Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp')
-rw-r--r--intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp242
1 files changed, 123 insertions, 119 deletions
diff --git a/intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp b/intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp
index a38c5b55cf5..cb6be6959f5 100644
--- a/intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp
+++ b/intern/cycles/kernel/osl/bsdf_ashikhmin_velvet.cpp
@@ -36,138 +36,142 @@
#include "osl_closures.h"
+#include "util_math.h"
+
CCL_NAMESPACE_BEGIN
using namespace OSL;
class AshikhminVelvetClosure : public BSDFClosure {
public:
- Vec3 m_N;
- float m_sigma;
- float m_invsigma2;
-
- AshikhminVelvetClosure() : BSDFClosure(Labels::DIFFUSE) { }
-
- void setup()
- {
- m_sigma = std::max(m_sigma, 0.01f);
- m_invsigma2 = 1.0f/(m_sigma * m_sigma);
- }
-
- bool mergeable (const ClosurePrimitive *other) const {
- const AshikhminVelvetClosure *comp = (const AshikhminVelvetClosure *)other;
- return m_N == comp->m_N && m_sigma == comp->m_sigma &&
- BSDFClosure::mergeable(other);
- }
-
- size_t memsize () const { return sizeof(*this); }
-
- const char *name () const { return "ashikhmin_velvet"; }
-
- void print_on (std::ostream &out) const
- {
- out << name() << " (";
- out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
- out << m_sigma;
- out << ")";
- }
-
- float albedo (const Vec3 &omega_out) const
- {
+ Vec3 m_N;
+ float m_sigma;
+ float m_invsigma2;
+
+ AshikhminVelvetClosure() : BSDFClosure(Labels::DIFFUSE) {}
+
+ void setup()
+ {
+ m_sigma = max(m_sigma, 0.01f);
+ m_invsigma2 = 1.0f / (m_sigma * m_sigma);
+ }
+
+ bool mergeable(const ClosurePrimitive *other) const {
+ const AshikhminVelvetClosure *comp = (const AshikhminVelvetClosure *)other;
+ return m_N == comp->m_N && m_sigma == comp->m_sigma &&
+ BSDFClosure::mergeable(other);
+ }
+
+ size_t memsize() const { return sizeof(*this); }
+
+ const char *name() const { return "ashikhmin_velvet"; }
+
+ void print_on(std::ostream &out) const
+ {
+ out << name() << " (";
+ out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
+ out << m_sigma;
+ out << ")";
+ }
+
+ float albedo(const Vec3 &omega_out) const
+ {
return 1.0f;
- }
-
- Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
- {
- float cosNO = m_N.dot(omega_out);
- float cosNI = m_N.dot(omega_in);
- if (cosNO > 0 && cosNI > 0) {
- Vec3 H = omega_in + omega_out;
- H.normalize();
-
- float cosNH = m_N.dot(H);
- float cosHO = fabsf(omega_out.dot(H));
-
- float cosNHdivHO = cosNH / cosHO;
- cosNHdivHO = std::max(cosNHdivHO, 0.00001f);
-
- float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
- float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
-
- float sinNH2 = 1 - cosNH * cosNH;
- float sinNH4 = sinNH2 * sinNH2;
- float cotangent2 = (cosNH * cosNH) / sinNH2;
-
- float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * float(M_1_PI) / sinNH4;
- float G = std::min(1.0f, std::min(fac1, fac2)); // TODO: derive G from D analytically
-
- float out = 0.25f * (D * G) / cosNO;
-
- pdf = 0.5f * (float) M_1_PI;
- return Color3 (out, out, out);
- }
- return Color3 (0, 0, 0);
- }
-
- Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
- {
- return Color3 (0, 0, 0);
- }
-
- ustring sample (const Vec3 &Ng,
- const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
- float randu, float randv,
- Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
- float &pdf, Color3 &eval) const
- {
- // we are viewing the surface from above - send a ray out with uniform
- // distribution over the hemisphere
- sample_uniform_hemisphere (m_N, omega_out, randu, randv, omega_in, pdf);
- if (Ng.dot(omega_in) > 0) {
- Vec3 H = omega_in + omega_out;
- H.normalize();
-
- float cosNI = m_N.dot(omega_in);
- float cosNO = m_N.dot(omega_out);
- float cosNH = m_N.dot(H);
- float cosHO = fabsf(omega_out.dot(H));
-
- float cosNHdivHO = cosNH / cosHO;
- cosNHdivHO = std::max(cosNHdivHO, 0.00001f);
-
- float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
- float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
-
- float sinNH2 = 1 - cosNH * cosNH;
- float sinNH4 = sinNH2 * sinNH2;
- float cotangent2 = (cosNH * cosNH) / sinNH2;
-
- float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * float(M_1_PI) / sinNH4;
- float G = std::min(1.0f, std::min(fac1, fac2)); // TODO: derive G from D analytically
-
- float power = 0.25f * (D * G) / cosNO;
-
- eval.setValue(power, power, power);
-
- // TODO: find a better approximation for the retroreflective bounce
- domega_in_dx = (2 * m_N.dot(domega_out_dx)) * m_N - domega_out_dx;
- domega_in_dy = (2 * m_N.dot(domega_out_dy)) * m_N - domega_out_dy;
- domega_in_dx *= 125;
- domega_in_dy *= 125;
- } else
- pdf = 0;
- return Labels::REFLECT;
- }
+ }
+
+ Color3 eval_reflect(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ float cosNO = m_N.dot(omega_out);
+ float cosNI = m_N.dot(omega_in);
+ if (cosNO > 0 && cosNI > 0) {
+ Vec3 H = omega_in + omega_out;
+ H.normalize();
+
+ float cosNH = m_N.dot(H);
+ float cosHO = fabsf(omega_out.dot(H));
+
+ float cosNHdivHO = cosNH / cosHO;
+ cosNHdivHO = max(cosNHdivHO, 0.00001f);
+
+ float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
+ float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
+
+ float sinNH2 = 1 - cosNH * cosNH;
+ float sinNH4 = sinNH2 * sinNH2;
+ float cotangent2 = (cosNH * cosNH) / sinNH2;
+
+ float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * float(M_1_PI) / sinNH4;
+ float G = min(1.0f, min(fac1, fac2)); // TODO: derive G from D analytically
+
+ float out = 0.25f * (D * G) / cosNO;
+
+ pdf = 0.5f * (float) M_1_PI;
+ return Color3(out, out, out);
+ }
+ return Color3(0, 0, 0);
+ }
+
+ Color3 eval_transmit(const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ return Color3(0, 0, 0);
+ }
+
+ ustring sample(const Vec3 &Ng,
+ const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
+ float randu, float randv,
+ Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
+ float &pdf, Color3 &eval) const
+ {
+ // we are viewing the surface from above - send a ray out with uniform
+ // distribution over the hemisphere
+ sample_uniform_hemisphere(m_N, omega_out, randu, randv, omega_in, pdf);
+ if (Ng.dot(omega_in) > 0) {
+ Vec3 H = omega_in + omega_out;
+ H.normalize();
+
+ float cosNI = m_N.dot(omega_in);
+ float cosNO = m_N.dot(omega_out);
+ float cosNH = m_N.dot(H);
+ float cosHO = fabsf(omega_out.dot(H));
+
+ float cosNHdivHO = cosNH / cosHO;
+ cosNHdivHO = max(cosNHdivHO, 0.00001f);
+
+ float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
+ float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
+
+ float sinNH2 = 1 - cosNH * cosNH;
+ float sinNH4 = sinNH2 * sinNH2;
+ float cotangent2 = (cosNH * cosNH) / sinNH2;
+
+ float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * float(M_1_PI) / sinNH4;
+ float G = min(1.0f, min(fac1, fac2)); // TODO: derive G from D analytically
+
+ float power = 0.25f * (D * G) / cosNO;
+
+ eval.setValue(power, power, power);
+
+ // TODO: find a better approximation for the retroreflective bounce
+ domega_in_dx = (2 * m_N.dot(domega_out_dx)) * m_N - domega_out_dx;
+ domega_in_dy = (2 * m_N.dot(domega_out_dy)) * m_N - domega_out_dy;
+ domega_in_dx *= 125;
+ domega_in_dy *= 125;
+ }
+ else
+ pdf = 0;
+ return Labels::REFLECT;
+ }
};
ClosureParam bsdf_ashikhmin_velvet_params[] = {
- CLOSURE_VECTOR_PARAM(AshikhminVelvetClosure, m_N),
- CLOSURE_FLOAT_PARAM (AshikhminVelvetClosure, m_sigma),
- CLOSURE_STRING_KEYPARAM("label"),
- CLOSURE_FINISH_PARAM(AshikhminVelvetClosure) };
+ CLOSURE_VECTOR_PARAM(AshikhminVelvetClosure, m_N),
+ CLOSURE_FLOAT_PARAM(AshikhminVelvetClosure, m_sigma),
+ CLOSURE_STRING_KEYPARAM("label"),
+ CLOSURE_FINISH_PARAM(AshikhminVelvetClosure)
+};
CLOSURE_PREPARE(bsdf_ashikhmin_velvet_prepare, AshikhminVelvetClosure)