Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/svm/voronoi.h')
-rw-r--r--intern/cycles/kernel/svm/voronoi.h1164
1 files changed, 1164 insertions, 0 deletions
diff --git a/intern/cycles/kernel/svm/voronoi.h b/intern/cycles/kernel/svm/voronoi.h
new file mode 100644
index 00000000000..730965b6aed
--- /dev/null
+++ b/intern/cycles/kernel/svm/voronoi.h
@@ -0,0 +1,1164 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+CCL_NAMESPACE_BEGIN
+
+/*
+ * Original code is under the MIT License, Copyright (c) 2013 Inigo Quilez.
+ *
+ * Smooth Voronoi:
+ *
+ * - https://wiki.blender.org/wiki/User:OmarSquircleArt/GSoC2019/Documentation/Smooth_Voronoi
+ *
+ * Distance To Edge based on:
+ *
+ * - https://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
+ * - https://www.shadertoy.com/view/ldl3W8
+ *
+ * With optimization to change -2..2 scan window to -1..1 for better performance,
+ * as explained in https://www.shadertoy.com/view/llG3zy.
+ */
+
+/* **** 1D Voronoi **** */
+
+ccl_device float voronoi_distance_1d(float a,
+ float b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ return fabsf(b - a);
+}
+
+ccl_device void voronoi_f1_1d(float w,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float minDistance = 8.0f;
+ float targetOffset = 0.0f;
+ float targetPosition = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float_to_float3(cellPosition + targetOffset);
+ *outW = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_1d(float w,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float smoothPosition = 0.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ for (int i = -2; i <= 2; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outW = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_1d(float w,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float *outW)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float offsetF1 = 0.0f;
+ float positionF1 = 0.0f;
+ float offsetF2 = 0.0f;
+ float positionF2 = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_1d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float_to_float3(cellPosition + offsetF2);
+ *outW = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_1d(float w,
+ float randomness,
+ ccl_private float *outDistance)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float midPointPosition = hash_float_to_float(cellPosition) * randomness;
+ float leftPointPosition = -1.0f + hash_float_to_float(cellPosition - 1.0f) * randomness;
+ float rightPointPosition = 1.0f + hash_float_to_float(cellPosition + 1.0f) * randomness;
+ float distanceToMidLeft = fabsf((midPointPosition + leftPointPosition) / 2.0f - localPosition);
+ float distanceToMidRight = fabsf((midPointPosition + rightPointPosition) / 2.0f - localPosition);
+
+ *outDistance = min(distanceToMidLeft, distanceToMidRight);
+}
+
+ccl_device void voronoi_n_sphere_radius_1d(float w, float randomness, ccl_private float *outRadius)
+{
+ float cellPosition = floorf(w);
+ float localPosition = w - cellPosition;
+
+ float closestPoint = 0.0f;
+ float closestPointOffset = 0.0f;
+ float minDistance = 8.0f;
+ for (int i = -1; i <= 1; i++) {
+ float cellOffset = i;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = fabsf(pointPosition - localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+
+ minDistance = 8.0f;
+ float closestPointToClosestPoint = 0.0f;
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0) {
+ continue;
+ }
+ float cellOffset = i + closestPointOffset;
+ float pointPosition = cellOffset + hash_float_to_float(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = fabsf(closestPoint - pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ *outRadius = fabsf(closestPointToClosestPoint - closestPoint) / 2.0f;
+}
+
+/* **** 2D Voronoi **** */
+
+ccl_device float voronoi_distance_2d(float2 a,
+ float2 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), fabsf(a.y - b.y));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
+
+ccl_device void voronoi_f1_2d(float2 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float2 targetOffset = make_float2(0.0f, 0.0f);
+ float2 targetPosition = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float2_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_2d(float2 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float2 smoothPosition = make_float2(0.0f, 0.0f);
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float2_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_2d(float2 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float2 *outPosition)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float2 offsetF1 = make_float2(0.0f, 0.0f);
+ float2 positionF1 = make_float2(0.0f, 0.0f);
+ float2 offsetF2 = make_float2(0.0f, 0.0f);
+ float2 positionF2 = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_2d(pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float2_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_2d(float2 coord,
+ float randomness,
+ ccl_private float *outDistance)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float2 vectorToClosest = make_float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 vectorToPoint = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 vectorToPoint = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float2 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_2d(float2 coord,
+ float randomness,
+ ccl_private float *outRadius)
+{
+ float2 cellPosition = floor(coord);
+ float2 localPosition = coord - cellPosition;
+
+ float2 closestPoint = make_float2(0.0f, 0.0f);
+ float2 closestPointOffset = make_float2(0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float2 cellOffset = make_float2(i, j);
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float2 closestPointToClosestPoint = make_float2(0.0f, 0.0f);
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0) {
+ continue;
+ }
+ float2 cellOffset = make_float2(i, j) + closestPointOffset;
+ float2 pointPosition = cellOffset +
+ hash_float2_to_float2(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 3D Voronoi **** */
+
+ccl_device float voronoi_distance_3d(float3 a,
+ float3 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), max(fabsf(a.y - b.y), fabsf(a.z - b.z)));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
+
+ccl_device void voronoi_f1_3d(float3 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float3 targetOffset = make_float3(0.0f, 0.0f, 0.0f);
+ float3 targetPosition = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float3_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_3d(float3 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float3 smoothPosition = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -2; k <= 2; k++) {
+ for (int j = -2; j <= 2; j++) {
+ for (int i = -2; i <= 2; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float3_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_3d(float3 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float3 *outPosition)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float3 offsetF1 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 positionF1 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 offsetF2 = make_float3(0.0f, 0.0f, 0.0f);
+ float3 positionF2 = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_3d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float3_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_3d(float3 coord,
+ float randomness,
+ ccl_private float *outDistance)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float3 vectorToClosest = make_float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 vectorToPoint = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 vectorToPoint = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float3 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_3d(float3 coord,
+ float randomness,
+ ccl_private float *outRadius)
+{
+ float3 cellPosition = floor(coord);
+ float3 localPosition = coord - cellPosition;
+
+ float3 closestPoint = make_float3(0.0f, 0.0f, 0.0f);
+ float3 closestPointOffset = make_float3(0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ float3 cellOffset = make_float3(i, j, k);
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float3 closestPointToClosestPoint = make_float3(0.0f, 0.0f, 0.0f);
+ for (int k = -1; k <= 1; k++) {
+ for (int j = -1; j <= 1; j++) {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0) {
+ continue;
+ }
+ float3 cellOffset = make_float3(i, j, k) + closestPointOffset;
+ float3 pointPosition = cellOffset +
+ hash_float3_to_float3(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+/* **** 4D Voronoi **** */
+
+ccl_device float voronoi_distance_4d(float4 a,
+ float4 b,
+ NodeVoronoiDistanceMetric metric,
+ float exponent)
+{
+ if (metric == NODE_VORONOI_EUCLIDEAN) {
+ return distance(a, b);
+ }
+ else if (metric == NODE_VORONOI_MANHATTAN) {
+ return fabsf(a.x - b.x) + fabsf(a.y - b.y) + fabsf(a.z - b.z) + fabsf(a.w - b.w);
+ }
+ else if (metric == NODE_VORONOI_CHEBYCHEV) {
+ return max(fabsf(a.x - b.x), max(fabsf(a.y - b.y), max(fabsf(a.z - b.z), fabsf(a.w - b.w))));
+ }
+ else if (metric == NODE_VORONOI_MINKOWSKI) {
+ return powf(powf(fabsf(a.x - b.x), exponent) + powf(fabsf(a.y - b.y), exponent) +
+ powf(fabsf(a.z - b.z), exponent) + powf(fabsf(a.w - b.w), exponent),
+ 1.0f / exponent);
+ }
+ else {
+ return 0.0f;
+ }
+}
+
+ccl_device void voronoi_f1_4d(float4 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float minDistance = 8.0f;
+ float4 targetOffset = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 targetPosition = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < minDistance) {
+ targetOffset = cellOffset;
+ minDistance = distanceToPoint;
+ targetPosition = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *outDistance = minDistance;
+ *outColor = hash_float4_to_float3(cellPosition + targetOffset);
+ *outPosition = targetPosition + cellPosition;
+}
+
+ccl_device void voronoi_smooth_f1_4d(float4 coord,
+ float smoothness,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float smoothDistance = 8.0f;
+ float3 smoothColor = make_float3(0.0f, 0.0f, 0.0f);
+ float4 smoothPosition = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -2; u <= 2; u++) {
+ for (int k = -2; k <= 2; k++) {
+ ccl_loop_no_unroll for (int j = -2; j <= 2; j++)
+ {
+ for (int i = -2; i <= 2; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ float h = smoothstep(
+ 0.0f, 1.0f, 0.5f + 0.5f * (smoothDistance - distanceToPoint) / smoothness);
+ float correctionFactor = smoothness * h * (1.0f - h);
+ smoothDistance = mix(smoothDistance, distanceToPoint, h) - correctionFactor;
+ correctionFactor /= 1.0f + 3.0f * smoothness;
+ float3 cellColor = hash_float4_to_float3(cellPosition + cellOffset);
+ smoothColor = mix(smoothColor, cellColor, h) - correctionFactor;
+ smoothPosition = mix(smoothPosition, pointPosition, h) - correctionFactor;
+ }
+ }
+ }
+ }
+ *outDistance = smoothDistance;
+ *outColor = smoothColor;
+ *outPosition = cellPosition + smoothPosition;
+}
+
+ccl_device void voronoi_f2_4d(float4 coord,
+ float exponent,
+ float randomness,
+ NodeVoronoiDistanceMetric metric,
+ ccl_private float *outDistance,
+ ccl_private float3 *outColor,
+ ccl_private float4 *outPosition)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float distanceF1 = 8.0f;
+ float distanceF2 = 8.0f;
+ float4 offsetF1 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF1 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 offsetF2 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 positionF2 = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = voronoi_distance_4d(
+ pointPosition, localPosition, metric, exponent);
+ if (distanceToPoint < distanceF1) {
+ distanceF2 = distanceF1;
+ distanceF1 = distanceToPoint;
+ offsetF2 = offsetF1;
+ offsetF1 = cellOffset;
+ positionF2 = positionF1;
+ positionF1 = pointPosition;
+ }
+ else if (distanceToPoint < distanceF2) {
+ distanceF2 = distanceToPoint;
+ offsetF2 = cellOffset;
+ positionF2 = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *outDistance = distanceF2;
+ *outColor = hash_float4_to_float3(cellPosition + offsetF2);
+ *outPosition = positionF2 + cellPosition;
+}
+
+ccl_device void voronoi_distance_to_edge_4d(float4 coord,
+ float randomness,
+ ccl_private float *outDistance)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float4 vectorToClosest = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 vectorToPoint = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float distanceToPoint = dot(vectorToPoint, vectorToPoint);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ vectorToClosest = vectorToPoint;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 vectorToPoint = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness -
+ localPosition;
+ float4 perpendicularToEdge = vectorToPoint - vectorToClosest;
+ if (dot(perpendicularToEdge, perpendicularToEdge) > 0.0001f) {
+ float distanceToEdge = dot((vectorToClosest + vectorToPoint) / 2.0f,
+ normalize(perpendicularToEdge));
+ minDistance = min(minDistance, distanceToEdge);
+ }
+ }
+ }
+ }
+ }
+ *outDistance = minDistance;
+}
+
+ccl_device void voronoi_n_sphere_radius_4d(float4 coord,
+ float randomness,
+ ccl_private float *outRadius)
+{
+ float4 cellPosition = floor(coord);
+ float4 localPosition = coord - cellPosition;
+
+ float4 closestPoint = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float4 closestPointOffset = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ float minDistance = 8.0f;
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ float4 cellOffset = make_float4(i, j, k, u);
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(pointPosition, localPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPoint = pointPosition;
+ closestPointOffset = cellOffset;
+ }
+ }
+ }
+ }
+ }
+
+ minDistance = 8.0f;
+ float4 closestPointToClosestPoint = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ for (int u = -1; u <= 1; u++) {
+ for (int k = -1; k <= 1; k++) {
+ ccl_loop_no_unroll for (int j = -1; j <= 1; j++)
+ {
+ for (int i = -1; i <= 1; i++) {
+ if (i == 0 && j == 0 && k == 0 && u == 0) {
+ continue;
+ }
+ float4 cellOffset = make_float4(i, j, k, u) + closestPointOffset;
+ float4 pointPosition = cellOffset +
+ hash_float4_to_float4(cellPosition + cellOffset) * randomness;
+ float distanceToPoint = distance(closestPoint, pointPosition);
+ if (distanceToPoint < minDistance) {
+ minDistance = distanceToPoint;
+ closestPointToClosestPoint = pointPosition;
+ }
+ }
+ }
+ }
+ }
+ *outRadius = distance(closestPointToClosestPoint, closestPoint) / 2.0f;
+}
+
+template<uint node_feature_mask>
+ccl_device_noinline int svm_node_tex_voronoi(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ ccl_private float *stack,
+ uint dimensions,
+ uint feature,
+ uint metric,
+ int offset)
+{
+ uint4 stack_offsets = read_node(kg, &offset);
+ uint4 defaults = read_node(kg, &offset);
+
+ uint coord_stack_offset, w_stack_offset, scale_stack_offset, smoothness_stack_offset;
+ uint exponent_stack_offset, randomness_stack_offset, distance_out_stack_offset,
+ color_out_stack_offset;
+ uint position_out_stack_offset, w_out_stack_offset, radius_out_stack_offset;
+
+ svm_unpack_node_uchar4(stack_offsets.x,
+ &coord_stack_offset,
+ &w_stack_offset,
+ &scale_stack_offset,
+ &smoothness_stack_offset);
+ svm_unpack_node_uchar4(stack_offsets.y,
+ &exponent_stack_offset,
+ &randomness_stack_offset,
+ &distance_out_stack_offset,
+ &color_out_stack_offset);
+ svm_unpack_node_uchar3(
+ stack_offsets.z, &position_out_stack_offset, &w_out_stack_offset, &radius_out_stack_offset);
+
+ float3 coord = stack_load_float3(stack, coord_stack_offset);
+ float w = stack_load_float_default(stack, w_stack_offset, stack_offsets.w);
+ float scale = stack_load_float_default(stack, scale_stack_offset, defaults.x);
+ float smoothness = stack_load_float_default(stack, smoothness_stack_offset, defaults.y);
+ float exponent = stack_load_float_default(stack, exponent_stack_offset, defaults.z);
+ float randomness = stack_load_float_default(stack, randomness_stack_offset, defaults.w);
+
+ NodeVoronoiFeature voronoi_feature = (NodeVoronoiFeature)feature;
+ NodeVoronoiDistanceMetric voronoi_metric = (NodeVoronoiDistanceMetric)metric;
+
+ float distance_out = 0.0f, w_out = 0.0f, radius_out = 0.0f;
+ float3 color_out = make_float3(0.0f, 0.0f, 0.0f);
+ float3 position_out = make_float3(0.0f, 0.0f, 0.0f);
+
+ randomness = clamp(randomness, 0.0f, 1.0f);
+ smoothness = clamp(smoothness / 2.0f, 0.0f, 0.5f);
+
+ w *= scale;
+ coord *= scale;
+
+ switch (dimensions) {
+ case 1: {
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_1d(
+ w, exponent, randomness, voronoi_metric, &distance_out, &color_out, &w_out);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_1d(w,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &w_out);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_1d(
+ w, exponent, randomness, voronoi_metric, &distance_out, &color_out, &w_out);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_1d(w, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_1d(w, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ w_out = safe_divide(w_out, scale);
+ break;
+ }
+ case 2: {
+ float2 coord_2d = make_float2(coord.x, coord.y);
+ float2 position_out_2d = zero_float2();
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_2d(coord_2d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ IF_KERNEL_NODES_FEATURE(VORONOI_EXTRA)
+ {
+ voronoi_smooth_f1_2d(coord_2d,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ }
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_2d(coord_2d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_2d);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_2d(coord_2d, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_2d(coord_2d, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out_2d = safe_divide_float2_float(position_out_2d, scale);
+ position_out = make_float3(position_out_2d.x, position_out_2d.y, 0.0f);
+ break;
+ }
+ case 3: {
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_3d(coord,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ IF_KERNEL_NODES_FEATURE(VORONOI_EXTRA)
+ {
+ voronoi_smooth_f1_3d(coord,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ }
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_3d(coord,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_3d(coord, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_3d(coord, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out = safe_divide_float3_float(position_out, scale);
+ break;
+ }
+
+ case 4: {
+ IF_KERNEL_NODES_FEATURE(VORONOI_EXTRA)
+ {
+ float4 coord_4d = make_float4(coord.x, coord.y, coord.z, w);
+ float4 position_out_4d;
+ switch (voronoi_feature) {
+ case NODE_VORONOI_F1:
+ voronoi_f1_4d(coord_4d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_SMOOTH_F1:
+ voronoi_smooth_f1_4d(coord_4d,
+ smoothness,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_F2:
+ voronoi_f2_4d(coord_4d,
+ exponent,
+ randomness,
+ voronoi_metric,
+ &distance_out,
+ &color_out,
+ &position_out_4d);
+ break;
+ case NODE_VORONOI_DISTANCE_TO_EDGE:
+ voronoi_distance_to_edge_4d(coord_4d, randomness, &distance_out);
+ break;
+ case NODE_VORONOI_N_SPHERE_RADIUS:
+ voronoi_n_sphere_radius_4d(coord_4d, randomness, &radius_out);
+ break;
+ default:
+ kernel_assert(0);
+ }
+ position_out_4d = safe_divide_float4_float(position_out_4d, scale);
+ position_out = make_float3(position_out_4d.x, position_out_4d.y, position_out_4d.z);
+ w_out = position_out_4d.w;
+ }
+ break;
+ }
+ default:
+ kernel_assert(0);
+ }
+
+ if (stack_valid(distance_out_stack_offset))
+ stack_store_float(stack, distance_out_stack_offset, distance_out);
+ if (stack_valid(color_out_stack_offset))
+ stack_store_float3(stack, color_out_stack_offset, color_out);
+ if (stack_valid(position_out_stack_offset))
+ stack_store_float3(stack, position_out_stack_offset, position_out);
+ if (stack_valid(w_out_stack_offset))
+ stack_store_float(stack, w_out_stack_offset, w_out);
+ if (stack_valid(radius_out_stack_offset))
+ stack_store_float(stack, radius_out_stack_offset, radius_out);
+ return offset;
+}
+
+CCL_NAMESPACE_END