Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/shaders/node_voronoi_texture.osl')
-rw-r--r--intern/cycles/kernel/shaders/node_voronoi_texture.osl1077
1 files changed, 970 insertions, 107 deletions
diff --git a/intern/cycles/kernel/shaders/node_voronoi_texture.osl b/intern/cycles/kernel/shaders/node_voronoi_texture.osl
index 34c86d5b98d..5de4aeef943 100644
--- a/intern/cycles/kernel/shaders/node_voronoi_texture.osl
+++ b/intern/cycles/kernel/shaders/node_voronoi_texture.osl
@@ -15,150 +15,1013 @@
*/
#include "stdosl.h"
-#include "node_texture.h"
-
-void voronoi_m(point p, string metric, float e, float da[4], point pa[4])
-{
- /* Compute the distance to and the position of the four closest neighbors to p.
- *
- * The neighbors are randomly placed, 1 each in a 3x3x3 grid (Worley pattern).
- * The distances and points are returned in ascending order, i.e. da[0] and pa[0] will
- * contain the distance to the closest point and its coordinates respectively.
- */
- int xx, yy, zz, xi, yi, zi;
-
- xi = (int)floor(p[0]);
- yi = (int)floor(p[1]);
- zi = (int)floor(p[2]);
-
- da[0] = 1e10;
- da[1] = 1e10;
- da[2] = 1e10;
- da[3] = 1e10;
-
- for (xx = xi - 1; xx <= xi + 1; xx++) {
- for (yy = yi - 1; yy <= yi + 1; yy++) {
- for (zz = zi - 1; zz <= zi + 1; zz++) {
- point ip = point(xx, yy, zz);
- point vp = (point)cellnoise_color(ip);
- point pd = p - (vp + ip);
-
- float d = 0.0;
- if (metric == "distance") {
- d = dot(pd, pd);
+#include "vector2.h"
+#include "vector4.h"
+#include "node_hash.h"
+
+#define vector3 point
+
+/* **** Distance Functions **** */
+
+float distance(float a, float b)
+{
+ return abs(a - b);
+}
+
+float distance(vector2 a, vector2 b)
+{
+ return length(a - b);
+}
+
+float distance(vector4 a, vector4 b)
+{
+ return length(a - b);
+}
+
+/* **** Safe Division **** */
+
+vector2 safe_divide(vector2 a, float b)
+{
+ return vector2((b != 0.0) ? a.x / b : 0.0, (b != 0.0) ? a.y / b : 0.0);
+}
+
+vector4 safe_divide(vector4 a, float b)
+{
+ return vector4((b != 0.0) ? a.x / b : 0.0,
+ (b != 0.0) ? a.y / b : 0.0,
+ (b != 0.0) ? a.z / b : 0.0,
+ (b != 0.0) ? a.w / b : 0.0);
+}
+
+/*
+ * Smooth Voronoi:
+ *
+ * - https://wiki.blender.org/wiki/User:OmarSquircleArt/GSoC2019/Documentation/Smooth_Voronoi
+ *
+ * Distance To Edge:
+ *
+ * - https://www.shadertoy.com/view/llG3zy
+ *
+ */
+
+/* **** 1D Voronoi **** */
+
+float voronoi_distance(float a, float b, string metric, float exponent)
+{
+ return abs(a - b);
+}
+
+void voronoi_f1_1d(float w,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output float outW)
+{
+ float cellPosition = floor(w);
+ float localPosition = w - cellPosition;
+
+ float minDistance = 8.0;
+ float targetOffset, targetPosition;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = float(i);
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ outDistance = minDistance;
+ outColor = hash_float_to_color(cellPosition + targetOffset);
+ outW = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1_1d(float w,
+ float smoothness,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output float outW)
+{
+ float cellPosition = floor(w);
+ float localPosition = w - cellPosition;
+
+ float smoothDistance = 8.0;
+ float smoothPosition = 0.0;
+ color smoothColor = color(0.0);
+ for (int i = -2; i <= 2; i++) {
+ float cellOffset = float(i);
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(0.0, 1.0, 0.5 + 0.5 * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0 - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0 + 3.0 * smoothness;
+ color cellColor = hash_float_to_color(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ outDistance = smoothDistance;
+ outColor = smoothColor;
+ outW = cellPosition + smoothPosition;
+}
+
+void voronoi_f2_1d(float w,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output float outW)
+{
+ float cellPosition = floor(w);
+ float localPosition = w - cellPosition;
+
+ float distanceF1 = 8.0;
+ float distanceF2 = 8.0;
+ float offsetF1 = 0.0;
+ float positionF1 = 0.0;
+ float offsetF2, positionF2;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = float(i);
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ outDistance = distanceF2;
+ outColor = hash_float_to_color(cellPosition + offsetF2);
+ outW = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge_1d(float w, float randomness, output float outDistance)
+{
+ float cellPosition = floor(w);
+ float localPosition = w - cellPosition;
+
+ float minDistance = 8.0;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = float(i);
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ minDistance = min(distanceToPoint, minDistance);
+ }
+ outDistance = minDistance;
+}
+
+void voronoi_n_sphere_radius_1d(float w, float randomness, output float outRadius)
+{
+ float cellPosition = floor(w);
+ float localPosition = w - cellPosition;
+
+ float closestPoint;
+ float closestPointOffset;
+ float minDistance = 8.0;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = float(i);
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+
+ minDistance = 8.0;
+ float closestPointToClosestPoint;
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0) {
+ continue;
+ }
+ float cellOffset = float(i) + closestPointOffset;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0;
+}
+
+/* **** 2D Voronoi **** */
+
+float voronoi_distance(vector2 a, vector2 b, string metric, float exponent)
+{
+ if (metric == "euclidean") {
+ return distance(a, b);
+ }
+ else if (metric == "manhattan") {
+ return abs(a.x - b.x) + abs(a.y - b.y);
+ }
+ else if (metric == "chebychev") {
+ return max(abs(a.x - b.x), abs(a.y - b.y));
+ }
+ else if (metric == "minkowski") {
+ return pow(pow(abs(a.x - b.x), exponent) + pow(abs(a.y - b.y), exponent), 1.0 / exponent);
+ }
+ else {
+ return 0.0;
+ }
+}
+
+void voronoi_f1_2d(vector2 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector2 outPosition)
+{
+ vector2 cellPosition = floor(coord);
+ vector2 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0;
+ vector2 targetOffset, targetPosition;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 pointPosition = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ outDistance = minDistance;
+ outColor = hash_vector2_to_color(cellPosition + targetOffset);
+ outPosition = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1_2d(vector2 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector2 outPosition)
+{
+ vector2 cellPosition = floor(coord);
+ vector2 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0;
+ color smoothColor = color(0.0);
+ vector2 smoothPosition = vector2(0.0, 0.0);
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 pointPosition = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(0.0, 1.0, 0.5 + 0.5 * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0 - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0 + 3.0 * smoothness;
+ color cellColor = hash_vector2_to_color(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ outDistance = smoothDistance;
+ outColor = smoothColor;
+ outPosition = cellPosition + smoothPosition;
+}
+
+void voronoi_f2_2d(vector2 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector2 outPosition)
+{
+ vector2 cellPosition = floor(coord);
+ vector2 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0;
+ float distanceF2 = 8.0;
+ vector2 offsetF1 = vector2(0.0, 0.0);
+ vector2 positionF1 = vector2(0.0, 0.0);
+ vector2 offsetF2, positionF2;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 pointPosition = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ outDistance = distanceF2;
+ outColor = hash_vector2_to_color(cellPosition + offsetF2);
+ outPosition = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge_2d(vector2 coord, float randomness, output float outDistance)
+{
+ vector2 cellPosition = floor(coord);
+ vector2 localPosition = coord - cellPosition;
+
+ vector2 vectorToClosest;
+ float minDistance = 8.0;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 vectorToPoint = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+
+ minDistance = 8.0;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 vectorToPoint = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ vector2 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ outDistance = minDistance;
+}
+
+void voronoi_n_sphere_radius_2d(vector2 coord, float randomness, output float outRadius)
+{
+ vector2 cellPosition = floor(coord);
+ vector2 localPosition = coord - cellPosition;
+
+ vector2 closestPoint;
+ vector2 closestPointOffset;
+ float minDistance = 8.0;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector2 cellOffset = vector2(i, j);
+ vector2 pointPosition = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+
+ minDistance = 8.0;
+ vector2 closestPointToClosestPoint;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0) {
+ continue;
+ }
+ vector2 cellOffset = vector2(i, j) + closestPointOffset;
+ vector2 pointPosition = cellOffset +
+ hash_vector2_to_vector2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0;
+}
+
+/* **** 3D Voronoi **** */
+
+float voronoi_distance(vector3 a, vector3 b, string metric, float exponent)
+{
+ if (metric == "euclidean") {
+ return distance(a, b);
+ }
+ else if (metric == "manhattan") {
+ return abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]);
+ }
+ else if (metric == "chebychev") {
+ return max(abs(a[0] - b[0]), max(abs(a[1] - b[1]), abs(a[2] - b[2])));
+ }
+ else if (metric == "minkowski") {
+ return pow(pow(abs(a[0] - b[0]), exponent) + pow(abs(a[1] - b[1]), exponent) +
+ pow(abs(a[2] - b[2]), exponent),
+ 1.0 / exponent);
+ }
+ else {
+ return 0.0;
+ }
+}
+
+void voronoi_f1_3d(vector3 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector3 outPosition)
+{
+ vector3 cellPosition = floor(coord);
+ vector3 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0;
+ vector3 targetOffset, targetPosition;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 pointPosition = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
}
- else if (metric == "manhattan") {
- d = fabs(pd[0]) + fabs(pd[1]) + fabs(pd[2]);
+ }
+ }
+ }
+ outDistance = minDistance;
+ outColor = hash_vector3_to_color(cellPosition + targetOffset);
+ outPosition = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1_3d(vector3 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector3 outPosition)
+{
+ vector3 cellPosition = floor(coord);
+ vector3 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0;
+ color smoothColor = color(0.0);
+ vector3 smoothPosition = vector3(0.0);
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 pointPosition = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0, 1.0, 0.5 + 0.5 * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0 - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0 + 3.0 * smoothness;
+ color cellColor = hash_vector3_to_color(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ outDistance = smoothDistance;
+ outColor = smoothColor;
+ outPosition = cellPosition + smoothPosition;
+}
+
+void voronoi_f2_3d(vector3 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector3 outPosition)
+{
+ vector3 cellPosition = floor(coord);
+ vector3 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0;
+ float distanceF2 = 8.0;
+ vector3 offsetF1 = vector3(0.0);
+ vector3 positionF1 = vector3(0.0);
+ vector3 offsetF2, positionF2;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 pointPosition = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
}
- else if (metric == "chebychev") {
- d = max(fabs(pd[0]), max(fabs(pd[1]), fabs(pd[2])));
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
}
- else if (metric == "minkowski") {
- d = pow(pow(fabs(pd[0]), e) + pow(fabs(pd[1]), e) + pow(fabs(pd[2]), e), 1.0 / e);
+ }
+ }
+ }
+ outDistance = distanceF2;
+ outColor = hash_vector3_to_color(cellPosition + offsetF2);
+ outPosition = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge_3d(vector3 coord, float randomness, output float outDistance)
+{
+ vector3 cellPosition = floor(coord);
+ vector3 localPosition = coord - cellPosition;
+
+ vector3 vectorToClosest;
+ float minDistance = 8.0;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 vectorToPoint = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
}
+ }
+ }
+ }
- vp += point(xx, yy, zz);
+ minDistance = 8.0;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 vectorToPoint = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ vector3 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ outDistance = minDistance;
+}
- if (d < da[0]) {
- da[3] = da[2];
- da[2] = da[1];
- da[1] = da[0];
- da[0] = d;
+void voronoi_n_sphere_radius_3d(vector3 coord, float randomness, output float outRadius)
+{
+ vector3 cellPosition = floor(coord);
+ vector3 localPosition = coord - cellPosition;
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = pa[0];
- pa[0] = vp;
+ vector3 closestPoint;
+ vector3 closestPointOffset;
+ float minDistance = 8.0;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector3 cellOffset = vector3(i, j, k);
+ vector3 pointPosition = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
}
- else if (d < da[1]) {
- da[3] = da[2];
- da[2] = da[1];
- da[1] = d;
-
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = vp;
+ }
+ }
+ }
+
+ minDistance = 8.0;
+ vector3 closestPointToClosestPoint;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0) {
+ continue;
}
- else if (d < da[2]) {
- da[3] = da[2];
- da[2] = d;
+ vector3 cellOffset = vector3(i, j, k) + closestPointOffset;
+ vector3 pointPosition = cellOffset +
+ hash_vector3_to_vector3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0;
+}
- pa[3] = pa[2];
- pa[2] = vp;
+/* **** 4D Voronoi **** */
+
+float voronoi_distance(vector4 a, vector4 b, string metric, float exponent)
+{
+ if (metric == "euclidean") {
+ return distance(a, b);
+ }
+ else if (metric == "manhattan") {
+ return abs(a.x - b.x) + abs(a.y - b.y) + abs(a.z - b.z) + abs(a.w - b.w);
+ }
+ else if (metric == "chebychev") {
+ return max(abs(a.x - b.x), max(abs(a.y - b.y), max(abs(a.z - b.z), abs(a.w - b.w))));
+ }
+ else if (metric == "minkowski") {
+ return pow(pow(abs(a.x - b.x), exponent) + pow(abs(a.y - b.y), exponent) +
+ pow(abs(a.z - b.z), exponent) + pow(abs(a.w - b.w), exponent),
+ 1.0 / exponent);
+ }
+ else {
+ return 0.0;
+ }
+}
+
+void voronoi_f1_4d(vector4 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector4 outPosition)
+{
+ vector4 cellPosition = floor(coord);
+ vector4 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0;
+ vector4 targetOffset, targetPosition;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 pointPosition = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
}
- else if (d < da[3]) {
- da[3] = d;
- pa[3] = vp;
+ }
+ }
+ }
+ outDistance = minDistance;
+ outColor = hash_vector4_to_color(cellPosition + targetOffset);
+ outPosition = targetPosition + cellPosition;
+}
+
+void voronoi_smooth_f1_4d(vector4 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector4 outPosition)
+{
+ vector4 cellPosition = floor(coord);
+ vector4 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0;
+ color smoothColor = color(0.0);
+ vector4 smoothPosition = vector4(0.0, 0.0, 0.0, 0.0);
+ for (int u = -2; u <= 2; u++) {
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 pointPosition = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0, 1.0, 0.5 + 0.5 * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0 - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0 + 3.0 * smoothness;
+ color cellColor = hash_vector4_to_color(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ }
+ outDistance = smoothDistance;
+ outColor = smoothColor;
+ outPosition = cellPosition + smoothPosition;
+}
+
+void voronoi_f2_4d(vector4 coord,
+ float exponent,
+ float randomness,
+ string metric,
+ output float outDistance,
+ output color outColor,
+ output vector4 outPosition)
+{
+ vector4 cellPosition = floor(coord);
+ vector4 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0;
+ float distanceF2 = 8.0;
+ vector4 offsetF1 = vector4(0.0, 0.0, 0.0, 0.0);
+ vector4 positionF1 = vector4(0.0, 0.0, 0.0, 0.0);
+ vector4 offsetF2, positionF2;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 pointPosition = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ outDistance = distanceF2;
+ outColor = hash_vector4_to_color(cellPosition + offsetF2);
+ outPosition = positionF2 + cellPosition;
+}
+
+void voronoi_distance_to_edge_4d(vector4 coord, float randomness, output float outDistance)
+{
+ vector4 cellPosition = floor(coord);
+ vector4 localPosition = coord - cellPosition;
+
+ vector4 vectorToClosest;
+ float minDistance = 8.0;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 vectorToPoint = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
}
}
}
}
+
+ minDistance = 8.0;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 vectorToPoint = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ vector4 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ }
+ outDistance = minDistance;
}
-/* Voronoi */
+void voronoi_n_sphere_radius_4d(vector4 coord, float randomness, output float outRadius)
+{
+ vector4 cellPosition = floor(coord);
+ vector4 localPosition = coord - cellPosition;
+
+ vector4 closestPoint;
+ vector4 closestPointOffset;
+ float minDistance = 8.0;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ vector4 cellOffset = vector4(i, j, k, u);
+ vector4 pointPosition = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0;
+ vector4 closestPointToClosestPoint;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0 && u == 0) {
+ continue;
+ }
+ vector4 cellOffset = vector4(i, j, k, u) + closestPointOffset;
+ vector4 pointPosition = cellOffset +
+ hash_vector4_to_vector4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0;
+}
shader node_voronoi_texture(
int use_mapping = 0,
matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
- string coloring = "intensity",
- string metric = "distance",
- string feature = "F1",
- float Exponent = 1.0,
+ string dimensions = "3D",
+ string feature = "f1",
+ string metric = "euclidean",
+ vector3 Vector = P,
+ float WIn = 0.0,
float Scale = 5.0,
- point Vector = P,
- output float Fac = 0.0,
- output color Color = 0.0)
+ float Smoothness = 5.0,
+ float Exponent = 1.0,
+ float Randomness = 1.0,
+ output float Distance = 0.0,
+ output color Color = 0.0,
+ output vector3 Position = P,
+ output float WOut = 0.0,
+ output float Radius = 0.0)
{
- point p = Vector;
+ float randomness = clamp(Randomness, 0.0, 1.0);
+ float smoothness = clamp(Smoothness / 2.0, 0.0, 0.5);
+ vector3 coord = Vector;
if (use_mapping)
- p = transform(mapping, p);
-
- /* compute distance and point coordinate of 4 nearest neighbours */
- float da[4];
- point pa[4];
+ coord = transform(mapping, coord);
- /* compute distance and point coordinate of 4 nearest neighbours */
- voronoi_m(p * Scale, metric, Exponent, da, pa);
+ float w = WIn * Scale;
+ coord *= Scale;
- if (coloring == "intensity") {
- /* Intensity output */
- if (feature == "F1") {
- Fac = fabs(da[0]);
+ if (dimensions == "1D") {
+ if (feature == "f1") {
+ voronoi_f1_1d(w, Exponent, randomness, metric, Distance, Color, WOut);
}
- else if (feature == "F2") {
- Fac = fabs(da[1]);
+ else if (feature == "smooth_f1") {
+ voronoi_smooth_f1_1d(w, smoothness, Exponent, randomness, metric, Distance, Color, WOut);
}
- else if (feature == "F3") {
- Fac = fabs(da[2]);
+ else if (feature == "f2") {
+ voronoi_f2_1d(w, Exponent, randomness, metric, Distance, Color, WOut);
}
- else if (feature == "F4") {
- Fac = fabs(da[3]);
+ else if (feature == "distance_to_edge") {
+ voronoi_distance_to_edge_1d(w, randomness, Distance);
}
- else if (feature == "F2F1") {
- Fac = fabs(da[1] - da[0]);
+ else if (feature == "n_sphere_radius") {
+ voronoi_n_sphere_radius_1d(w, randomness, Radius);
}
- Color = color(Fac);
+ else {
+ error("Unknown feature!");
+ }
+ WOut = (Scale != 0.0) ? WOut / Scale : 0.0;
}
- else {
- /* Color output */
- if (feature == "F1") {
- Color = pa[0];
+ else if (dimensions == "2D") {
+ vector2 coord2D = vector2(coord[0], coord[1]);
+ vector2 outPosition2D;
+ if (feature == "f1") {
+ voronoi_f1_2d(coord2D, Exponent, randomness, metric, Distance, Color, outPosition2D);
}
- else if (feature == "F2") {
- Color = pa[1];
+ else if (feature == "smooth_f1") {
+ voronoi_smooth_f1_2d(
+ coord2D, smoothness, Exponent, randomness, metric, Distance, Color, outPosition2D);
}
- else if (feature == "F3") {
- Color = pa[2];
+ else if (feature == "f2") {
+ voronoi_f2_2d(coord2D, Exponent, randomness, metric, Distance, Color, outPosition2D);
}
- else if (feature == "F4") {
- Color = pa[3];
+ else if (feature == "distance_to_edge") {
+ voronoi_distance_to_edge_2d(coord2D, randomness, Distance);
}
- else if (feature == "F2F1") {
- Color = fabs(pa[1] - pa[0]);
+ else if (feature == "n_sphere_radius") {
+ voronoi_n_sphere_radius_2d(coord2D, randomness, Radius);
}
-
- Color = cellnoise_color(Color);
- Fac = (Color[0] + Color[1] + Color[2]) * (1.0 / 3.0);
+ else {
+ error("Unknown feature!");
+ }
+ outPosition2D = safe_divide(outPosition2D, Scale);
+ Position = vector3(outPosition2D.x, outPosition2D.y, 0.0);
+ }
+ else if (dimensions == "3D") {
+ if (feature == "f1") {
+ voronoi_f1_3d(coord, Exponent, randomness, metric, Distance, Color, Position);
+ }
+ else if (feature == "smooth_f1") {
+ voronoi_smooth_f1_3d(
+ coord, smoothness, Exponent, randomness, metric, Distance, Color, Position);
+ }
+ else if (feature == "f2") {
+ voronoi_f2_3d(coord, Exponent, randomness, metric, Distance, Color, Position);
+ }
+ else if (feature == "distance_to_edge") {
+ voronoi_distance_to_edge_3d(coord, randomness, Distance);
+ }
+ else if (feature == "n_sphere_radius") {
+ voronoi_n_sphere_radius_3d(coord, randomness, Radius);
+ }
+ else {
+ error("Unknown feature!");
+ }
+ Position = (Scale != 0.0) ? Position / Scale : vector3(0.0);
+ }
+ else if (dimensions == "4D") {
+ vector4 coord4D = vector4(coord[0], coord[1], coord[2], w);
+ vector4 outPosition4D;
+ if (feature == "f1") {
+ voronoi_f1_4d(coord4D, Exponent, randomness, metric, Distance, Color, outPosition4D);
+ }
+ else if (feature == "smooth_f1") {
+ voronoi_smooth_f1_4d(
+ coord4D, smoothness, Exponent, randomness, metric, Distance, Color, outPosition4D);
+ }
+ else if (feature == "f2") {
+ voronoi_f2_4d(coord4D, Exponent, randomness, metric, Distance, Color, outPosition4D);
+ }
+ else if (feature == "distance_to_edge") {
+ voronoi_distance_to_edge_4d(coord4D, randomness, Distance);
+ }
+ else if (feature == "n_sphere_radius") {
+ voronoi_n_sphere_radius_4d(coord4D, randomness, Radius);
+ }
+ else {
+ error("Unknown feature!");
+ }
+ outPosition4D = safe_divide(outPosition4D, Scale);
+ Position = vector3(outPosition4D.x, outPosition4D.y, outPosition4D.z);
+ WOut = outPosition4D.w;
+ }
+ else {
+ error("Unknown dimension!");
}
}