Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/osl/bsdf_microfacet.cpp')
-rw-r--r--intern/cycles/kernel/osl/bsdf_microfacet.cpp533
1 files changed, 533 insertions, 0 deletions
diff --git a/intern/cycles/kernel/osl/bsdf_microfacet.cpp b/intern/cycles/kernel/osl/bsdf_microfacet.cpp
new file mode 100644
index 00000000000..d87268da81e
--- /dev/null
+++ b/intern/cycles/kernel/osl/bsdf_microfacet.cpp
@@ -0,0 +1,533 @@
+/*
+ * Adapted from Open Shading Language with this license:
+ *
+ * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
+ * All Rights Reserved.
+ *
+ * Modifications Copyright 2011, Blender Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Sony Pictures Imageworks nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <OpenImageIO/fmath.h>
+
+#include <OSL/genclosure.h>
+
+#include "osl_closures.h"
+
+#include "util_math.h"
+
+using namespace OSL;
+
+CCL_NAMESPACE_BEGIN
+
+// TODO: fresnel_dielectric is only used for derivatives, could be optimized
+
+// TODO: refactor these two classes so they share everything by the microfacet
+// distribution terms
+
+// microfacet model with GGX facet distribution
+// see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
+template <int Refractive = 0>
+class MicrofacetGGXClosure : public BSDFClosure {
+public:
+ Vec3 m_N;
+ float m_ag; // width parameter (roughness)
+ float m_eta; // index of refraction (for fresnel term)
+ MicrofacetGGXClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) { m_eta = 1.0f; }
+
+ void setup()
+ {
+ m_ag = clamp(m_ag, 1e-5f, 1.0f);
+ }
+
+ bool mergeable (const ClosurePrimitive *other) const {
+ const MicrofacetGGXClosure *comp = (const MicrofacetGGXClosure *)other;
+ return m_N == comp->m_N && m_ag == comp->m_ag &&
+ m_eta == comp->m_eta && BSDFClosure::mergeable(other);
+ }
+
+ size_t memsize () const { return sizeof(*this); }
+
+ const char *name () const {
+ return Refractive ? "microfacet_ggx_refraction" : "microfacet_ggx";
+ }
+
+ void print_on (std::ostream &out) const {
+ out << name() << " (";
+ out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
+ out << m_ag << ", ";
+ out << m_eta;
+ out << ")";
+ }
+
+ float albedo (const Vec3 &omega_out) const
+ {
+ return 1.0f;
+ }
+
+ Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ if (Refractive == 1) return Color3 (0, 0, 0);
+ float cosNO = m_N.dot(omega_out);
+ float cosNI = m_N.dot(omega_in);
+ if (cosNI > 0 && cosNO > 0) {
+ // get half vector
+ Vec3 Hr = omega_in + omega_out;
+ Hr.normalize();
+ // eq. 20: (F*G*D)/(4*in*on)
+ // eq. 33: first we calculate D(m) with m=Hr:
+ float alpha2 = m_ag * m_ag;
+ float cosThetaM = m_N.dot(Hr);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ float out = (G * D) * 0.25f / cosNO;
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ pdf = pm * 0.25f / Hr.dot(omega_out);
+ return Color3 (out, out, out);
+ }
+ return Color3 (0, 0, 0);
+ }
+
+ Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ if (Refractive == 0) return Color3 (0, 0, 0);
+ float cosNO = m_N.dot(omega_out);
+ float cosNI = m_N.dot(omega_in);
+ if (cosNO <= 0 || cosNI >= 0)
+ return Color3 (0, 0, 0); // vectors on same side -- not possible
+ // compute half-vector of the refraction (eq. 16)
+ Vec3 ht = -(m_eta * omega_in + omega_out);
+ Vec3 Ht = ht; Ht.normalize();
+ float cosHO = Ht.dot(omega_out);
+
+ float cosHI = Ht.dot(omega_in);
+ // eq. 33: first we calculate D(m) with m=Ht:
+ float alpha2 = m_ag * m_ag;
+ float cosThetaM = m_N.dot(Ht);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // probability
+ float invHt2 = 1 / ht.dot(ht);
+ pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
+ return Color3 (out, out, out);
+ }
+
+ ustring sample (const Vec3 &Ng,
+ const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
+ float randu, float randv,
+ Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
+ float &pdf, Color3 &eval) const
+ {
+ float cosNO = m_N.dot(omega_out);
+ if (cosNO > 0) {
+ Vec3 X, Y, Z = m_N;
+ make_orthonormals(Z, X, Y);
+ // generate a random microfacet normal m
+ // eq. 35,36:
+ // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
+ // and sin(atan(x)) == x/sqrt(1+x^2)
+ float alpha2 = m_ag * m_ag;
+ float tanThetaM2 = alpha2 * randu / (1 - randu);
+ float cosThetaM = 1 / sqrtf(1 + tanThetaM2);
+ float sinThetaM = cosThetaM * sqrtf(tanThetaM2);
+ float phiM = 2 * float(M_PI) * randv;
+ Vec3 m = (cosf(phiM) * sinThetaM) * X +
+ (sinf(phiM) * sinThetaM) * Y +
+ cosThetaM * Z;
+ if (Refractive == 0) {
+ float cosMO = m.dot(omega_out);
+ if (cosMO > 0) {
+ // eq. 39 - compute actual reflected direction
+ omega_in = 2 * cosMO * m - omega_out;
+ if (Ng.dot(omega_in) > 0) {
+ // microfacet normal is visible to this ray
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ pdf = pm * 0.25f / cosMO;
+ // eval BRDF*cosNI
+ float cosNI = m_N.dot(omega_in);
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // eq. 20: (F*G*D)/(4*in*on)
+ float out = (G * D) * 0.25f / cosNO;
+ eval.setValue(out, out, out);
+ domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
+ domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
+
+ /* disabled for now - gives texture filtering problems */
+#if 0
+ // Since there is some blur to this reflection, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ domega_in_dx *= 10;
+ domega_in_dy *= 10;
+#endif
+ }
+ }
+ } else {
+ // CAUTION: the i and o variables are inverted relative to the paper
+ // eq. 39 - compute actual refractive direction
+ Vec3 R, dRdx, dRdy;
+ Vec3 T, dTdx, dTdy;
+ bool inside;
+ fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
+ R, dRdx, dRdy,
+ T, dTdx, dTdy,
+ inside);
+
+ if (!inside) {
+ omega_in = T;
+ domega_in_dx = dTdx;
+ domega_in_dy = dTdy;
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 24
+ float pm = D * cosThetaM;
+ // eval BRDF*cosNI
+ float cosNI = m_N.dot(omega_in);
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // eq. 21
+ float cosHI = m.dot(omega_in);
+ float cosHO = m.dot(omega_out);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
+ // eq. 38 and eq. 17
+ pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
+ eval.setValue(out, out, out);
+
+ /* disabled for now - gives texture filtering problems */
+#if 0
+ // Since there is some blur to this refraction, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ domega_in_dx *= 10;
+ domega_in_dy *= 10;
+#endif
+ }
+ }
+ }
+ return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
+ }
+};
+
+// microfacet model with Beckmann facet distribution
+// see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
+template <int Refractive = 0>
+class MicrofacetBeckmannClosure : public BSDFClosure {
+public:
+ Vec3 m_N;
+ float m_ab; // width parameter (roughness)
+ float m_eta; // index of refraction (for fresnel term)
+ MicrofacetBeckmannClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) { }
+
+ void setup()
+ {
+ m_ab = clamp(m_ab, 1e-5f, 1.0f);
+ }
+
+ bool mergeable (const ClosurePrimitive *other) const {
+ const MicrofacetBeckmannClosure *comp = (const MicrofacetBeckmannClosure *)other;
+ return m_N == comp->m_N && m_ab == comp->m_ab &&
+ m_eta == comp->m_eta && BSDFClosure::mergeable(other);
+ }
+
+ size_t memsize () const { return sizeof(*this); }
+
+ const char * name () const {
+ return Refractive ? "microfacet_beckmann_refraction"
+ : "microfacet_beckmann";
+ }
+
+ void print_on (std::ostream &out) const
+ {
+ out << name() << " (";
+ out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
+ out << m_ab << ", ";
+ out << m_eta;
+ out << ")";
+ }
+
+ float albedo (const Vec3 &omega_out) const
+ {
+ return 1.0f;
+ }
+
+ Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ if (Refractive == 1) return Color3 (0, 0, 0);
+ float cosNO = m_N.dot(omega_out);
+ float cosNI = m_N.dot(omega_in);
+ if (cosNO > 0 && cosNI > 0) {
+ // get half vector
+ Vec3 Hr = omega_in + omega_out;
+ Hr.normalize();
+ // eq. 20: (F*G*D)/(4*in*on)
+ // eq. 25: first we calculate D(m) with m=Hr:
+ float alpha2 = m_ab * m_ab;
+ float cosThetaM = m_N.dot(Hr);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ float out = (G * D) * 0.25f / cosNO;
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ pdf = pm * 0.25f / Hr.dot(omega_out);
+ return Color3 (out, out, out);
+ }
+ return Color3 (0, 0, 0);
+ }
+
+ Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
+ {
+ if (Refractive == 0) return Color3 (0, 0, 0);
+ float cosNO = m_N.dot(omega_out);
+ float cosNI = m_N.dot(omega_in);
+ if (cosNO <= 0 || cosNI >= 0)
+ return Color3 (0, 0, 0);
+ // compute half-vector of the refraction (eq. 16)
+ Vec3 ht = -(m_eta * omega_in + omega_out);
+ Vec3 Ht = ht; Ht.normalize();
+ float cosHO = Ht.dot(omega_out);
+
+ float cosHI = Ht.dot(omega_in);
+ // eq. 33: first we calculate D(m) with m=Ht:
+ float alpha2 = m_ab * m_ab;
+ float cosThetaM = m_N.dot(Ht);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // probability
+ float invHt2 = 1 / ht.dot(ht);
+ pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
+ return Color3 (out, out, out);
+ }
+
+ ustring sample (const Vec3 &Ng,
+ const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
+ float randu, float randv,
+ Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
+ float &pdf, Color3 &eval) const
+ {
+ float cosNO = m_N.dot(omega_out);
+ if (cosNO > 0) {
+ Vec3 X, Y, Z = m_N;
+ make_orthonormals(Z, X, Y);
+ // generate a random microfacet normal m
+ // eq. 35,36:
+ // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
+ // and sin(atan(x)) == x/sqrt(1+x^2)
+ float alpha2 = m_ab * m_ab;
+ float tanThetaM = sqrtf(-alpha2 * logf(1 - randu));
+ float cosThetaM = 1 / sqrtf(1 + tanThetaM * tanThetaM);
+ float sinThetaM = cosThetaM * tanThetaM;
+ float phiM = 2 * float(M_PI) * randv;
+ Vec3 m = (cosf(phiM) * sinThetaM) * X +
+ (sinf(phiM) * sinThetaM) * Y +
+ cosThetaM * Z;
+ if (Refractive == 0) {
+ float cosMO = m.dot(omega_out);
+ if (cosMO > 0) {
+ // eq. 39 - compute actual reflected direction
+ omega_in = 2 * cosMO * m - omega_out;
+ if (Ng.dot(omega_in) > 0) {
+ // microfacet normal is visible to this ray
+ // eq. 25
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = tanThetaM * tanThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ pdf = pm * 0.25f / cosMO;
+ // Eval BRDF*cosNI
+ float cosNI = m_N.dot(omega_in);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // eq. 20: (F*G*D)/(4*in*on)
+ float out = (G * D) * 0.25f / cosNO;
+ eval.setValue(out, out, out);
+ domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
+ domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
+
+ /* disabled for now - gives texture filtering problems */
+#if 0
+ // Since there is some blur to this reflection, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ domega_in_dx *= 10;
+ domega_in_dy *= 10;
+#endif
+ }
+ }
+ } else {
+ // CAUTION: the i and o variables are inverted relative to the paper
+ // eq. 39 - compute actual refractive direction
+ Vec3 R, dRdx, dRdy;
+ Vec3 T, dTdx, dTdy;
+ bool inside;
+ fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
+ R, dRdx, dRdy,
+ T, dTdx, dTdy,
+ inside);
+ if (!inside) {
+ omega_in = T;
+ domega_in_dx = dTdx;
+ domega_in_dy = dTdy;
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = tanThetaM * tanThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
+ // eq. 24
+ float pm = D * cosThetaM;
+ // eval BRDF*cosNI
+ float cosNI = m_N.dot(omega_in);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // eq. 21
+ float cosHI = m.dot(omega_in);
+ float cosHO = m.dot(omega_out);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
+ // eq. 38 and eq. 17
+ pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
+ eval.setValue(out, out, out);
+
+ /* disabled for now - gives texture filtering problems */
+#if 0
+ // Since there is some blur to this refraction, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ domega_in_dx *= 10;
+ domega_in_dy *= 10;
+#endif
+ }
+ }
+ }
+ return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
+ }
+};
+
+
+
+ClosureParam bsdf_microfacet_ggx_params[] = {
+ CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<0>, m_N),
+ CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<0>, m_ag),
+ CLOSURE_STRING_KEYPARAM("label"),
+ CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<0>) };
+
+ClosureParam bsdf_microfacet_ggx_refraction_params[] = {
+ CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<1>, m_N),
+ CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<1>, m_ag),
+ CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<1>, m_eta),
+ CLOSURE_STRING_KEYPARAM("label"),
+ CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<1>) };
+
+ClosureParam bsdf_microfacet_beckmann_params[] = {
+ CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<0>, m_N),
+ CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<0>, m_ab),
+ CLOSURE_STRING_KEYPARAM("label"),
+ CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<0>) };
+
+ClosureParam bsdf_microfacet_beckmann_refraction_params[] = {
+ CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<1>, m_N),
+ CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<1>, m_ab),
+ CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<1>, m_eta),
+ CLOSURE_STRING_KEYPARAM("label"),
+ CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<1>) };
+
+CLOSURE_PREPARE(bsdf_microfacet_ggx_prepare, MicrofacetGGXClosure<0>)
+CLOSURE_PREPARE(bsdf_microfacet_ggx_refraction_prepare, MicrofacetGGXClosure<1>)
+CLOSURE_PREPARE(bsdf_microfacet_beckmann_prepare, MicrofacetBeckmannClosure<0>)
+CLOSURE_PREPARE(bsdf_microfacet_beckmann_refraction_prepare, MicrofacetBeckmannClosure<1>)
+
+CCL_NAMESPACE_END
+