Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/svm/svm_voronoi.h')
-rw-r--r--intern/cycles/kernel/svm/svm_voronoi.h1226
1 files changed, 1083 insertions, 143 deletions
diff --git a/intern/cycles/kernel/svm/svm_voronoi.h b/intern/cycles/kernel/svm/svm_voronoi.h
index 3d7fa523968..bdfaed8845f 100644
--- a/intern/cycles/kernel/svm/svm_voronoi.h
+++ b/intern/cycles/kernel/svm/svm_voronoi.h
@@ -16,170 +16,1110 @@
CCL_NAMESPACE_BEGIN
-/* Voronoi */
-
-ccl_device void voronoi_neighbors(
- float3 p, NodeVoronoiDistanceMetric distance, float e, float da[4], float3 pa[4])
-{
- /* Compute the distance to and the position of the closest neighbors to p.
- *
- * The neighbors are randomly placed, 1 each in a 3x3x3 grid (Worley pattern).
- * The distances and points are returned in ascending order, i.e. da[0] and pa[0] will
- * contain the distance to the closest point and its coordinates respectively.
- */
-
- da[0] = 1e10f;
- da[1] = 1e10f;
- da[2] = 1e10f;
- da[3] = 1e10f;
-
- pa[0] = make_float3(0.0f, 0.0f, 0.0f);
- pa[1] = make_float3(0.0f, 0.0f, 0.0f);
- pa[2] = make_float3(0.0f, 0.0f, 0.0f);
- pa[3] = make_float3(0.0f, 0.0f, 0.0f);
-
- int3 xyzi = quick_floor_to_int3(p);
-
- for (int xx = -1; xx <= 1; xx++) {
- for (int yy = -1; yy <= 1; yy++) {
- for (int zz = -1; zz <= 1; zz++) {
- int3 ip = xyzi + make_int3(xx, yy, zz);
- float3 fp = make_float3(ip.x, ip.y, ip.z);
- float3 vp = fp + cellnoise3(fp);
-
- float d;
- switch (distance) {
- case NODE_VORONOI_DISTANCE:
- d = len_squared(p - vp);
- break;
- case NODE_VORONOI_MANHATTAN:
- d = reduce_add(fabs(vp - p));
- break;
- case NODE_VORONOI_CHEBYCHEV:
- d = max3(fabs(vp - p));
- break;
- case NODE_VORONOI_MINKOWSKI: {
- float3 n = fabs(vp - p);
- if (e == 0.5f) {
- d = sqr(reduce_add(sqrt(n)));
- }
- else {
- d = powf(reduce_add(pow3(n, e)), 1.0f / e);
- }
- break;
- }
+/*
+ * Smooth Voronoi:
+ *
+ * - https://wiki.blender.org/wiki/User:OmarSquircleArt/GSoC2019/Documentation/Smooth_Voronoi
+ *
+ * Distance To Edge:
+ *
+ * - https://www.shadertoy.com/view/llG3zy
+ *
+ */
+
+/* **** 1D Voronoi **** */
+
+ccl_device float voronoi_distance_1d(float a,
+ float b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ return fabsf(b - a);
+}
+
+ccl_device void voronoi_f1_1d(float w,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float minDistance = 8.0f;
+ float targetOffset = 0.0f;
+ float targetPosition = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float_to_float3(cellPosition + targetOffset);
+ *outW = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_1d(float w,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float smoothPosition = 0.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ for (int i = -2; i <= 2; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outW = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_1d(float w,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float offsetF1 = 0.0f;
+ float positionF1 = 0.0f;
+ float offsetF2 = 0.0f;
+ float positionF2 = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float_to_float3(cellPosition + offsetF2);
+ *outW = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_1d(float w, float randomness, float *outDistance)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float minDistance = 8.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = fabsf(pointPosition - localPosition);
+ minDistance = min(distanceToPoint, minDistance);
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_1d(float w, float randomness, float *outRadius)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float closestPoint = 0.0f;
+ float closestPointOffset = 0.0f;
+ float minDistance = 8.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = fabsf(pointPosition - localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+
+ minDistance = 8.0f;
+ float closestPointToClosestPoint = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0) {
+ continue;
+ }
+ float cellOffset = i + closestPointOffset;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = fabsf(closestPoint - pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ *outRadius = fabsf(closestPointToClosestPoint - closestPoint) / 2.0f;
+}
+
+/* **** 2D Voronoi **** */
+
+ccl_device float voronoi_distance_2d(float2 a,
+ float2 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), fabsf(a.y - b.y));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
+
+ccl_device void voronoi_f1_2d(float2 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float2 targetOffset = make_float2(0.0f, 0.0f);
+ float2 targetPosition = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float2_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_2d(float2 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float2 smoothPosition = make_float2(0.0f, 0.0f);
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float2_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_2d(float2 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float2 offsetF1 = make_float2(0.0f, 0.0f);
+ float2 positionF1 = make_float2(0.0f, 0.0f);
+ float2 offsetF2 = make_float2(0.0f, 0.0f);
+ float2 positionF2 = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float2_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_2d(float2 coord, float randomness, float *outDistance)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float2 vectorToClosest = make_float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 vectorToPoint = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 vectorToPoint = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float2 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_2d(float2 coord, float randomness, float *outRadius)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float2 closestPoint = make_float2(0.0f, 0.0f);
+ float2 closestPointOffset = make_float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float2 closestPointToClosestPoint = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0) {
+ continue;
+ }
+ float2 cellOffset = make_float2(i, j) + closestPointOffset;
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 3D Voronoi **** */
+
+ccl_device float voronoi_distance_3d(float3 a,
+ float3 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), max(fabsf(a.y - b.y), fabsf(a.z - b.z)));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
+
+ccl_device void voronoi_f1_3d(float3 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float3 targetOffset = make_float3(0.0f, 0.0f, 0.0f);
+ float3 targetPosition = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
}
+ }
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float3_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_3d(float3 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float3 smoothPosition = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float3_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
- /* To keep the shortest four distances and associated points we have to keep them in sorted
- * order. */
- if (d < da[0]) {
- da[3] = da[2];
- da[2] = da[1];
- da[1] = da[0];
- da[0] = d;
-
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = pa[0];
- pa[0] = vp;
+ccl_device void voronoi_f2_3d(float3 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float3 offsetF1 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 positionF1 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 offsetF2 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 positionF2 = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
}
- else if (d < da[1]) {
- da[3] = da[2];
- da[2] = da[1];
- da[1] = d;
-
- pa[3] = pa[2];
- pa[2] = pa[1];
- pa[1] = vp;
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
}
- else if (d < da[2]) {
- da[3] = da[2];
- da[2] = d;
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float3_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
- pa[3] = pa[2];
- pa[2] = vp;
+ccl_device void voronoi_distance_to_edge_3d(float3 coord, float randomness, float *outDistance)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float3 vectorToClosest = make_float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 vectorToPoint = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
}
- else if (d < da[3]) {
- da[3] = d;
- pa[3] = vp;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 vectorToPoint = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float3 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
}
}
}
}
+ *outDistance = minDistance;
}
-ccl_device void svm_node_tex_voronoi(
- KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
+ccl_device void voronoi_n_sphere_radius_3d(float3 coord, float randomness, float *outRadius)
{
- uint4 node2 = read_node(kg, offset);
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
- uint co_offset, coloring, distance, feature;
- uint scale_offset, e_offset, fac_offset, color_offset;
+ float3 closestPoint = make_float3(0.0f, 0.0f, 0.0f);
+ float3 closestPointOffset = make_float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
- svm_unpack_node_uchar4(node.y, &co_offset, &coloring, &distance, &feature);
- svm_unpack_node_uchar4(node.z, &scale_offset, &e_offset, &fac_offset, &color_offset);
+ minDistance = 8.0f;
+ float3 closestPointToClosestPoint = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0) {
+ continue;
+ }
+ float3 cellOffset = make_float3(i, j, k) + closestPointOffset;
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 4D Voronoi **** */
- float3 co = stack_load_float3(stack, co_offset);
- float scale = stack_load_float_default(stack, scale_offset, node2.x);
- float exponent = stack_load_float_default(stack, e_offset, node2.y);
+ccl_device float voronoi_distance_4d(float4 a,
+ float4 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z) + fabsf(a.w - b.w);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), max(fabsf(a.y - b.y), max(fabsf(a.z - b.z), fabsf(a.w - b.w))));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent) + powf(fabsf(a.w - b.w), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
- float dist[4];
- float3 neighbor[4];
- voronoi_neighbors(co * scale, (NodeVoronoiDistanceMetric)distance, exponent, dist, neighbor);
+ccl_device void voronoi_f1_4d(float4 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
- float3 color;
- float fac;
- if (coloring == NODE_VORONOI_INTENSITY) {
- switch (feature) {
- case NODE_VORONOI_F1:
- fac = dist[0];
- break;
- case NODE_VORONOI_F2:
- fac = dist[1];
- break;
- case NODE_VORONOI_F3:
- fac = dist[2];
- break;
- case NODE_VORONOI_F4:
- fac = dist[3];
- break;
- case NODE_VORONOI_F2F1:
- fac = dist[1] - dist[0];
- break;
+ float minDistance = 8.0f;
+ float4 targetOffset = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 targetPosition = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
}
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float4_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_4d(float4 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
- color = make_float3(fac, fac, fac);
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float4 smoothPosition = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -2; u <= 2; u++) {
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float4_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
}
- else {
- /* NODE_VORONOI_CELLS */
- switch (feature) {
- case NODE_VORONOI_F1:
- color = neighbor[0];
- break;
- case NODE_VORONOI_F2:
- color = neighbor[1];
- break;
- case NODE_VORONOI_F3:
- color = neighbor[2];
- break;
- case NODE_VORONOI_F4:
- color = neighbor[3];
- break;
- /* Usefulness of this vector is questionable. Note F2 >= F1 but the
- * individual vector components might not be. */
- case NODE_VORONOI_F2F1:
- color = fabs(neighbor[1] - neighbor[0]);
- break;
- }
-
- color = cellnoise3(color);
- fac = average(color);
- }
-
- if (stack_valid(fac_offset))
- stack_store_float(stack, fac_offset, fac);
- if (stack_valid(color_offset))
- stack_store_float3(stack, color_offset, color);
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_4d(float4 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ float *outDistance,
+ float3 *outColor,
+ float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float4 offsetF1 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF1 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 offsetF2 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF2 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float4_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_4d(float4 coord, float randomness, float *outDistance)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float4 vectorToClosest = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 vectorToPoint = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 vectorToPoint = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float4 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_4d(float4 coord, float randomness, float *outRadius)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float4 closestPoint = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 closestPointOffset = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float4 closestPointToClosestPoint = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0 && u == 0) {
+ continue;
+ }
+ float4 cellOffset = make_float4(i, j, k, u) + closestPointOffset;
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+ccl_device void svm_node_tex_voronoi(KernelGlobals *kg,
+ ShaderData *sd,
+ float *stack,
+ uint dimensions,
+ uint feature,
+ uint metric,
+ int *offset)
+{
+ uint4 stack_offsets = read_node(kg, offset);
+ uint4 defaults = read_node(kg, offset);
+
+ uint coord_stack_offset, w_stack_offset, scale_stack_offset, smoothness_stack_offset;
+ uint exponent_stack_offset, randomness_stack_offset, distance_out_stack_offset,
+ color_out_stack_offset;
+ uint position_out_stack_offset, w_out_stack_offset, radius_out_stack_offset;
+
+ svm_unpack_node_uchar4(stack_offsets.x,
+ &coord_stack_offset,
+ &w_stack_offset,
+ &scale_stack_offset,
+ &smoothness_stack_offset);
+ svm_unpack_node_uchar4(stack_offsets.y,
+ &exponent_stack_offset,
+ &randomness_stack_offset,
+ &distance_out_stack_offset,
+ &color_out_stack_offset);
+ svm_unpack_node_uchar3(
+ stack_offsets.z, &position_out_stack_offset, &w_out_stack_offset, &radius_out_stack_offset);
+
+ float3 coord = stack_load_float3(stack, coord_stack_offset);
+ float w = stack_load_float_default(stack, w_stack_offset, stack_offsets.w);
+ float scale = stack_load_float_default(stack, scale_stack_offset, defaults.x);
+ float smoothness = stack_load_float_default(stack, smoothness_stack_offset, defaults.y);
+ float exponent = stack_load_float_default(stack, exponent_stack_offset, defaults.z);
+ float randomness = stack_load_float_default(stack, randomness_stack_offset, defaults.w);
+
+ NodeVoronoiFeature voronoi_feature = (NodeVoronoiFeature)feature;
+ NodeVoronoiDistanceMetric voronoi_metric = (NodeVoronoiDistanceMetric)metric;
+
+ float distance_out = 0.0f, w_out = 0.0f, radius_out = 0.0f;
+ float3 color_out = make_float3(0.0f, 0.0f, 0.0f);
+ float3 position_out = make_float3(0.0f, 0.0f, 0.0f);
+
+ randomness = clamp(randomness, 0.0f, 1.0f);
+ smoothness = clamp(smoothness / 2.0f, 0.0f, 0.5f);
+
+ w *= scale;
+ coord *= scale;
+
+ switch (dimensions) {
+ case 1: {
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_1d(
+ w, exponent, randomness, voronoi_metric, &distance_out, &color_out, &w_out);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_1d(w,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &w_out);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_1d(
+ w, exponent, randomness, voronoi_metric, &distance_out, &color_out, &w_out);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_1d(w, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_1d(w, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ w_out = safe_divide(w_out, scale);
+ break;
+ }
+ case 2: {
+ float2 coord_2d = make_float2(coord.x, coord.y);
+ float2 position_out_2d;
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_2d(coord_2d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_2d(coord_2d,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_2d(coord_2d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_2d(coord_2d, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_2d(coord_2d, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out_2d = safe_divide_float2_float(position_out_2d, scale);
+ position_out = make_float3(position_out_2d.x, position_out_2d.y, 0.0f);
+ break;
+ }
+ case 3: {
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_3d(coord,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_3d(coord,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_3d(coord,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_3d(coord, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_3d(coord, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out = safe_divide_float3_float(position_out, scale);
+ break;
+ }
+ case 4: {
+ float4 coord_4d = make_float4(coord.x, coord.y, coord.z, w);
+ float4 position_out_4d;
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_4d(coord_4d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_4d(coord_4d,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_4d(coord_4d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_4d(coord_4d, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_4d(coord_4d, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out_4d = safe_divide_float4_float(position_out_4d, scale);
+ position_out = make_float3(position_out_4d.x, position_out_4d.y, position_out_4d.z);
+ w_out = position_out_4d.w;
+ break;
+ }
+ default:
+ kernel_assert(0);
+ }
+
+ if (stack_valid(distance_out_stack_offset))
+ stack_store_float(stack, distance_out_stack_offset, distance_out);
+ if (stack_valid(color_out_stack_offset))
+ stack_store_float3(stack, color_out_stack_offset, color_out);
+ if (stack_valid(position_out_stack_offset))
+ stack_store_float3(stack, position_out_stack_offset, position_out);
+ if (stack_valid(w_out_stack_offset))
+ stack_store_float(stack, w_out_stack_offset, w_out);
+ if (stack_valid(radius_out_stack_offset))
+ stack_store_float(stack, radius_out_stack_offset, radius_out);
}
CCL_NAMESPACE_END