- /* stop if nearly all light is blocked */
- if (tp.x < VOLUME_THROUGHPUT_EPSILON && tp.y < VOLUME_THROUGHPUT_EPSILON &&
- tp.z < VOLUME_THROUGHPUT_EPSILON)
- break;
- }
- }
-
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t) {
- /* Update throughput in case we haven't done it above */
- tp = *throughput * exp3(sum);
- break;
- }
- }
-
- *throughput = tp;
-}
-
-/* get the volume attenuation over line segment defined by ray, with the
- * assumption that there are no surfaces blocking light between the endpoints */
-# if defined(__KERNEL_OPTIX__) && defined(__SHADER_RAYTRACE__)
-ccl_device_inline void kernel_volume_shadow(KernelGlobals *kg,
- ShaderData *shadow_sd,
- ccl_addr_space PathState *state,
- Ray *ray,
- float3 *throughput)
-{
- optixDirectCall<void>(1, kg, shadow_sd, state, ray, throughput);
-}
-extern "C" __device__ void __direct_callable__kernel_volume_shadow(
-# else
-ccl_device_noinline void kernel_volume_shadow(
-# endif
- KernelGlobals *kg,
- ShaderData *shadow_sd,
- ccl_addr_space PathState *state,
- Ray *ray,
- float3 *throughput)
-{
- shader_setup_from_volume(kg, shadow_sd, ray);
-
- float step_size = volume_stack_step_size(kg, state->volume_stack);
- if (step_size != FLT_MAX)
- kernel_volume_shadow_heterogeneous(kg, state, ray, shadow_sd, throughput, step_size);
- else
- kernel_volume_shadow_homogeneous(kg, state, ray, shadow_sd, throughput);
-}
-
-#endif /* __VOLUME__ */
-
-/* Equi-angular sampling as in:
- * "Importance Sampling Techniques for Path Tracing in Participating Media" */
-
-ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, float xi, float *pdf)
-{
- float t = ray->t;
-
- float delta = dot((light_P - ray->P), ray->D);
- float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
- if (UNLIKELY(D == 0.0f)) {
- *pdf = 0.0f;
- return 0.0f;
- }
- float theta_a = -atan2f(delta, D);
- float theta_b = atan2f(t - delta, D);
- float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a);
- if (UNLIKELY(theta_b == theta_a)) {
- *pdf = 0.0f;
- return 0.0f;
- }
- *pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
-
- return min(t, delta + t_); /* min is only for float precision errors */
-}
-
-ccl_device float kernel_volume_equiangular_pdf(Ray *ray, float3 light_P, float sample_t)
-{
- float delta = dot((light_P - ray->P), ray->D);
- float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
- if (UNLIKELY(D == 0.0f)) {
- return 0.0f;
- }
-
- float t = ray->t;
- float t_ = sample_t - delta;
-
- float theta_a = -atan2f(delta, D);
- float theta_b = atan2f(t - delta, D);
- if (UNLIKELY(theta_b == theta_a)) {
- return 0.0f;
- }
-
- float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
-
- return pdf;
-}
-
-/* Distance sampling */
-
-ccl_device float kernel_volume_distance_sample(
- float max_t, float3 sigma_t, int channel, float xi, float3 *transmittance, float3 *pdf)
-{
- /* xi is [0, 1[ so log(0) should never happen, division by zero is
- * avoided because sample_sigma_t > 0 when SD_SCATTER is set */
- float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
- float sample_transmittance = kernel_volume_channel_get(full_transmittance, channel);
-
- float sample_t = min(max_t, -logf(1.0f - xi * (1.0f - sample_transmittance)) / sample_sigma_t);
-
- *transmittance = volume_color_transmittance(sigma_t, sample_t);
- *pdf = safe_divide_color(sigma_t * *transmittance, one_float3() - full_transmittance);
-
- /* todo: optimization: when taken together with hit/miss decision,
- * the full_transmittance cancels out drops out and xi does not
- * need to be remapped */
-
- return sample_t;
-}
-
-ccl_device float3 kernel_volume_distance_pdf(float max_t, float3 sigma_t, float sample_t)
-{
- float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
- float3 transmittance = volume_color_transmittance(sigma_t, sample_t);
-
- return safe_divide_color(sigma_t * transmittance, one_float3() - full_transmittance);
-}
-
-/* Emission */
-
-ccl_device float3 kernel_volume_emission_integrate(VolumeShaderCoefficients *coeff,
- int closure_flag,
- float3 transmittance,
- float t)
-{
- /* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t
- * this goes to E * t as sigma_t goes to zero
- *
- * todo: we should use an epsilon to avoid precision issues near zero sigma_t */
- float3 emission = coeff->emission;
-
- if (closure_flag & SD_EXTINCTION) {
- float3 sigma_t = coeff->sigma_t;
-
- emission.x *= (sigma_t.x > 0.0f) ? (1.0f - transmittance.x) / sigma_t.x : t;
- emission.y *= (sigma_t.y > 0.0f) ? (1.0f - transmittance.y) / sigma_t.y : t;
- emission.z *= (sigma_t.z > 0.0f) ? (1.0f - transmittance.z) / sigma_t.z : t;
- }
- else
- emission *= t;
-
- return emission;
-}
-
-/* Volume Path */
-
-ccl_device int kernel_volume_sample_channel(float3 albedo,
- float3 throughput,
- float rand,
- float3 *pdf)
-{
- /* Sample color channel proportional to throughput and single scattering
- * albedo, to significantly reduce noise with many bounce, following:
- *
- * "Practical and Controllable Subsurface Scattering for Production Path
- * Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
- float3 weights = fabs(throughput * albedo);
- float sum_weights = weights.x + weights.y + weights.z;
- float3 weights_pdf;
-
- if (sum_weights > 0.0f) {
- weights_pdf = weights / sum_weights;
- }
- else {
- weights_pdf = make_float3(1.0f / 3.0f, 1.0f / 3.0f, 1.0f / 3.0f);
- }
-
- *pdf = weights_pdf;
-
- /* OpenCL does not support -> on float3, so don't use pdf->x. */
- if (rand < weights_pdf.x) {
- return 0;
- }
- else if (rand < weights_pdf.x + weights_pdf.y) {
- return 1;
- }
- else {
- return 2;
- }
-}
-
-#ifdef __VOLUME__
-
-/* homogeneous volume: assume shader evaluation at the start gives
- * the volume shading coefficient for the entire line segment */
-ccl_device VolumeIntegrateResult
-kernel_volume_integrate_homogeneous(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- PathRadiance *L,
- ccl_addr_space float3 *throughput,
- bool probalistic_scatter)
-{
- VolumeShaderCoefficients coeff ccl_optional_struct_init;
-
- if (!volume_shader_sample(kg, sd, state, ray->P, &coeff))
- return VOLUME_PATH_MISSED;
-
- int closure_flag = sd->flag;
- float t = ray->t;
- float3 new_tp;
-
-# ifdef __VOLUME_SCATTER__
- /* randomly scatter, and if we do t is shortened */
- if (closure_flag & SD_SCATTER) {
- /* Sample channel, use MIS with balance heuristic. */
- float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
- float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(albedo, *throughput, rphase, &channel_pdf);
-
- /* decide if we will hit or miss */
- bool scatter = true;
- float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
-
- if (probalistic_scatter) {
- float sample_sigma_t = kernel_volume_channel_get(coeff.sigma_t, channel);
- float sample_transmittance = expf(-sample_sigma_t * t);
-
- if (1.0f - xi >= sample_transmittance) {
- scatter = true;
-
- /* rescale random number so we can reuse it */
- xi = 1.0f - (1.0f - xi - sample_transmittance) / (1.0f - sample_transmittance);
- }
- else
- scatter = false;
- }
-
- if (scatter) {
- /* scattering */
- float3 pdf;
- float3 transmittance;
- float sample_t;
-
- /* distance sampling */
- sample_t = kernel_volume_distance_sample(
- ray->t, coeff.sigma_t, channel, xi, &transmittance, &pdf);
-
- /* modify pdf for hit/miss decision */
- if (probalistic_scatter)
- pdf *= one_float3() - volume_color_transmittance(coeff.sigma_t, t);
-
- new_tp = *throughput * coeff.sigma_s * transmittance / dot(channel_pdf, pdf);
- t = sample_t;
- }
- else {
- /* no scattering */
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, t);
- float pdf = dot(channel_pdf, transmittance);
- new_tp = *throughput * transmittance / pdf;
- }
- }
- else
-# endif
- if (closure_flag & SD_EXTINCTION) {
- /* absorption only, no sampling needed */
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, t);
- new_tp = *throughput * transmittance;
- }
- else {
- new_tp = *throughput;
- }
-
- /* integrate emission attenuated by extinction */
- if (L && (closure_flag & SD_EMISSION)) {
- float3 transmittance = volume_color_transmittance(coeff.sigma_t, ray->t);
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, ray->t);
- path_radiance_accum_emission(kg, L, state, *throughput, emission);
- }
-
- /* modify throughput */
- if (closure_flag & SD_EXTINCTION) {
- *throughput = new_tp;
-
- /* prepare to scatter to new direction */
- if (t < ray->t) {
- /* adjust throughput and move to new location */
- sd->P = ray->P + t * ray->D;
-
- return VOLUME_PATH_SCATTERED;
- }
- }
-
- return VOLUME_PATH_ATTENUATED;
-}
-
-/* heterogeneous volume distance sampling: integrate stepping through the
- * volume until we reach the end, get absorbed entirely, or run out of
- * iterations. this does probabilistically scatter or get transmitted through
- * for path tracing where we don't want to branch. */
-ccl_device VolumeIntegrateResult
-kernel_volume_integrate_heterogeneous_distance(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- Ray *ray,
- ShaderData *sd,
- PathRadiance *L,
- ccl_addr_space float3 *throughput,
- const float object_step_size)
-{
- float3 tp = *throughput;
-
- /* Prepare for stepping.
- * Using a different step offset for the first step avoids banding artifacts. */
- int max_steps = kernel_data.integrator.volume_max_steps;
- float step_size, step_shade_offset, steps_offset;
- kernel_volume_step_init(
- kg, state, object_step_size, ray->t, &step_size, &step_shade_offset, &steps_offset);
-
- /* compute coefficients at the start */
- float t = 0.0f;
- float3 accum_transmittance = one_float3();
-
- /* pick random color channel, we use the Veach one-sample
- * model with balance heuristic for the channels */
- float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
- float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
- bool has_scatter = false;
-
- for (int i = 0; i < max_steps; i++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + steps_offset) * step_size);
- float dt = new_t - t;
-
- float3 new_P = ray->P + ray->D * (t + dt * step_shade_offset);
- VolumeShaderCoefficients coeff ccl_optional_struct_init;
-
- /* compute segment */
- if (volume_shader_sample(kg, sd, state, new_P, &coeff)) {
- int closure_flag = sd->flag;
- float3 new_tp;
- float3 transmittance;
- bool scatter = false;
-
- /* distance sampling */
-# ifdef __VOLUME_SCATTER__
- if ((closure_flag & SD_SCATTER) || (has_scatter && (closure_flag & SD_EXTINCTION))) {
- has_scatter = true;
-
- /* Sample channel, use MIS with balance heuristic. */
- float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(albedo, tp, rphase, &channel_pdf);
-
- /* compute transmittance over full step */
- transmittance = volume_color_transmittance(coeff.sigma_t, dt);
-
- /* decide if we will scatter or continue */
- float sample_transmittance = kernel_volume_channel_get(transmittance, channel);
-
- if (1.0f - xi >= sample_transmittance) {
- /* compute sampling distance */
- float sample_sigma_t = kernel_volume_channel_get(coeff.sigma_t, channel);
- float new_dt = -logf(1.0f - xi) / sample_sigma_t;
- new_t = t + new_dt;
-
- /* transmittance and pdf */
- float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
- float3 pdf = coeff.sigma_t * new_transmittance;
-
- /* throughput */
- new_tp = tp * coeff.sigma_s * new_transmittance / dot(channel_pdf, pdf);
- scatter = true;
- }
- else {
- /* throughput */
- float pdf = dot(channel_pdf, transmittance);
- new_tp = tp * transmittance / pdf;
-
- /* remap xi so we can reuse it and keep thing stratified */
- xi = 1.0f - (1.0f - xi) / sample_transmittance;
- }
- }
- else
-# endif
- if (closure_flag & SD_EXTINCTION) {
- /* absorption only, no sampling needed */
- transmittance = volume_color_transmittance(coeff.sigma_t, dt);
- new_tp = tp * transmittance;
- }
- else {
- transmittance = zero_float3();
- new_tp = tp;
- }
-
- /* integrate emission attenuated by absorption */
- if (L && (closure_flag & SD_EMISSION)) {
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, dt);
- path_radiance_accum_emission(kg, L, state, tp, emission);
- }
-
- /* modify throughput */
- if (closure_flag & SD_EXTINCTION) {
- tp = new_tp;
-
- /* stop if nearly all light blocked */
- if (tp.x < VOLUME_THROUGHPUT_EPSILON && tp.y < VOLUME_THROUGHPUT_EPSILON &&
- tp.z < VOLUME_THROUGHPUT_EPSILON) {
- tp = zero_float3();
- break;
- }
- }
-
- /* prepare to scatter to new direction */
- if (scatter) {
- /* adjust throughput and move to new location */
- sd->P = ray->P + new_t * ray->D;
- *throughput = tp;
-
- return VOLUME_PATH_SCATTERED;
- }
- else {
- /* accumulate transmittance */
- accum_transmittance *= transmittance;
- }
- }
-
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t)
- break;
- }
-
- *throughput = tp;
-
- return VOLUME_PATH_ATTENUATED;
-}
-
-/* get the volume attenuation and emission over line segment defined by
- * ray, with the assumption that there are no surfaces blocking light
- * between the endpoints. distance sampling is used to decide if we will
- * scatter or not. */
-ccl_device_noinline_cpu VolumeIntegrateResult
-kernel_volume_integrate(KernelGlobals *kg,
- ccl_addr_space PathState *state,
- ShaderData *sd,
- Ray *ray,
- PathRadiance *L,
- ccl_addr_space float3 *throughput,
- float step_size)
-{
- shader_setup_from_volume(kg, sd, ray);
-
- if (step_size != FLT_MAX)
- return kernel_volume_integrate_heterogeneous_distance(
- kg, state, ray, sd, L, throughput, step_size);
- else
- return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, true);
-}
-
-# ifndef __SPLIT_KERNEL__
-/* Decoupled Volume Sampling
- *
- * VolumeSegment is list of coefficients and transmittance stored at all steps
- * through a volume. This can then later be used for decoupled sampling as in:
- * "Importance Sampling Techniques for Path Tracing in Participating Media"
- *
- * On the GPU this is only supported (but currently not enabled)
- * for homogeneous volumes (1 step), due to
- * no support for malloc/free and too much stack usage with a fix size array. */
-
-typedef struct VolumeStep {
- float3 sigma_s; /* scatter coefficient */
- float3 sigma_t; /* extinction coefficient */
- float3 accum_transmittance; /* accumulated transmittance including this step */
- float3 cdf_distance; /* cumulative density function for distance sampling */
- float t; /* distance at end of this step */
- float shade_t; /* jittered distance where shading was done in step */
- int closure_flag; /* shader evaluation closure flags */
-} VolumeStep;
-
-typedef struct VolumeSegment {
- VolumeStep stack_step; /* stack storage for homogeneous step, to avoid malloc */
- VolumeStep *steps; /* recorded steps */
- int numsteps; /* number of steps */
- int closure_flag; /* accumulated closure flags from all steps */
-
- float3 accum_emission; /* accumulated emission at end of segment */
- float3 accum_transmittance; /* accumulated transmittance at end of segment */
- float3 accum_albedo; /* accumulated average albedo over segment */
-
- int sampling_method; /* volume sampling method */
-} VolumeSegment;
-
-/* record volume steps to the end of the volume.
- *
- * it would be nice if we could only record up to the point that we need to scatter,
- * but the entire segment is needed to do always scattering, rather than probabilistically
- * hitting or missing the volume. if we don't know the transmittance at the end of the
- * volume we can't generate stratified distance samples up to that transmittance */
-# ifdef __VOLUME_DECOUPLED__
-ccl_device void kernel_volume_decoupled_record(KernelGlobals *kg,
- PathState *state,
- Ray *ray,
- ShaderData *sd,
- VolumeSegment *segment,
- const float object_step_size)
-{
- /* prepare for volume stepping */
- int max_steps;
- float step_size, step_shade_offset, steps_offset;
-
- if (object_step_size != FLT_MAX) {
- max_steps = kernel_data.integrator.volume_max_steps;
- kernel_volume_step_init(
- kg, state, object_step_size, ray->t, &step_size, &step_shade_offset, &steps_offset);
-
-# ifdef __KERNEL_CPU__
- /* NOTE: For the branched path tracing it's possible to have direct
- * and indirect light integration both having volume segments allocated.
- * We detect this using index in the pre-allocated memory. Currently we
- * only support two segments allocated at a time, if more needed some
- * modifications to the KernelGlobals will be needed.
- *
- * This gives us restrictions that decoupled record should only happen
- * in the stack manner, meaning if there's subsequent call of decoupled
- * record it'll need to free memory before its caller frees memory.
- */
- const int index = kg->decoupled_volume_steps_index;
- assert(index < sizeof(kg->decoupled_volume_steps) / sizeof(*kg->decoupled_volume_steps));
- if (kg->decoupled_volume_steps[index] == NULL) {
- kg->decoupled_volume_steps[index] = (VolumeStep *)malloc(sizeof(VolumeStep) * max_steps);
- }
- segment->steps = kg->decoupled_volume_steps[index];
- ++kg->decoupled_volume_steps_index;
-# else
- segment->steps = (VolumeStep *)malloc(sizeof(VolumeStep) * max_steps);
-# endif
- }
- else {
- max_steps = 1;
- step_size = ray->t;
- step_shade_offset = 0.0f;
- steps_offset = 1.0f;
- segment->steps = &segment->stack_step;
- }
-
- /* init accumulation variables */
- float3 accum_emission = zero_float3();
- float3 accum_transmittance = one_float3();
- float3 accum_albedo = zero_float3();
- float3 cdf_distance = zero_float3();
- float t = 0.0f;
-
- segment->numsteps = 0;
- segment->closure_flag = 0;
- bool is_last_step_empty = false;
-
- VolumeStep *step = segment->steps;
-
- for (int i = 0; i < max_steps; i++, step++) {
- /* advance to new position */
- float new_t = min(ray->t, (i + steps_offset) * step_size);
- float dt = new_t - t;
-
- float3 new_P = ray->P + ray->D * (t + dt * step_shade_offset);
- VolumeShaderCoefficients coeff ccl_optional_struct_init;
-
- /* compute segment */
- if (volume_shader_sample(kg, sd, state, new_P, &coeff)) {
- int closure_flag = sd->flag;
- float3 sigma_t = coeff.sigma_t;
-
- /* compute average albedo for channel sampling */
- if (closure_flag & SD_SCATTER) {
- accum_albedo += (dt / ray->t) * safe_divide_color(coeff.sigma_s, sigma_t);
- }
-
- /* compute accumulated transmittance */
- float3 transmittance = volume_color_transmittance(sigma_t, dt);
-
- /* compute emission attenuated by absorption */
- if (closure_flag & SD_EMISSION) {
- float3 emission = kernel_volume_emission_integrate(
- &coeff, closure_flag, transmittance, dt);
- accum_emission += accum_transmittance * emission;
- }
-
- accum_transmittance *= transmittance;
-
- /* compute pdf for distance sampling */
- float3 pdf_distance = dt * accum_transmittance * coeff.sigma_s;
- cdf_distance = cdf_distance + pdf_distance;
-
- /* write step data */
- step->sigma_t = sigma_t;
- step->sigma_s = coeff.sigma_s;
- step->closure_flag = closure_flag;
-
- segment->closure_flag |= closure_flag;
-
- is_last_step_empty = false;
- segment->numsteps++;
- }
- else {
- if (is_last_step_empty) {
- /* consecutive empty step, merge */
- step--;
- }
- else {
- /* store empty step */
- step->sigma_t = zero_float3();
- step->sigma_s = zero_float3();
- step->closure_flag = 0;
-
- segment->numsteps++;
- is_last_step_empty = true;
- }
- }
-
- step->accum_transmittance = accum_transmittance;
- step->cdf_distance = cdf_distance;
- step->t = new_t;
- step->shade_t = t + dt * step_shade_offset;
-
- /* stop if at the end of the volume */
- t = new_t;
- if (t == ray->t)
- break;
-
- /* stop if nearly all light blocked */
- if (accum_transmittance.x < VOLUME_THROUGHPUT_EPSILON &&
- accum_transmittance.y < VOLUME_THROUGHPUT_EPSILON &&
- accum_transmittance.z < VOLUME_THROUGHPUT_EPSILON)
- break;
- }
-
- /* store total emission and transmittance */
- segment->accum_emission = accum_emission;
- segment->accum_transmittance = accum_transmittance;
- segment->accum_albedo = accum_albedo;
-
- /* normalize cumulative density function for distance sampling */
- VolumeStep *last_step = segment->steps + segment->numsteps - 1;
-
- if (!is_zero(last_step->cdf_distance)) {
- VolumeStep *step = &segment->steps[0];
- int numsteps = segment->numsteps;
- float3 inv_cdf_distance_sum = safe_invert_color(last_step->cdf_distance);
-
- for (int i = 0; i < numsteps; i++, step++)
- step->cdf_distance *= inv_cdf_distance_sum;
- }
-}
-
-ccl_device void kernel_volume_decoupled_free(KernelGlobals *kg, VolumeSegment *segment)
-{
- if (segment->steps != &segment->stack_step) {
-# ifdef __KERNEL_CPU__
- /* NOTE: We only allow free last allocated segment.
- * No random order of alloc/free is supported.
- */
- assert(kg->decoupled_volume_steps_index > 0);
- assert(segment->steps == kg->decoupled_volume_steps[kg->decoupled_volume_steps_index - 1]);
- --kg->decoupled_volume_steps_index;
-# else
- free(segment->steps);
-# endif
- }
-}
-# endif /* __VOLUME_DECOUPLED__ */
-
-/* scattering for homogeneous and heterogeneous volumes, using decoupled ray
- * marching.
- *
- * function is expected to return VOLUME_PATH_SCATTERED when probalistic_scatter is false */
-ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(KernelGlobals *kg,
- PathState *state,
- Ray *ray,
- ShaderData *sd,
- float3 *throughput,
- float rphase,
- float rscatter,
- const VolumeSegment *segment,
- const float3 *light_P,
- bool probalistic_scatter)
-{
- kernel_assert(segment->closure_flag & SD_SCATTER);
-
- /* Sample color channel, use MIS with balance heuristic. */
- float3 channel_pdf;
- int channel = kernel_volume_sample_channel(
- segment->accum_albedo, *throughput, rphase, &channel_pdf);
-
- float xi = rscatter;
-
- /* probabilistic scattering decision based on transmittance */
- if (probalistic_scatter) {
- float sample_transmittance = kernel_volume_channel_get(segment->accum_transmittance, channel);
-
- if (1.0f - xi >= sample_transmittance) {
- /* rescale random number so we can reuse it */
- xi = 1.0f - (1.0f - xi - sample_transmittance) / (1.0f - sample_transmittance);
- }
- else {
- *throughput /= sample_transmittance;
- return VOLUME_PATH_MISSED;
- }
- }
-
- VolumeStep *step;
- float3 transmittance;
- float pdf, sample_t;
- float mis_weight = 1.0f;
- bool distance_sample = true;
- bool use_mis = false;
-
- if (segment->sampling_method && light_P) {
- if (segment->sampling_method == SD_VOLUME_MIS) {
- /* multiple importance sample: randomly pick between
- * equiangular and distance sampling strategy */
- if (xi < 0.5f) {
- xi *= 2.0f;
- }
- else {
- xi = (xi - 0.5f) * 2.0f;
- distance_sample = false;
- }
-
- use_mis = true;
- }
- else {
- /* only equiangular sampling */
- distance_sample = false;
- }
- }
-
- /* distance sampling */
- if (distance_sample) {
- /* find step in cdf */
- step = segment->steps;
-
- float prev_t = 0.0f;
- float3 step_pdf_distance = one_float3();
-
- if (segment->numsteps > 1) {
- float prev_cdf = 0.0f;
- float step_cdf = 1.0f;
- float3 prev_cdf_distance = zero_float3();
-
- for (int i = 0;; i++, step++) {
- /* todo: optimize using binary search */
- step_cdf = kernel_volume_channel_get(step->cdf_distance, channel);
-
- if (xi < step_cdf || i == segment->numsteps - 1)
- break;
-
- prev_cdf = step_cdf;
- prev_t = step->t;
- prev_cdf_distance = step->cdf_distance;
- }
-
- /* remap xi so we can reuse it */
- xi = (xi - prev_cdf) / (step_cdf - prev_cdf);
-
- /* pdf for picking step */
- step_pdf_distance = step->cdf_distance - prev_cdf_distance;
- }
-
- /* determine range in which we will sample */
- float step_t = step->t - prev_t;
-
- /* sample distance and compute transmittance */
- float3 distance_pdf;
- sample_t = prev_t + kernel_volume_distance_sample(
- step_t, step->sigma_t, channel, xi, &transmittance, &distance_pdf);
-
- /* modify pdf for hit/miss decision */
- if (probalistic_scatter)
- distance_pdf *= one_float3() - segment->accum_transmittance;
-
- pdf = dot(channel_pdf, distance_pdf * step_pdf_distance);
-
- /* multiple importance sampling */
- if (use_mis) {
- float equi_pdf = kernel_volume_equiangular_pdf(ray, *light_P, sample_t);
- mis_weight = 2.0f * power_heuristic(pdf, equi_pdf);
- }
- }
- /* equi-angular sampling */
- else {
- /* sample distance */
- sample_t = kernel_volume_equiangular_sample(ray, *light_P, xi, &pdf);
-
- /* find step in which sampled distance is located */
- step = segment->steps;
-
- float prev_t = 0.0f;
- float3 step_pdf_distance = one_float3();
-
- if (segment->numsteps > 1) {
- float3 prev_cdf_distance = zero_float3();
-
- int numsteps = segment->numsteps;
- int high = numsteps - 1;
- int low = 0;
- int mid;
-
- while (low < high) {
- mid = (low + high) >> 1;
-
- if (sample_t < step[mid].t)
- high = mid;
- else if (sample_t >= step[mid + 1].t)
- low = mid + 1;
- else {
- /* found our interval in step[mid] .. step[mid+1] */
- prev_t = step[mid].t;
- prev_cdf_distance = step[mid].cdf_distance;
- step += mid + 1;
- break;
- }
- }
-
- if (low >= numsteps - 1) {
- prev_t = step[numsteps - 1].t;
- prev_cdf_distance = step[numsteps - 1].cdf_distance;
- step += numsteps - 1;
- }
-
- /* pdf for picking step with distance sampling */
- step_pdf_distance = step->cdf_distance - prev_cdf_distance;
- }
-
- /* determine range in which we will sample */
- float step_t = step->t - prev_t;
- float step_sample_t = sample_t - prev_t;
-
- /* compute transmittance */
- transmittance = volume_color_transmittance(step->sigma_t, step_sample_t);
-
- /* multiple importance sampling */
- if (use_mis) {
- float3 distance_pdf3 = kernel_volume_distance_pdf(step_t, step->sigma_t, step_sample_t);
- float distance_pdf = dot(channel_pdf, distance_pdf3 * step_pdf_distance);
- mis_weight = 2.0f * power_heuristic(pdf, distance_pdf);
- }
- }
- if (sample_t < 0.0f || pdf == 0.0f) {
- return VOLUME_PATH_MISSED;
- }
-
- /* compute transmittance up to this step */
- if (step != segment->steps)
- transmittance *= (step - 1)->accum_transmittance;
-
- /* modify throughput */
- *throughput *= step->sigma_s * transmittance * (mis_weight / pdf);
-
- /* evaluate shader to create closures at shading point */
- if (segment->numsteps > 1) {
- sd->P = ray->P + step->shade_t * ray->D;
-
- VolumeShaderCoefficients coeff;
- volume_shader_sample(kg, sd, state, sd->P, &coeff);
- }
-
- /* move to new position */
- sd->P = ray->P + sample_t * ray->D;
-
- return VOLUME_PATH_SCATTERED;
-}
-# endif /* __SPLIT_KERNEL */
-
-/* decide if we need to use decoupled or not */
-ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg,
- bool heterogeneous,
- bool direct,
- int sampling_method)
-{
- /* decoupled ray marching for heterogeneous volumes not supported on the GPU,
- * which also means equiangular and multiple importance sampling is not
- * support for that case */
- if (!kernel_data.integrator.volume_decoupled)
- return false;
-
-# ifdef __KERNEL_GPU__
- if (heterogeneous)
- return false;
-# endif
-
- /* equiangular and multiple importance sampling only implemented for decoupled */
- if (sampling_method != 0)
- return true;
-
- /* for all light sampling use decoupled, reusing shader evaluations is
- * typically faster in that case */
- if (direct)
- return kernel_data.integrator.sample_all_lights_direct;
- else
- return kernel_data.integrator.sample_all_lights_indirect;
-}
-
-/* Volume Stack
- *
- * This is an array of object/shared ID's that the current segment of the path
- * is inside of. */
-
-ccl_device void kernel_volume_stack_init(KernelGlobals *kg,
- ShaderData *stack_sd,
- ccl_addr_space const PathState *state,
- ccl_addr_space const Ray *ray,
- ccl_addr_space VolumeStack *stack)
-{
- /* NULL ray happens in the baker, does it need proper initialization of
- * camera in volume?
- */
- if (!kernel_data.cam.is_inside_volume || ray == NULL) {
- /* Camera is guaranteed to be in the air, only take background volume
- * into account in this case.
- */
- if (kernel_data.background.volume_shader != SHADER_NONE) {
- stack[0].shader = kernel_data.background.volume_shader;
- stack[0].object = PRIM_NONE;
- stack[1].shader = SHADER_NONE;
- }
- else {
- stack[0].shader = SHADER_NONE;
- }
- return;
- }
-
- kernel_assert(state->flag & PATH_RAY_CAMERA);
-
- Ray volume_ray = *ray;
- volume_ray.t = FLT_MAX;
-
- const uint visibility = (state->flag & PATH_RAY_ALL_VISIBILITY);
- int stack_index = 0, enclosed_index = 0;
-
-# ifdef __VOLUME_RECORD_ALL__
- Intersection hits[2 * VOLUME_STACK_SIZE + 1];
- uint num_hits = scene_intersect_volume_all(
- kg, &volume_ray, hits, 2 * VOLUME_STACK_SIZE, visibility);
- if (num_hits > 0) {
- int enclosed_volumes[VOLUME_STACK_SIZE];
- Intersection *isect = hits;
-
- qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
-
- for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
- shader_setup_from_ray(kg, stack_sd, isect, &volume_ray);
- if (stack_sd->flag & SD_BACKFACING) {
- bool need_add = true;
- for (int i = 0; i < enclosed_index && need_add; ++i) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- if (enclosed_volumes[i] == stack_sd->object) {
- need_add = false;
- }
- }
- for (int i = 0; i < stack_index && need_add; ++i) {
- /* Don't add intersections twice. */
- if (stack[i].object == stack_sd->object) {
- need_add = false;
- break;
- }
- }
- if (need_add && stack_index < VOLUME_STACK_SIZE - 1) {
- stack[stack_index].object = stack_sd->object;
- stack[stack_index].shader = stack_sd->shader;
- ++stack_index;
- }
- }
- else {
- /* If ray from camera enters the volume, this volume shouldn't
- * be added to the stack on exit.
- */
- enclosed_volumes[enclosed_index++] = stack_sd->object;
- }
- }
- }
-# else
- int enclosed_volumes[VOLUME_STACK_SIZE];
- int step = 0;
-
- while (stack_index < VOLUME_STACK_SIZE - 1 && enclosed_index < VOLUME_STACK_SIZE - 1 &&
- step < 2 * VOLUME_STACK_SIZE) {
- Intersection isect;
- if (!scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
- break;
- }
-
- shader_setup_from_ray(kg, stack_sd, &isect, &volume_ray);
- if (stack_sd->flag & SD_BACKFACING) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- bool need_add = true;
- for (int i = 0; i < enclosed_index && need_add; ++i) {
- /* If ray exited the volume and never entered to that volume
- * it means that camera is inside such a volume.
- */
- if (enclosed_volumes[i] == stack_sd->object) {
- need_add = false;
- }
- }
- for (int i = 0; i < stack_index && need_add; ++i) {
- /* Don't add intersections twice. */
- if (stack[i].object == stack_sd->object) {
- need_add = false;
- break;
- }
- }
- if (need_add) {
- stack[stack_index].object = stack_sd->object;
- stack[stack_index].shader = stack_sd->shader;
- ++stack_index;
- }
- }
- else {
- /* If ray from camera enters the volume, this volume shouldn't
- * be added to the stack on exit.
- */
- enclosed_volumes[enclosed_index++] = stack_sd->object;
- }
-
- /* Move ray forward. */
- volume_ray.P = ray_offset(stack_sd->P, -stack_sd->Ng);
- ++step;
- }
-# endif
- /* stack_index of 0 means quick checks outside of the kernel gave false
- * positive, nothing to worry about, just we've wasted quite a few of
- * ticks just to come into conclusion that camera is in the air.
- *
- * In this case we're doing the same above -- check whether background has
- * volume.
- */
- if (stack_index == 0 && kernel_data.background.volume_shader == SHADER_NONE) {
- stack[0].shader = kernel_data.background.volume_shader;
- stack[0].object = OBJECT_NONE;
- stack[1].shader = SHADER_NONE;
- }
- else {
- stack[stack_index].shader = SHADER_NONE;
- }
-}
-
-ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg,
- ShaderData *sd,
- ccl_addr_space VolumeStack *stack)
-{
- /* todo: we should have some way for objects to indicate if they want the
- * world shader to work inside them. excluding it by default is problematic
- * because non-volume objects can't be assumed to be closed manifolds */
-
- if (!(sd->flag & SD_HAS_VOLUME))
- return;
-
- if (sd->flag & SD_BACKFACING) {
- /* exit volume object: remove from stack */
- for (int i = 0; stack[i].shader != SHADER_NONE; i++) {
- if (stack[i].object == sd->object) {
- /* shift back next stack entries */
- do {
- stack[i] = stack[i + 1];
- i++;
- } while (stack[i].shader != SHADER_NONE);
-
- return;
- }
- }
- }
- else {
- /* enter volume object: add to stack */
- int i;
-
- for (i = 0; stack[i].shader != SHADER_NONE; i++) {
- /* already in the stack? then we have nothing to do */
- if (stack[i].object == sd->object)
- return;
- }
-
- /* if we exceed the stack limit, ignore */
- if (i >= VOLUME_STACK_SIZE - 1)
- return;
-
- /* add to the end of the stack */
- stack[i].shader = sd->shader;
- stack[i].object = sd->object;
- stack[i + 1].shader = SHADER_NONE;
- }
-}
-
-# ifdef __SUBSURFACE__
-ccl_device void kernel_volume_stack_update_for_subsurface(KernelGlobals *kg,
- ShaderData *stack_sd,
- Ray *ray,
- ccl_addr_space VolumeStack *stack)
-{
- kernel_assert(kernel_data.integrator.use_volumes);
-
- Ray volume_ray = *ray;
-
-# ifdef __VOLUME_RECORD_ALL__
- Intersection hits[2 * VOLUME_STACK_SIZE + 1];
- uint num_hits = scene_intersect_volume_all(
- kg, &volume_ray, hits, 2 * VOLUME_STACK_SIZE, PATH_RAY_ALL_VISIBILITY);
- if (num_hits > 0) {
- Intersection *isect = hits;
-
- qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
-
- for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
- shader_setup_from_ray(kg, stack_sd, isect, &volume_ray);
- kernel_volume_stack_enter_exit(kg, stack_sd, stack);
- }
- }
-# else
- Intersection isect;
- int step = 0;
- float3 Pend = ray->P + ray->D * ray->t;
- while (step < 2 * VOLUME_STACK_SIZE &&
- scene_intersect_volume(kg, &volume_ray, &isect, PATH_RAY_ALL_VISIBILITY)) {
- shader_setup_from_ray(kg, stack_sd, &isect, &volume_ray);
- kernel_volume_stack_enter_exit(kg, stack_sd, stack);
-
- /* Move ray forward. */
- volume_ray.P = ray_offset(stack_sd->P, -stack_sd->Ng);
- if (volume_ray.t != FLT_MAX) {
- volume_ray.D = normalize_len(Pend - volume_ray.P, &volume_ray.t);
- }
- ++step;
- }
-# endif
-}
-# endif
-
-/* Clean stack after the last bounce.
- *
- * It is expected that all volumes are closed manifolds, so at the time when ray
- * hits nothing (for example, it is a last bounce which goes to environment) the
- * only expected volume in the stack is the world's one. All the rest volume
- * entries should have been exited already.
- *
- * This isn't always true because of ray intersection precision issues, which
- * could lead us to an infinite non-world volume in the stack, causing render
- * artifacts.
- *
- * Use this function after the last bounce to get rid of all volumes apart from
- * the world's one after the last bounce to avoid render artifacts.
- */
-ccl_device_inline void kernel_volume_clean_stack(KernelGlobals *kg,
- ccl_addr_space VolumeStack *volume_stack)
-{
- if (kernel_data.background.volume_shader != SHADER_NONE) {
- /* Keep the world's volume in stack. */
- volume_stack[1].shader = SHADER_NONE;
- }
- else {
- volume_stack[0].shader = SHADER_NONE;
- }
-}
-
-#endif /* __VOLUME__ */
-
-CCL_NAMESPACE_END