Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/svm/svm_noise.h')
-rw-r--r--intern/cycles/kernel/svm/svm_noise.h660
1 files changed, 490 insertions, 170 deletions
diff --git a/intern/cycles/kernel/svm/svm_noise.h b/intern/cycles/kernel/svm/svm_noise.h
index dd375af27e5..35b74fb4b3e 100644
--- a/intern/cycles/kernel/svm/svm_noise.h
+++ b/intern/cycles/kernel/svm/svm_noise.h
@@ -32,246 +32,566 @@
CCL_NAMESPACE_BEGIN
-#ifdef __KERNEL_SSE2__
-ccl_device_inline ssei quick_floor_sse(const ssef &x)
-{
- ssei b = truncatei(x);
- ssei isneg = cast((x < ssef(0.0f)).m128);
- return b + isneg; // unsaturated add 0xffffffff is the same as subtract -1
-}
-#endif
-
-#ifdef __KERNEL_SSE2__
-ccl_device_inline ssei hash_sse(const ssei &kx, const ssei &ky, const ssei &kz)
-{
-# define rot(x, k) (((x) << (k)) | (srl(x, 32 - (k))))
-# define xor_rot(a, b, c) \
- do { \
- a = a ^ b; \
- a = a - rot(b, c); \
- } while (0)
-
- uint len = 3;
- ssei magic = ssei(0xdeadbeef + (len << 2) + 13);
- ssei a = magic + kx;
- ssei b = magic + ky;
- ssei c = magic + kz;
-
- xor_rot(c, b, 14);
- xor_rot(a, c, 11);
- xor_rot(b, a, 25);
- xor_rot(c, b, 16);
- xor_rot(a, c, 4);
- xor_rot(b, a, 14);
- xor_rot(c, b, 24);
-
- return c;
-# undef rot
-# undef xor_rot
-}
-#endif
+/* **** Perlin Noise **** */
-#if 0 // unused
-ccl_device int imod(int a, int b)
+ccl_device float fade(float t)
{
- a %= b;
- return a < 0 ? a + b : a;
+ return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
}
-ccl_device uint phash(int kx, int ky, int kz, int3 p)
+ccl_device_inline float negate_if(float val, int condition)
{
- return hash(imod(kx, p.x), imod(ky, p.y), imod(kz, p.z));
+ return (condition) ? -val : val;
}
-#endif
-#ifndef __KERNEL_SSE2__
-ccl_device float floorfrac(float x, int *i)
+ccl_device float grad1(int hash, float x)
{
- *i = quick_floor_to_int(x);
- return x - *i;
+ int h = hash & 15;
+ float g = 1 + (h & 7);
+ return negate_if(g, h & 8) * x;
}
-#else
-ccl_device_inline ssef floorfrac_sse(const ssef &x, ssei *i)
+
+ccl_device_noinline_cpu float perlin_1d(float x)
{
- *i = quick_floor_sse(x);
- return x - ssef(*i);
+ int X;
+ float fx = floorfrac(x, &X);
+ float u = fade(fx);
+
+ return mix(grad1(hash_uint(X), fx), grad1(hash_uint(X + 1), fx - 1.0f), u);
}
-#endif
+/* 2D, 3D, and 4D noise can be accelerated using SSE, so we first check if
+ * SSE is supported, that is, if __KERNEL_SSE2__ is defined. If it is not
+ * supported, we do a standard implementation, but if it is supported, we
+ * do an implementation using SSE intrinsics.
+ */
#ifndef __KERNEL_SSE2__
-ccl_device float fade(float t)
+
+/* ** Standard Implementation ** */
+
+/* Bilinear Interpolation:
+ *
+ * v2 v3
+ * @ + + + + @ y
+ * + + ^
+ * + + |
+ * + + |
+ * @ + + + + @ @------> x
+ * v0 v1
+ *
+ */
+ccl_device float bi_mix(float v0, float v1, float v2, float v3, float x, float y)
{
- return t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f);
+ float x1 = 1.0f - x;
+ return (1.0f - y) * (v0 * x1 + v1 * x) + y * (v2 * x1 + v3 * x);
}
-#else
-ccl_device_inline ssef fade_sse(const ssef *t)
+
+/* Trilinear Interpolation:
+ *
+ * v6 v7
+ * @ + + + + + + @
+ * +\ +\
+ * + \ + \
+ * + \ + \
+ * + \ v4 + \ v5
+ * + @ + + + +++ + @ z
+ * + + + + y ^
+ * v2 @ + +++ + + + @ v3 + \ |
+ * \ + \ + \ |
+ * \ + \ + \|
+ * \ + \ + +---------> x
+ * \+ \+
+ * @ + + + + + + @
+ * v0 v1
+ */
+ccl_device float tri_mix(float v0,
+ float v1,
+ float v2,
+ float v3,
+ float v4,
+ float v5,
+ float v6,
+ float v7,
+ float x,
+ float y,
+ float z)
{
- ssef a = madd(*t, ssef(6.0f), ssef(-15.0f));
- ssef b = madd(*t, a, ssef(10.0f));
- return ((*t) * (*t)) * ((*t) * b);
+ float x1 = 1.0f - x;
+ float y1 = 1.0f - y;
+ float z1 = 1.0f - z;
+ return z1 * (y1 * (v0 * x1 + v1 * x) + y * (v2 * x1 + v3 * x)) +
+ z * (y1 * (v4 * x1 + v5 * x) + y * (v6 * x1 + v7 * x));
}
-#endif
-#ifndef __KERNEL_SSE2__
-ccl_device float nerp(float t, float a, float b)
+ccl_device float quad_mix(float v0,
+ float v1,
+ float v2,
+ float v3,
+ float v4,
+ float v5,
+ float v6,
+ float v7,
+ float v8,
+ float v9,
+ float v10,
+ float v11,
+ float v12,
+ float v13,
+ float v14,
+ float v15,
+ float x,
+ float y,
+ float z,
+ float w)
{
- return (1.0f - t) * a + t * b;
+ return mix(tri_mix(v0, v1, v2, v3, v4, v5, v6, v7, x, y, z),
+ tri_mix(v8, v9, v10, v11, v12, v13, v14, v15, x, y, z),
+ w);
}
-#else
-ccl_device_inline ssef nerp_sse(const ssef &t, const ssef &a, const ssef &b)
+
+ccl_device float grad2(int hash, float x, float y)
{
- ssef x1 = (ssef(1.0f) - t) * a;
- return madd(t, b, x1);
+ int h = hash & 7;
+ float u = h < 4 ? x : y;
+ float v = 2.0f * (h < 4 ? y : x);
+ return negate_if(u, h & 1) + negate_if(v, h & 2);
}
-#endif
-#ifndef __KERNEL_SSE2__
-ccl_device float grad(int hash, float x, float y, float z)
+ccl_device float grad3(int hash, float x, float y, float z)
{
- // use vectors pointing to the edges of the cube
int h = hash & 15;
float u = h < 8 ? x : y;
- float vt = ((h == 12) | (h == 14)) ? x : z;
+ float vt = ((h == 12) || (h == 14)) ? x : z;
float v = h < 4 ? y : vt;
- return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
+ return negate_if(u, h & 1) + negate_if(v, h & 2);
}
-#else
-ccl_device_inline ssef grad_sse(const ssei &hash, const ssef &x, const ssef &y, const ssef &z)
-{
- ssei c1 = ssei(1);
- ssei c2 = ssei(2);
- ssei h = hash & ssei(15); // h = hash & 15
+ccl_device float grad4(int hash, float x, float y, float z, float w)
+{
+ int h = hash & 31;
+ float u = h < 24 ? x : y;
+ float v = h < 16 ? y : z;
+ float s = h < 8 ? z : w;
+ return negate_if(u, h & 1) + negate_if(v, h & 2) + negate_if(s, h & 4);
+}
- sseb case_ux = h < ssei(8); // 0xffffffff if h < 8 else 0
+ccl_device_noinline_cpu float perlin_2d(float x, float y)
+{
+ int X;
+ int Y;
- ssef u = select(case_ux, x, y); // u = h<8 ? x : y
+ float fx = floorfrac(x, &X);
+ float fy = floorfrac(y, &Y);
- sseb case_vy = h < ssei(4); // 0xffffffff if h < 4 else 0
+ float u = fade(fx);
+ float v = fade(fy);
- sseb case_h12 = h == ssei(12); // 0xffffffff if h == 12 else 0
- sseb case_h14 = h == ssei(14); // 0xffffffff if h == 14 else 0
+ float r = bi_mix(grad2(hash_uint2(X, Y), fx, fy),
+ grad2(hash_uint2(X + 1, Y), fx - 1.0f, fy),
+ grad2(hash_uint2(X, Y + 1), fx, fy - 1.0f),
+ grad2(hash_uint2(X + 1, Y + 1), fx - 1.0f, fy - 1.0f),
+ u,
+ v);
- sseb case_vx = case_h12 | case_h14; // 0xffffffff if h == 12 or h == 14 else 0
+ return r;
+}
- ssef v = select(case_vy, y, select(case_vx, x, z)); // v = h<4 ? y : h == 12 || h == 14 ? x : z
+ccl_device_noinline_cpu float perlin_3d(float x, float y, float z)
+{
+ int X;
+ int Y;
+ int Z;
- ssei case_uneg = (h & c1) << 31; // 1<<31 if h&1 else 0
- ssef case_uneg_mask = cast(case_uneg); // -0.0 if h&1 else +0.0
- ssef ru = u ^ case_uneg_mask; // -u if h&1 else u (copy float sign)
+ float fx = floorfrac(x, &X);
+ float fy = floorfrac(y, &Y);
+ float fz = floorfrac(z, &Z);
- ssei case_vneg = (h & c2) << 30; // 2<<30 if h&2 else 0
- ssef case_vneg_mask = cast(case_vneg); // -0.0 if h&2 else +0.0
- ssef rv = v ^ case_vneg_mask; // -v if h&2 else v (copy float sign)
+ float u = fade(fx);
+ float v = fade(fy);
+ float w = fade(fz);
- ssef r = ru + rv; // ((h&1) ? -u : u) + ((h&2) ? -v : v)
+ float r = tri_mix(grad3(hash_uint3(X, Y, Z), fx, fy, fz),
+ grad3(hash_uint3(X + 1, Y, Z), fx - 1.0f, fy, fz),
+ grad3(hash_uint3(X, Y + 1, Z), fx, fy - 1.0f, fz),
+ grad3(hash_uint3(X + 1, Y + 1, Z), fx - 1.0f, fy - 1.0f, fz),
+ grad3(hash_uint3(X, Y, Z + 1), fx, fy, fz - 1.0f),
+ grad3(hash_uint3(X + 1, Y, Z + 1), fx - 1.0f, fy, fz - 1.0f),
+ grad3(hash_uint3(X, Y + 1, Z + 1), fx, fy - 1.0f, fz - 1.0f),
+ grad3(hash_uint3(X + 1, Y + 1, Z + 1), fx - 1.0f, fy - 1.0f, fz - 1.0f),
+ u,
+ v,
+ w);
return r;
}
-#endif
-#ifndef __KERNEL_SSE2__
-ccl_device float scale3(float result)
-{
- return 0.9820f * result;
-}
-#else
-ccl_device_inline ssef scale3_sse(const ssef &result)
-{
- return ssef(0.9820f) * result;
-}
-#endif
-
-#ifndef __KERNEL_SSE2__
-ccl_device_noinline_cpu float perlin(float x, float y, float z)
+ccl_device_noinline_cpu float perlin_4d(float x, float y, float z, float w)
{
int X;
- float fx = floorfrac(x, &X);
int Y;
- float fy = floorfrac(y, &Y);
int Z;
+ int W;
+
+ float fx = floorfrac(x, &X);
+ float fy = floorfrac(y, &Y);
float fz = floorfrac(z, &Z);
+ float fw = floorfrac(w, &W);
float u = fade(fx);
float v = fade(fy);
- float w = fade(fz);
+ float t = fade(fz);
+ float s = fade(fw);
+
+ float r = quad_mix(
+ grad4(hash_uint4(X, Y, Z, W), fx, fy, fz, fw),
+ grad4(hash_uint4(X + 1, Y, Z, W), fx - 1.0f, fy, fz, fw),
+ grad4(hash_uint4(X, Y + 1, Z, W), fx, fy - 1.0f, fz, fw),
+ grad4(hash_uint4(X + 1, Y + 1, Z, W), fx - 1.0f, fy - 1.0f, fz, fw),
+ grad4(hash_uint4(X, Y, Z + 1, W), fx, fy, fz - 1.0f, fw),
+ grad4(hash_uint4(X + 1, Y, Z + 1, W), fx - 1.0f, fy, fz - 1.0f, fw),
+ grad4(hash_uint4(X, Y + 1, Z + 1, W), fx, fy - 1.0f, fz - 1.0f, fw),
+ grad4(hash_uint4(X + 1, Y + 1, Z + 1, W), fx - 1.0f, fy - 1.0f, fz - 1.0f, fw),
+ grad4(hash_uint4(X, Y, Z, W + 1), fx, fy, fz, fw - 1.0f),
+ grad4(hash_uint4(X + 1, Y, Z, W + 1), fx - 1.0f, fy, fz, fw - 1.0f),
+ grad4(hash_uint4(X, Y + 1, Z, W + 1), fx, fy - 1.0f, fz, fw - 1.0f),
+ grad4(hash_uint4(X + 1, Y + 1, Z, W + 1), fx - 1.0f, fy - 1.0f, fz, fw - 1.0f),
+ grad4(hash_uint4(X, Y, Z + 1, W + 1), fx, fy, fz - 1.0f, fw - 1.0f),
+ grad4(hash_uint4(X + 1, Y, Z + 1, W + 1), fx - 1.0f, fy, fz - 1.0f, fw - 1.0f),
+ grad4(hash_uint4(X, Y + 1, Z + 1, W + 1), fx, fy - 1.0f, fz - 1.0f, fw - 1.0f),
+ grad4(hash_uint4(X + 1, Y + 1, Z + 1, W + 1), fx - 1.0f, fy - 1.0f, fz - 1.0f, fw - 1.0f),
+ u,
+ v,
+ t,
+ s);
- float result;
-
- result = nerp(
- w,
- nerp(v,
- nerp(u,
- grad(hash_uint3(X, Y, Z), fx, fy, fz),
- grad(hash_uint3(X + 1, Y, Z), fx - 1.0f, fy, fz)),
- nerp(u,
- grad(hash_uint3(X, Y + 1, Z), fx, fy - 1.0f, fz),
- grad(hash_uint3(X + 1, Y + 1, Z), fx - 1.0f, fy - 1.0f, fz))),
- nerp(v,
- nerp(u,
- grad(hash_uint3(X, Y, Z + 1), fx, fy, fz - 1.0f),
- grad(hash_uint3(X + 1, Y, Z + 1), fx - 1.0f, fy, fz - 1.0f)),
- nerp(u,
- grad(hash_uint3(X, Y + 1, Z + 1), fx, fy - 1.0f, fz - 1.0f),
- grad(hash_uint3(X + 1, Y + 1, Z + 1), fx - 1.0f, fy - 1.0f, fz - 1.0f))));
- float r = scale3(result);
-
- /* can happen for big coordinates, things even out to 0.0 then anyway */
- return (isfinite(r)) ? r : 0.0f;
+ return r;
}
+
#else
-ccl_device_noinline float perlin(float x, float y, float z)
+
+/* ** SSE Implementation ** */
+
+/* SSE Bilinear Interpolation:
+ *
+ * The function takes two ssef inputs:
+ * - p : Contains the values at the points (v0, v1, v2, v3).
+ * - f : Contains the values (x, y, _, _). The third and fourth values are unused.
+ *
+ * The interpolation is done in two steps:
+ * 1. Interpolate (v0, v1) and (v2, v3) along the x axis to get g (g0, g1).
+ * (v2, v3) is generated by moving v2 and v3 to the first and second
+ * places of the ssef using the shuffle mask <2, 3, 2, 3>. The third and
+ * fourth values are unused.
+ * 2. Interplate g0 and g1 along the y axis to get the final value.
+ * g1 is generated by populating an ssef with the second value of g.
+ * Only the first value is important in the final ssef.
+ *
+ * v1 v3 g1
+ * @ + + + + @ @ y
+ * + + (1) + (2) ^
+ * + + ---> + ---> final |
+ * + + + |
+ * @ + + + + @ @ @------> x
+ * v0 v2 g0
+ *
+ */
+ccl_device_inline ssef bi_mix(ssef p, ssef f)
+{
+ ssef g = mix(p, shuffle<2, 3, 2, 3>(p), shuffle<0>(f));
+ return mix(g, shuffle<1>(g), shuffle<1>(f));
+}
+
+/* SSE Trilinear Interpolation:
+ *
+ * The function takes three ssef inputs:
+ * - p : Contains the values at the points (v0, v1, v2, v3).
+ * - q : Contains the values at the points (v4, v5, v6, v7).
+ * - f : Contains the values (x, y, z, _). The fourth value is unused.
+ *
+ * The interpolation is done in three steps:
+ * 1. Interpolate p and q along the x axis to get s (s0, s1, s2, s3).
+ * 2. Interpolate (s0, s1) and (s2, s3) along the y axis to get g (g0, g1).
+ * (s2, s3) is generated by moving v2 and v3 to the first and second
+ * places of the ssef using the shuffle mask <2, 3, 2, 3>. The third and
+ * fourth values are unused.
+ * 3. Interplate g0 and g1 along the z axis to get the final value.
+ * g1 is generated by populating an ssef with the second value of g.
+ * Only the first value is important in the final ssef.
+ *
+ * v3 v7
+ * @ + + + + + + @ s3 @
+ * +\ +\ +\
+ * + \ + \ + \
+ * + \ + \ + \ g1
+ * + \ v1 + \ v5 + \ s1 @
+ * + @ + + + +++ + @ + @ + z
+ * + + + + (1) + + (2) + (3) y ^
+ * v2 @ + +++ + + + @ v6 + ---> s2 @ + ---> + ---> final \ |
+ * \ + \ + \ + + \ |
+ * \ + \ + \ + + \|
+ * \ + \ + \ + @ +---------> x
+ * \+ \+ \+ g0
+ * @ + + + + + + @ @
+ * v0 v4 s0
+ */
+ccl_device_inline ssef tri_mix(ssef p, ssef q, ssef f)
+{
+ ssef s = mix(p, q, shuffle<0>(f));
+ ssef g = mix(s, shuffle<2, 3, 2, 3>(s), shuffle<1>(f));
+ return mix(g, shuffle<1>(g), shuffle<2>(f));
+}
+
+/* SSE Quadrilinear Interpolation:
+ *
+ * Quadrilinear interpolation is as simple as a linear interpolation
+ * between two trilinear interpolations.
+ *
+ */
+ccl_device_inline ssef quad_mix(ssef p, ssef q, ssef r, ssef s, ssef f)
+{
+ return mix(tri_mix(p, q, f), tri_mix(r, s, f), shuffle<3>(f));
+}
+
+ccl_device_inline ssef fade(const ssef &t)
+{
+ ssef a = madd(t, 6.0f, -15.0f);
+ ssef b = madd(t, a, 10.0f);
+ return (t * t) * (t * b);
+}
+
+/* Negate val if the nth bit of h is 1. */
+# define negate_if_nth_bit(val, h, n) ((val) ^ cast(((h) & (1 << (n))) << (31 - (n))))
+
+ccl_device_inline ssef grad(const ssei &hash, const ssef &x, const ssef &y)
+{
+ ssei h = hash & 7;
+ ssef u = select(h < 4, x, y);
+ ssef v = 2.0f * select(h < 4, y, x);
+ return negate_if_nth_bit(u, h, 0) + negate_if_nth_bit(v, h, 1);
+}
+
+ccl_device_inline ssef grad(const ssei &hash, const ssef &x, const ssef &y, const ssef &z)
+{
+ ssei h = hash & 15;
+ ssef u = select(h < 8, x, y);
+ ssef vt = select((h == 12) | (h == 14), x, z);
+ ssef v = select(h < 4, y, vt);
+ return negate_if_nth_bit(u, h, 0) + negate_if_nth_bit(v, h, 1);
+}
+
+ccl_device_inline ssef
+grad(const ssei &hash, const ssef &x, const ssef &y, const ssef &z, const ssef &w)
+{
+ ssei h = hash & 31;
+ ssef u = select(h < 24, x, y);
+ ssef v = select(h < 16, y, z);
+ ssef s = select(h < 8, z, w);
+ return negate_if_nth_bit(u, h, 0) + negate_if_nth_bit(v, h, 1) + negate_if_nth_bit(s, h, 2);
+}
+
+/* We use SSE to compute and interpolate 4 gradients at once:
+ *
+ * Point Offset from v0
+ * v0 (0, 0)
+ * v1 (0, 1)
+ * v2 (1, 0) (0, 1, 0, 1) = shuffle<0, 2, 0, 2>(shuffle<1, 1, 1, 1>(V, V + 1))
+ * v3 (1, 1) ^
+ * | |__________| (0, 0, 1, 1) = shuffle<0, 0, 0, 0>(V, V + 1)
+ * | ^
+ * |__________________________|
+ *
+ */
+ccl_device_noinline float perlin_2d(float x, float y)
+{
+ ssei XY;
+ ssef fxy = floorfrac(ssef(x, y, 0.0f, 0.0f), &XY);
+ ssef uv = fade(fxy);
+
+ ssei XY1 = XY + 1;
+ ssei X = shuffle<0, 0, 0, 0>(XY, XY1);
+ ssei Y = shuffle<0, 2, 0, 2>(shuffle<1, 1, 1, 1>(XY, XY1));
+
+ ssei h = hash_ssei2(X, Y);
+
+ ssef fxy1 = fxy - 1.0f;
+ ssef fx = shuffle<0, 0, 0, 0>(fxy, fxy1);
+ ssef fy = shuffle<0, 2, 0, 2>(shuffle<1, 1, 1, 1>(fxy, fxy1));
+
+ ssef g = grad(h, fx, fy);
+
+ return extract<0>(bi_mix(g, uv));
+}
+
+/* We use SSE to compute and interpolate 4 gradients at once. Since we have 8
+ * gradients in 3D, we need to compute two sets of gradients at the points:
+ *
+ * Point Offset from v0
+ * v0 (0, 0, 0)
+ * v1 (0, 0, 1)
+ * v2 (0, 1, 0) (0, 1, 0, 1) = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(V, V + 1))
+ * v3 (0, 1, 1) ^
+ * | |__________| (0, 0, 1, 1) = shuffle<1, 1, 1, 1>(V, V + 1)
+ * | ^
+ * |__________________________|
+ *
+ * Point Offset from v0
+ * v4 (1, 0, 0)
+ * v5 (1, 0, 1)
+ * v6 (1, 1, 0)
+ * v7 (1, 1, 1)
+ *
+ */
+ccl_device_noinline float perlin_3d(float x, float y, float z)
{
- ssef xyz = ssef(x, y, z, 0.0f);
ssei XYZ;
+ ssef fxyz = floorfrac(ssef(x, y, z, 0.0f), &XYZ);
+ ssef uvw = fade(fxyz);
- ssef fxyz = floorfrac_sse(xyz, &XYZ);
+ ssei XYZ1 = XYZ + 1;
+ ssei Y = shuffle<1, 1, 1, 1>(XYZ, XYZ1);
+ ssei Z = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(XYZ, XYZ1));
- ssef uvw = fade_sse(&fxyz);
- ssef u = shuffle<0>(uvw), v = shuffle<1>(uvw), w = shuffle<2>(uvw);
+ ssei h1 = hash_ssei3(shuffle<0>(XYZ), Y, Z);
+ ssei h2 = hash_ssei3(shuffle<0>(XYZ1), Y, Z);
- ssei XYZ_ofc = XYZ + ssei(1);
- ssei vdy = shuffle<1, 1, 1, 1>(XYZ, XYZ_ofc); // +0, +0, +1, +1
- ssei vdz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(XYZ, XYZ_ofc)); // +0, +1, +0, +1
+ ssef fxyz1 = fxyz - 1.0f;
+ ssef fy = shuffle<1, 1, 1, 1>(fxyz, fxyz1);
+ ssef fz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(fxyz, fxyz1));
- ssei h1 = hash_sse(shuffle<0>(XYZ), vdy, vdz); // hash directions 000, 001, 010, 011
- ssei h2 = hash_sse(shuffle<0>(XYZ_ofc), vdy, vdz); // hash directions 100, 101, 110, 111
+ ssef g1 = grad(h1, shuffle<0>(fxyz), fy, fz);
+ ssef g2 = grad(h2, shuffle<0>(fxyz1), fy, fz);
- ssef fxyz_ofc = fxyz - ssef(1.0f);
- ssef vfy = shuffle<1, 1, 1, 1>(fxyz, fxyz_ofc);
- ssef vfz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(fxyz, fxyz_ofc));
+ return extract<0>(tri_mix(g1, g2, uvw));
+}
- ssef g1 = grad_sse(h1, shuffle<0>(fxyz), vfy, vfz);
- ssef g2 = grad_sse(h2, shuffle<0>(fxyz_ofc), vfy, vfz);
- ssef n1 = nerp_sse(u, g1, g2);
+/* We use SSE to compute and interpolate 4 gradients at once. Since we have 16
+ * gradients in 4D, we need to compute four sets of gradients at the points:
+ *
+ * Point Offset from v0
+ * v0 (0, 0, 0, 0)
+ * v1 (0, 0, 1, 0)
+ * v2 (0, 1, 0, 0) (0, 1, 0, 1) = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(V, V + 1))
+ * v3 (0, 1, 1, 0) ^
+ * | |________| (0, 0, 1, 1) = shuffle<1, 1, 1, 1>(V, V + 1)
+ * | ^
+ * |_______________________|
+ *
+ * Point Offset from v0
+ * v4 (1, 0, 0, 0)
+ * v5 (1, 0, 1, 0)
+ * v6 (1, 1, 0, 0)
+ * v7 (1, 1, 1, 0)
+ *
+ * Point Offset from v0
+ * v8 (0, 0, 0, 1)
+ * v9 (0, 0, 1, 1)
+ * v10 (0, 1, 0, 1)
+ * v11 (0, 1, 1, 1)
+ *
+ * Point Offset from v0
+ * v12 (1, 0, 0, 1)
+ * v13 (1, 0, 1, 1)
+ * v14 (1, 1, 0, 1)
+ * v15 (1, 1, 1, 1)
+ *
+ */
+ccl_device_noinline float perlin_4d(float x, float y, float z, float w)
+{
+ ssei XYZW;
+ ssef fxyzw = floorfrac(ssef(x, y, z, w), &XYZW);
+ ssef uvws = fade(fxyzw);
- ssef n1_half = shuffle<2, 3, 2, 3>(n1); // extract 2 floats to a separate vector
- ssef n2 = nerp_sse(
- v, n1, n1_half); // process nerp([a, b, _, _], [c, d, _, _]) -> [a', b', _, _]
+ ssei XYZW1 = XYZW + 1;
+ ssei Y = shuffle<1, 1, 1, 1>(XYZW, XYZW1);
+ ssei Z = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(XYZW, XYZW1));
- ssef n2_second = shuffle<1>(n2); // extract b to a separate vector
- ssef result = nerp_sse(
- w, n2, n2_second); // process nerp([a', _, _, _], [b', _, _, _]) -> [a'', _, _, _]
+ ssei h1 = hash_ssei4(shuffle<0>(XYZW), Y, Z, shuffle<3>(XYZW));
+ ssei h2 = hash_ssei4(shuffle<0>(XYZW1), Y, Z, shuffle<3>(XYZW));
- ssef r = scale3_sse(result);
+ ssei h3 = hash_ssei4(shuffle<0>(XYZW), Y, Z, shuffle<3>(XYZW1));
+ ssei h4 = hash_ssei4(shuffle<0>(XYZW1), Y, Z, shuffle<3>(XYZW1));
- ssef infmask = cast(ssei(0x7f800000));
- ssef rinfmask = ((r & infmask) == infmask).m128; // 0xffffffff if r is inf/-inf/nan else 0
- ssef rfinite = andnot(rinfmask, r); // 0 if r is inf/-inf/nan else r
- return extract<0>(rfinite);
+ ssef fxyzw1 = fxyzw - 1.0f;
+ ssef fy = shuffle<1, 1, 1, 1>(fxyzw, fxyzw1);
+ ssef fz = shuffle<0, 2, 0, 2>(shuffle<2, 2, 2, 2>(fxyzw, fxyzw1));
+
+ ssef g1 = grad(h1, shuffle<0>(fxyzw), fy, fz, shuffle<3>(fxyzw));
+ ssef g2 = grad(h2, shuffle<0>(fxyzw1), fy, fz, shuffle<3>(fxyzw));
+
+ ssef g3 = grad(h3, shuffle<0>(fxyzw), fy, fz, shuffle<3>(fxyzw1));
+ ssef g4 = grad(h4, shuffle<0>(fxyzw1), fy, fz, shuffle<3>(fxyzw1));
+
+ return extract<0>(quad_mix(g1, g2, g3, g4, uvws));
}
#endif
-/* perlin noise in range 0..1 */
-ccl_device float noise(float3 p)
+/* Remap the output of noise to a predictable range [-1, 1].
+ * The scale values were computed experimentally by the OSL developers.
+ */
+
+ccl_device_inline float noise_scale1(float result)
+{
+ return 0.2500f * result;
+}
+
+ccl_device_inline float noise_scale2(float result)
+{
+ return 0.6616f * result;
+}
+
+ccl_device_inline float noise_scale3(float result)
+{
+ return 0.9820f * result;
+}
+
+ccl_device_inline float noise_scale4(float result)
+{
+ return 0.8344f * result;
+}
+
+/* Safe Signed And Unsigned Noise */
+
+ccl_device_inline float snoise_1d(float p)
+{
+ float r = perlin_1d(p);
+ return isinf(r) ? 0.0f : noise_scale1(r);
+}
+
+ccl_device_inline float noise_1d(float p)
+{
+ return 0.5f * snoise_1d(p) + 0.5f;
+}
+
+ccl_device_inline float snoise_2d(float2 p)
+{
+ float r = perlin_2d(p.x, p.y);
+ return isinf(r) ? 0.0f : noise_scale2(r);
+}
+
+ccl_device_inline float noise_2d(float2 p)
+{
+ return 0.5f * snoise_2d(p) + 0.5f;
+}
+
+ccl_device_inline float snoise_3d(float3 p)
+{
+ float r = perlin_3d(p.x, p.y, p.z);
+ return isinf(r) ? 0.0f : noise_scale3(r);
+}
+
+ccl_device_inline float noise_3d(float3 p)
+{
+ return 0.5f * snoise_3d(p) + 0.5f;
+}
+
+ccl_device_inline float snoise_4d(float4 p)
{
- float r = perlin(p.x, p.y, p.z);
- return 0.5f * r + 0.5f;
+ float r = perlin_4d(p.x, p.y, p.z, p.w);
+ return isinf(r) ? 0.0f : noise_scale4(r);
}
-/* perlin noise in range -1..1 */
-ccl_device float snoise(float3 p)
+ccl_device_inline float noise_4d(float4 p)
{
- return perlin(p.x, p.y, p.z);
+ return 0.5f * snoise_4d(p) + 0.5f;
}
/* cell noise */
@@ -293,7 +613,7 @@ ccl_device float3 cellnoise3(float3 p)
ssei ip_yxz = shuffle<1, 0, 2, 3>(ssei(ip.m128));
ssei ip_xyy = shuffle<0, 1, 1, 3>(ssei(ip.m128));
ssei ip_zzx = shuffle<2, 2, 0, 3>(ssei(ip.m128));
- ssei bits = hash_sse(ip_xyy, ip_yxz, ip_zzx);
+ ssei bits = hash_ssei3(ip_xyy, ip_yxz, ip_zzx);
return float3(uint32_to_float(bits) * ssef(1.0f / (float)0xFFFFFFFF));
#endif
}