Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel')
-rw-r--r--intern/cycles/kernel/CMakeLists.txt1
-rw-r--r--intern/cycles/kernel/bvh/bvh_shadow_all.h44
-rw-r--r--intern/cycles/kernel/bvh/bvh_traversal.h48
-rw-r--r--intern/cycles/kernel/bvh/qbvh_shadow_all.h44
-rw-r--r--intern/cycles/kernel/bvh/qbvh_traversal.h48
-rw-r--r--intern/cycles/kernel/geom/geom.h1
-rw-r--r--intern/cycles/kernel/geom/geom_curve.h904
-rw-r--r--intern/cycles/kernel/geom/geom_curve_intersect.h934
-rw-r--r--intern/cycles/kernel/kernel_compat_cuda.h4
-rw-r--r--intern/cycles/kernel/kernel_compat_opencl.h3
-rw-r--r--intern/cycles/kernel/kernel_globals.h68
-rw-r--r--intern/cycles/kernel/kernel_image_opencl.h66
-rw-r--r--intern/cycles/kernel/kernel_shader.h2
-rw-r--r--intern/cycles/kernel/kernel_textures.h11
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel.cl45
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_data_init.cl11
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_split_function.h9
-rw-r--r--intern/cycles/kernel/split/kernel_data_init.h9
18 files changed, 1174 insertions, 1078 deletions
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index 88c4c4e3282..9fe61515570 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -202,6 +202,7 @@ set(SRC_GEOM_HEADERS
geom/geom.h
geom/geom_attribute.h
geom/geom_curve.h
+ geom/geom_curve_intersect.h
geom/geom_motion_curve.h
geom/geom_motion_triangle.h
geom/geom_motion_triangle_intersect.h
diff --git a/intern/cycles/kernel/bvh/bvh_shadow_all.h b/intern/cycles/kernel/bvh/bvh_shadow_all.h
index 72188e3a845..a6a4353562c 100644
--- a/intern/cycles/kernel/bvh/bvh_shadow_all.h
+++ b/intern/cycles/kernel/bvh/bvh_shadow_all.h
@@ -221,30 +221,30 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
case PRIMITIVE_MOTION_CURVE: {
const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect_array,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- NULL,
- 0, 0);
+ hit = cardinal_curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
else {
- hit = bvh_curve_intersect(kg,
- isect_array,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- NULL,
- 0, 0);
+ hit = curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
break;
}
diff --git a/intern/cycles/kernel/bvh/bvh_traversal.h b/intern/cycles/kernel/bvh/bvh_traversal.h
index bc09237b975..ae8f54821f2 100644
--- a/intern/cycles/kernel/bvh/bvh_traversal.h
+++ b/intern/cycles/kernel/bvh/bvh_traversal.h
@@ -298,32 +298,32 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL));
bool hit;
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- lcg_state,
- difl,
- extmax);
+ hit = cardinal_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
else {
- hit = bvh_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- lcg_state,
- difl,
- extmax);
+ hit = curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
if(hit) {
/* shadow ray early termination */
diff --git a/intern/cycles/kernel/bvh/qbvh_shadow_all.h b/intern/cycles/kernel/bvh/qbvh_shadow_all.h
index 0fa8d4323c6..522213f30ca 100644
--- a/intern/cycles/kernel/bvh/qbvh_shadow_all.h
+++ b/intern/cycles/kernel/bvh/qbvh_shadow_all.h
@@ -303,30 +303,30 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
case PRIMITIVE_MOTION_CURVE: {
const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect_array,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- NULL,
- 0, 0);
+ hit = cardinal_curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
else {
- hit = bvh_curve_intersect(kg,
- isect_array,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- NULL,
- 0, 0);
+ hit = curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
break;
}
diff --git a/intern/cycles/kernel/bvh/qbvh_traversal.h b/intern/cycles/kernel/bvh/qbvh_traversal.h
index 8e0084e3914..335a4afd47a 100644
--- a/intern/cycles/kernel/bvh/qbvh_traversal.h
+++ b/intern/cycles/kernel/bvh/qbvh_traversal.h
@@ -379,32 +379,32 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL));
bool hit;
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- lcg_state,
- difl,
- extmax);
+ hit = cardinal_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
else {
- hit = bvh_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- curve_type,
- lcg_state,
- difl,
- extmax);
+ hit = curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
if(hit) {
tfar = ssef(isect->t);
diff --git a/intern/cycles/kernel/geom/geom.h b/intern/cycles/kernel/geom/geom.h
index c623e3490fd..f34b77ebc07 100644
--- a/intern/cycles/kernel/geom/geom.h
+++ b/intern/cycles/kernel/geom/geom.h
@@ -27,6 +27,7 @@
#include "kernel/geom/geom_motion_triangle_shader.h"
#include "kernel/geom/geom_motion_curve.h"
#include "kernel/geom/geom_curve.h"
+#include "kernel/geom/geom_curve_intersect.h"
#include "kernel/geom/geom_volume.h"
#include "kernel/geom/geom_primitive.h"
diff --git a/intern/cycles/kernel/geom/geom_curve.h b/intern/cycles/kernel/geom/geom_curve.h
index 5c3b0ee3c15..e35267f02bf 100644
--- a/intern/cycles/kernel/geom/geom_curve.h
+++ b/intern/cycles/kernel/geom/geom_curve.h
@@ -16,18 +16,13 @@ CCL_NAMESPACE_BEGIN
/* Curve Primitive
*
- * Curve primitive for rendering hair and fur. These can be render as flat ribbons
- * or curves with actual thickness. The curve can also be rendered as line segments
- * rather than curves for better performance */
+ * Curve primitive for rendering hair and fur. These can be render as flat
+ * ribbons or curves with actual thickness. The curve can also be rendered as
+ * line segments rather than curves for better performance.
+ */
#ifdef __HAIR__
-#if defined(__KERNEL_CUDA__) && (__CUDA_ARCH__ < 300)
-# define ccl_device_curveintersect ccl_device
-#else
-# define ccl_device_curveintersect ccl_device_forceinline
-#endif
-
/* Reading attributes on various curve elements */
ccl_device float curve_attribute_float(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float *dx, float *dy)
@@ -151,7 +146,7 @@ ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd
/* Curve tangent normal */
ccl_device float3 curve_tangent_normal(KernelGlobals *kg, ShaderData *sd)
-{
+{
float3 tgN = make_float3(0.0f,0.0f,0.0f);
if(sd->type & PRIMITIVE_ALL_CURVE) {
@@ -219,893 +214,6 @@ ccl_device_inline void curvebounds(float *lower, float *upper, float *extremta,
}
}
-#ifdef __KERNEL_SSE2__
-ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
-{
- return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
-}
-#endif
-
-#ifdef __KERNEL_SSE2__
-/* Pass P and dir by reference to aligned vector */
-ccl_device_curveintersect bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
- const float3 &P, const float3 &dir, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax)
-#else
-ccl_device_curveintersect bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
- float3 P, float3 dir, uint visibility, int object, int curveAddr, float time,int type, uint *lcg_state, float difl, float extmax)
-#endif
-{
- const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
-
- if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
- const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
- if(time < prim_time.x || time > prim_time.y) {
- return false;
- }
- }
-
- int segment = PRIMITIVE_UNPACK_SEGMENT(type);
- float epsilon = 0.0f;
- float r_st, r_en;
-
- int depth = kernel_data.curve.subdivisions;
- int flags = kernel_data.curve.curveflags;
- int prim = kernel_tex_fetch(__prim_index, curveAddr);
-
-#ifdef __KERNEL_SSE2__
- ssef vdir = load4f(dir);
- ssef vcurve_coef[4];
- const float3 *curve_coef = (float3 *)vcurve_coef;
-
- {
- ssef dtmp = vdir * vdir;
- ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
- ssef rd_ss = load1f_first(1.0f) / d_ss;
-
- ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
- int2 &v00 = (int2 &)v00vec;
-
- int k0 = v00.x + segment;
- int k1 = k0 + 1;
- int ka = max(k0 - 1, v00.x);
- int kb = min(k1 + 1, v00.x + v00.y - 1);
-
-#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
- avxf P_curve_0_1, P_curve_2_3;
- if(is_curve_primitive) {
- P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
- P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
- }
- else {
- int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
- motion_cardinal_curve_keys_avx(kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1,&P_curve_2_3);
- }
-#else /* __KERNEL_AVX2__ */
- ssef P_curve[4];
-
- if(is_curve_primitive) {
- P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
- P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
- P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
- P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve);
- }
-#endif /* __KERNEL_AVX2__ */
-
- ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
- ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
- ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
- ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
- ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
-
- ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
- ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
- ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
-
-#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
- const avxf vPP = _mm256_broadcast_ps(&P.m128);
- const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
- const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
- const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);
-
- const avxf p01 = madd(shuffle<0>(P_curve_0_1 - vPP),
- htfm00,
- madd(shuffle<1>(P_curve_0_1 - vPP),
- htfm11,
- shuffle<2>(P_curve_0_1 - vPP) * htfm22));
- const avxf p23 = madd(shuffle<0>(P_curve_2_3 - vPP),
- htfm00,
- madd(shuffle<1>(P_curve_2_3 - vPP),
- htfm11,
- shuffle<2>(P_curve_2_3 - vPP)*htfm22));
-
- const ssef p0 = _mm256_castps256_ps128(p01);
- const ssef p1 = _mm256_extractf128_ps(p01, 1);
- const ssef p2 = _mm256_castps256_ps128(p23);
- const ssef p3 = _mm256_extractf128_ps(p23, 1);
-
- const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
- r_st = ((float4 &)P_curve_1).w;
- const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
- r_en = ((float4 &)P_curve_2).w;
-#else /* __KERNEL_AVX2__ */
- ssef htfm[] = { htfm0, htfm1, htfm2 };
- ssef vP = load4f(P);
- ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
- ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
- ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
- ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
-
- r_st = ((float4 &)P_curve[1]).w;
- r_en = ((float4 &)P_curve[2]).w;
-#endif /* __KERNEL_AVX2__ */
-
- float fc = 0.71f;
- ssef vfc = ssef(fc);
- ssef vfcxp3 = vfc * p3;
-
- vcurve_coef[0] = p1;
- vcurve_coef[1] = vfc * (p2 - p0);
- vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
- vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
-
- }
-#else
- float3 curve_coef[4];
-
- /* curve Intersection check */
- /* obtain curve parameters */
- {
- /* ray transform created - this should be created at beginning of intersection loop */
- Transform htfm;
- float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
- htfm = make_transform(
- dir.z / d, 0, -dir.x /d, 0,
- -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
- dir.x, dir.y, dir.z, 0,
- 0, 0, 0, 1);
-
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int k0 = __float_as_int(v00.x) + segment;
- int k1 = k0 + 1;
-
- int ka = max(k0 - 1,__float_as_int(v00.x));
- int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
-
- float4 P_curve[4];
-
- if(is_curve_primitive) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
- P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
- }
-
- float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
- float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
- float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
- float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);
-
- float fc = 0.71f;
- curve_coef[0] = p1;
- curve_coef[1] = -fc*p0 + fc*p2;
- curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
- curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
- r_st = P_curve[1].w;
- r_en = P_curve[2].w;
- }
-#endif
-
- float r_curr = max(r_st, r_en);
-
- if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
- epsilon = 2 * r_curr;
-
- /* find bounds - this is slow for cubic curves */
- float upper, lower;
-
- float zextrem[4];
- curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
- if(lower - r_curr > isect->t || upper + r_curr < epsilon)
- return false;
-
- /* minimum width extension */
- float mw_extension = min(difl * fabsf(upper), extmax);
- float r_ext = mw_extension + r_curr;
-
- float xextrem[4];
- curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
- if(lower > r_ext || upper < -r_ext)
- return false;
-
- float yextrem[4];
- curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
- if(lower > r_ext || upper < -r_ext)
- return false;
-
- /* setup recurrent loop */
- int level = 1 << depth;
- int tree = 0;
- float resol = 1.0f / (float)level;
- bool hit = false;
-
- /* begin loop */
- while(!(tree >> (depth))) {
- const float i_st = tree * resol;
- const float i_en = i_st + (level * resol);
-
-#ifdef __KERNEL_SSE2__
- ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
- ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
- ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
-
- ssef vbmin = min(vp_st, vp_en);
- ssef vbmax = max(vp_st, vp_en);
-
- float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
- float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
- float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
- float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
-#else
- float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
- float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
-
- float bminx = min(p_st.x, p_en.x);
- float bmaxx = max(p_st.x, p_en.x);
- float bminy = min(p_st.y, p_en.y);
- float bmaxy = max(p_st.y, p_en.y);
- float bminz = min(p_st.z, p_en.z);
- float bmaxz = max(p_st.z, p_en.z);
-#endif
-
- if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
- bminx = min(bminx,xextrem[1]);
- bmaxx = max(bmaxx,xextrem[1]);
- }
- if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
- bminx = min(bminx,xextrem[3]);
- bmaxx = max(bmaxx,xextrem[3]);
- }
- if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
- bminy = min(bminy,yextrem[1]);
- bmaxy = max(bmaxy,yextrem[1]);
- }
- if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
- bminy = min(bminy,yextrem[3]);
- bmaxy = max(bmaxy,yextrem[3]);
- }
- if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
- bminz = min(bminz,zextrem[1]);
- bmaxz = max(bmaxz,zextrem[1]);
- }
- if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
- bminz = min(bminz,zextrem[3]);
- bmaxz = max(bmaxz,zextrem[3]);
- }
-
- float r1 = r_st + (r_en - r_st) * i_st;
- float r2 = r_st + (r_en - r_st) * i_en;
- r_curr = max(r1, r2);
-
- mw_extension = min(difl * fabsf(bmaxz), extmax);
- float r_ext = mw_extension + r_curr;
- float coverage = 1.0f;
-
- if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
- /* the bounding box does not overlap the square centered at O */
- tree += level;
- level = tree & -tree;
- }
- else if(level == 1) {
-
- /* the maximum recursion depth is reached.
- * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
- * dP* is reversed if necessary.*/
- float t = isect->t;
- float u = 0.0f;
- float gd = 0.0f;
-
- if(flags & CURVE_KN_RIBBONS) {
- float3 tg = (p_en - p_st);
-#ifdef __KERNEL_SSE__
- const float3 tg_sq = tg * tg;
- float w = tg_sq.x + tg_sq.y;
-#else
- float w = tg.x * tg.x + tg.y * tg.y;
-#endif
- if(w == 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
-#ifdef __KERNEL_SSE__
- const float3 p_sttg = p_st * tg;
- w = -(p_sttg.x + p_sttg.y) / w;
-#else
- w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
-#endif
- w = saturate(w);
-
- /* compute u on the curve segment */
- u = i_st * (1 - w) + i_en * w;
- r_curr = r_st + (r_en - r_st) * u;
- /* compare x-y distances */
- float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
-
- float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if(dot(tg, dp_st)< 0)
- dp_st *= -1;
- if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
- float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if(dot(tg, dp_en) < 0)
- dp_en *= -1;
- if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- /* compute coverage */
- float r_ext = r_curr;
- coverage = 1.0f;
- if(difl != 0.0f) {
- mw_extension = min(difl * fabsf(bmaxz), extmax);
- r_ext = mw_extension + r_curr;
-#ifdef __KERNEL_SSE__
- const float3 p_curr_sq = p_curr * p_curr;
- const float3 dxxx(_mm_sqrt_ss(_mm_hadd_ps(p_curr_sq.m128, p_curr_sq.m128)));
- float d = dxxx.x;
-#else
- float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y);
-#endif
- float d0 = d - r_curr;
- float d1 = d + r_curr;
- float inv_mw_extension = 1.0f/mw_extension;
- if(d0 >= 0)
- coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
- else // inside
- coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
- }
-
- if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- t = p_curr.z;
-
- /* stochastic fade from minimum width */
- if(difl != 0.0f && lcg_state) {
- if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
- return hit;
- }
- }
- else {
- float l = len(p_en - p_st);
- /* minimum width extension */
- float or1 = r1;
- float or2 = r2;
-
- if(difl != 0.0f) {
- mw_extension = min(len(p_st - P) * difl, extmax);
- or1 = r1 < mw_extension ? mw_extension : r1;
- mw_extension = min(len(p_en - P) * difl, extmax);
- or2 = r2 < mw_extension ? mw_extension : r2;
- }
- /* --- */
- float invl = 1.0f/l;
- float3 tg = (p_en - p_st) * invl;
- gd = (or2 - or1) * invl;
- float difz = -dot(p_st,tg);
- float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
- float invcyla = 1.0f/cyla;
- float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1)));
- float tcentre = -halfb*invcyla;
- float zcentre = difz + (tg.z * tcentre);
- float3 tdif = - p_st;
- tdif.z += tcentre;
- float tdifz = dot(tdif,tg);
- float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
- float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
- float td = tb*tb - 4*cyla*tc;
- if(td < 0.0f) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- float rootd = sqrtf(td);
- float correction = (-tb - rootd) * 0.5f * invcyla;
- t = tcentre + correction;
-
- float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if(dot(tg, dp_st)< 0)
- dp_st *= -1;
- float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if(dot(tg, dp_en) < 0)
- dp_en *= -1;
-
- if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
- correction = (-tb + rootd) * 0.5f * invcyla;
- t = tcentre + correction;
- }
-
- if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- float w = (zcentre + (tg.z * correction)) * invl;
- w = saturate(w);
- /* compute u on the curve segment */
- u = i_st * (1 - w) + i_en * w;
-
- /* stochastic fade from minimum width */
- if(difl != 0.0f && lcg_state) {
- r_curr = r1 + (r2 - r1) * w;
- r_ext = or1 + (or2 - or1) * w;
- coverage = r_curr/r_ext;
-
- if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
- return hit;
- }
- }
- /* we found a new intersection */
-
-#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
-#endif
- {
- /* record intersection */
- isect->t = t;
- isect->u = u;
- isect->v = gd;
- isect->prim = curveAddr;
- isect->object = object;
- isect->type = type;
- hit = true;
- }
-
- tree++;
- level = tree & -tree;
- }
- else {
- /* split the curve into two curves and process */
- level = level >> 1;
- }
- }
-
- return hit;
-}
-
-ccl_device_curveintersect bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isect,
- float3 P, float3 direction, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax)
-{
- /* define few macros to minimize code duplication for SSE */
-#ifndef __KERNEL_SSE2__
-# define len3_squared(x) len_squared(x)
-# define len3(x) len(x)
-# define dot3(x, y) dot(x, y)
-#endif
-
- const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
-
- if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
- const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
- if(time < prim_time.x || time > prim_time.y) {
- return false;
- }
- }
-
- int segment = PRIMITIVE_UNPACK_SEGMENT(type);
- /* curve Intersection check */
- int flags = kernel_data.curve.curveflags;
-
- int prim = kernel_tex_fetch(__prim_index, curveAddr);
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int cnum = __float_as_int(v00.x);
- int k0 = cnum + segment;
- int k1 = k0 + 1;
-
-#ifndef __KERNEL_SSE2__
- float4 P_curve[2];
-
- if(is_curve_primitive) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
- }
-
- float or1 = P_curve[0].w;
- float or2 = P_curve[1].w;
- float3 p1 = float4_to_float3(P_curve[0]);
- float3 p2 = float4_to_float3(P_curve[1]);
-
- /* minimum width extension */
- float r1 = or1;
- float r2 = or2;
- float3 dif = P - p1;
- float3 dif_second = P - p2;
- if(difl != 0.0f) {
- float pixelsize = min(len3(dif) * difl, extmax);
- r1 = or1 < pixelsize ? pixelsize : or1;
- pixelsize = min(len3(dif_second) * difl, extmax);
- r2 = or2 < pixelsize ? pixelsize : or2;
- }
- /* --- */
-
- float3 p21_diff = p2 - p1;
- float3 sphere_dif1 = (dif + dif_second) * 0.5f;
- float3 dir = direction;
- float sphere_b_tmp = dot3(dir, sphere_dif1);
- float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
-#else
- ssef P_curve[2];
-
- if(is_curve_primitive) {
- P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
- P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve);
- }
-
- const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
-
- ssef r12 = or12;
- const ssef vP = load4f(P);
- const ssef dif = vP - P_curve[0];
- const ssef dif_second = vP - P_curve[1];
- if(difl != 0.0f) {
- const ssef len1_sq = len3_squared_splat(dif);
- const ssef len2_sq = len3_squared_splat(dif_second);
- const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq));
- const ssef pixelsize12 = min(len12 * difl, ssef(extmax));
- r12 = max(or12, pixelsize12);
- }
- float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12));
- float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));
-
- const ssef p21_diff = P_curve[1] - P_curve[0];
- const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
- const ssef dir = load4f(direction);
- const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
- const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
-#endif
-
- float mr = max(r1, r2);
- float l = len3(p21_diff);
- float invl = 1.0f / l;
- float sp_r = mr + 0.5f * l;
-
- float sphere_b = dot3(dir, sphere_dif2);
- float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;
-
- if(sdisc < 0.0f)
- return false;
-
- /* obtain parameters and test midpoint distance for suitable modes */
-#ifndef __KERNEL_SSE2__
- float3 tg = p21_diff * invl;
-#else
- const ssef tg = p21_diff * invl;
-#endif
- float gd = (r2 - r1) * invl;
-
- float dirz = dot3(dir, tg);
- float difz = dot3(dif, tg);
-
- float a = 1.0f - (dirz*dirz*(1 + gd*gd));
-
- float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1));
-
- float tcentre = -halfb/a;
- float zcentre = difz + (dirz * tcentre);
-
- if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
- return false;
- if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
- return false;
-
- /* test minimum separation */
-#ifndef __KERNEL_SSE2__
- float3 cprod = cross(tg, dir);
- float cprod2sq = len3_squared(cross(tg, dif));
-#else
- const ssef cprod = cross(tg, dir);
- float cprod2sq = len3_squared(cross_zxy(tg, dif));
-#endif
- float cprodsq = len3_squared(cprod);
- float distscaled = dot3(cprod, dif);
-
- if(cprodsq == 0)
- distscaled = cprod2sq;
- else
- distscaled = (distscaled*distscaled)/cprodsq;
-
- if(distscaled > mr*mr)
- return false;
-
- /* calculate true intersection */
-#ifndef __KERNEL_SSE2__
- float3 tdif = dif + tcentre * dir;
-#else
- const ssef tdif = madd(ssef(tcentre), dir, dif);
-#endif
- float tdifz = dot3(tdif, tg);
- float tdifma = tdifz*gd + r1;
- float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma));
- float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
- float td = tb*tb - 4*a*tc;
-
- if(td < 0.0f)
- return false;
-
- float rootd = 0.0f;
- float correction = 0.0f;
- if(flags & CURVE_KN_ACCURATE) {
- rootd = sqrtf(td);
- correction = ((-tb - rootd)/(2*a));
- }
-
- float t = tcentre + correction;
-
- if(t < isect->t) {
-
- if(flags & CURVE_KN_INTERSECTCORRECTION) {
- rootd = sqrtf(td);
- correction = ((-tb - rootd)/(2*a));
- t = tcentre + correction;
- }
-
- float z = zcentre + (dirz * correction);
- // bool backface = false;
-
- if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
- // backface = true;
- correction = ((-tb + rootd)/(2*a));
- t = tcentre + correction;
- z = zcentre + (dirz * correction);
- }
-
- /* stochastic fade from minimum width */
- float adjradius = or1 + z * (or2 - or1) * invl;
- adjradius = adjradius / (r1 + z * gd);
- if(lcg_state && adjradius != 1.0f) {
- if(lcg_step_float(lcg_state) > adjradius)
- return false;
- }
- /* --- */
-
- if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
-
- if(flags & CURVE_KN_ENCLOSEFILTER) {
- float enc_ratio = 1.01f;
- if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
- float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
- float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
- if(a2*c2 < 0.0f)
- return false;
- }
- }
-
-#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
-#endif
- {
- /* record intersection */
- isect->t = t;
- isect->u = z*invl;
- isect->v = gd;
- isect->prim = curveAddr;
- isect->object = object;
- isect->type = type;
-
- return true;
- }
- }
- }
-
- return false;
-
-#ifndef __KERNEL_SSE2__
-# undef len3_squared
-# undef len3
-# undef dot3
-#endif
-}
-
-ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
-{
- float fc = 0.71f;
- float data[4];
- float t2 = t * t;
- data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
- data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
- data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
- data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
- return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
-}
-
-ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
-{
- float data[4];
- float fc = 0.71f;
- float t2 = t * t;
- float t3 = t2 * t;
- data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
- data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
- data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
- data[3] = fc * t3 - fc * t2;
- return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
-}
-
-ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray)
-{
- int flag = kernel_data.curve.curveflags;
- float t = isect->t;
- float3 P = ray->P;
- float3 D = ray->D;
-
- if(isect->object != OBJECT_NONE) {
-#ifdef __OBJECT_MOTION__
- Transform tfm = sd->ob_itfm;
-#else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
-#endif
-
- P = transform_point(&tfm, P);
- D = transform_direction(&tfm, D*t);
- D = normalize_len(D, &t);
- }
-
- int prim = kernel_tex_fetch(__prim_index, isect->prim);
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
- int k1 = k0 + 1;
-
- float3 tg;
-
- if(flag & CURVE_KN_INTERPOLATE) {
- int ka = max(k0 - 1,__float_as_int(v00.x));
- int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
-
- float4 P_curve[4];
-
- if(sd->type & PRIMITIVE_CURVE) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
- P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
- }
- else {
- motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
- }
-
- float3 p[4];
- p[0] = float4_to_float3(P_curve[0]);
- p[1] = float4_to_float3(P_curve[1]);
- p[2] = float4_to_float3(P_curve[2]);
- p[3] = float4_to_float3(P_curve[3]);
-
- P = P + D*t;
-
-#ifdef __UV__
- sd->u = isect->u;
- sd->v = 0.0f;
-#endif
-
- tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
-
- if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
- sd->Ng = normalize(-(D - tg * (dot(tg, D))));
- }
- else {
- /* direction from inside to surface of curve */
- float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
- sd->Ng = normalize(P - p_curr);
-
- /* adjustment for changing radius */
- float gd = isect->v;
-
- if(gd != 0.0f) {
- sd->Ng = sd->Ng - gd * tg;
- sd->Ng = normalize(sd->Ng);
- }
- }
-
- /* todo: sometimes the normal is still so that this is detected as
- * backfacing even if cull backfaces is enabled */
-
- sd->N = sd->Ng;
- }
- else {
- float4 P_curve[2];
-
- if(sd->type & PRIMITIVE_CURVE) {
- P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
- P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
- }
- else {
- motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
- }
-
- float l = 1.0f;
- tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);
-
- P = P + D*t;
-
- float3 dif = P - float4_to_float3(P_curve[0]);
-
-#ifdef __UV__
- sd->u = dot(dif,tg)/l;
- sd->v = 0.0f;
-#endif
-
- if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
- sd->Ng = -(D - tg * dot(tg, D));
- sd->Ng = normalize(sd->Ng);
- }
- else {
- float gd = isect->v;
-
- /* direction from inside to surface of curve */
- sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd);
-
- /* adjustment for changing radius */
- if(gd != 0.0f) {
- sd->Ng = sd->Ng - gd * tg;
- sd->Ng = normalize(sd->Ng);
- }
- }
-
- sd->N = sd->Ng;
- }
-
-#ifdef __DPDU__
- /* dPdu/dPdv */
- sd->dPdu = tg;
- sd->dPdv = cross(tg, sd->Ng);
-#endif
-
- if(isect->object != OBJECT_NONE) {
-#ifdef __OBJECT_MOTION__
- Transform tfm = sd->ob_tfm;
-#else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
-#endif
-
- P = transform_point(&tfm, P);
- }
-
- return P;
-}
-
-#endif
+#endif /* __HAIR__ */
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/geom/geom_curve_intersect.h b/intern/cycles/kernel/geom/geom_curve_intersect.h
new file mode 100644
index 00000000000..e9a149ea1ab
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_curve_intersect.h
@@ -0,0 +1,934 @@
+/*
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Curve primitive intersection functions. */
+
+#ifdef __HAIR__
+
+#if defined(__KERNEL_CUDA__) && (__CUDA_ARCH__ < 300)
+# define ccl_device_curveintersect ccl_device
+#else
+# define ccl_device_curveintersect ccl_device_forceinline
+#endif
+
+#ifdef __KERNEL_SSE2__
+ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
+{
+ return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
+}
+#endif
+
+/* On CPU pass P and dir by reference to aligned vector. */
+ccl_device_curveintersect bool cardinal_curve_intersect(
+ KernelGlobals *kg,
+ Intersection *isect,
+ const float3 ccl_ref P,
+ const float3 ccl_ref dir,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ float epsilon = 0.0f;
+ float r_st, r_en;
+
+ int depth = kernel_data.curve.subdivisions;
+ int flags = kernel_data.curve.curveflags;
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+
+#ifdef __KERNEL_SSE2__
+ ssef vdir = load4f(dir);
+ ssef vcurve_coef[4];
+ const float3 *curve_coef = (float3 *)vcurve_coef;
+
+ {
+ ssef dtmp = vdir * vdir;
+ ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
+ ssef rd_ss = load1f_first(1.0f) / d_ss;
+
+ ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
+ int2 &v00 = (int2 &)v00vec;
+
+ int k0 = v00.x + segment;
+ int k1 = k0 + 1;
+ int ka = max(k0 - 1, v00.x);
+ int kb = min(k1 + 1, v00.x + v00.y - 1);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ avxf P_curve_0_1, P_curve_2_3;
+ if(is_curve_primitive) {
+ P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
+ P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
+ motion_cardinal_curve_keys_avx(kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1,&P_curve_2_3);
+ }
+#else /* __KERNEL_AVX2__ */
+ ssef P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
+ P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve);
+ }
+#endif /* __KERNEL_AVX2__ */
+
+ ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
+ ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
+ ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
+ ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
+ ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
+
+ ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
+ ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
+ ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ const avxf vPP = _mm256_broadcast_ps(&P.m128);
+ const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
+ const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
+ const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);
+
+ const avxf p01 = madd(shuffle<0>(P_curve_0_1 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_0_1 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_0_1 - vPP) * htfm22));
+ const avxf p23 = madd(shuffle<0>(P_curve_2_3 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_2_3 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_2_3 - vPP)*htfm22));
+
+ const ssef p0 = _mm256_castps256_ps128(p01);
+ const ssef p1 = _mm256_extractf128_ps(p01, 1);
+ const ssef p2 = _mm256_castps256_ps128(p23);
+ const ssef p3 = _mm256_extractf128_ps(p23, 1);
+
+ const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
+ r_st = ((float4 &)P_curve_1).w;
+ const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
+ r_en = ((float4 &)P_curve_2).w;
+#else /* __KERNEL_AVX2__ */
+ ssef htfm[] = { htfm0, htfm1, htfm2 };
+ ssef vP = load4f(P);
+ ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
+ ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
+ ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
+ ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
+
+ r_st = ((float4 &)P_curve[1]).w;
+ r_en = ((float4 &)P_curve[2]).w;
+#endif /* __KERNEL_AVX2__ */
+
+ float fc = 0.71f;
+ ssef vfc = ssef(fc);
+ ssef vfcxp3 = vfc * p3;
+
+ vcurve_coef[0] = p1;
+ vcurve_coef[1] = vfc * (p2 - p0);
+ vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
+ vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
+
+ }
+#else
+ float3 curve_coef[4];
+
+ /* curve Intersection check */
+ /* obtain curve parameters */
+ {
+ /* ray transform created - this should be created at beginning of intersection loop */
+ Transform htfm;
+ float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
+ htfm = make_transform(
+ dir.z / d, 0, -dir.x /d, 0,
+ -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
+ dir.x, dir.y, dir.z, 0,
+ 0, 0, 0, 1);
+
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + segment;
+ int k1 = k0 + 1;
+
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
+ float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
+ float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
+ float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);
+
+ float fc = 0.71f;
+ curve_coef[0] = p1;
+ curve_coef[1] = -fc*p0 + fc*p2;
+ curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
+ curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
+ r_st = P_curve[1].w;
+ r_en = P_curve[2].w;
+ }
+#endif
+
+ float r_curr = max(r_st, r_en);
+
+ if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
+ epsilon = 2 * r_curr;
+
+ /* find bounds - this is slow for cubic curves */
+ float upper, lower;
+
+ float zextrem[4];
+ curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
+ if(lower - r_curr > isect->t || upper + r_curr < epsilon)
+ return false;
+
+ /* minimum width extension */
+ float mw_extension = min(difl * fabsf(upper), extmax);
+ float r_ext = mw_extension + r_curr;
+
+ float xextrem[4];
+ curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ float yextrem[4];
+ curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ /* setup recurrent loop */
+ int level = 1 << depth;
+ int tree = 0;
+ float resol = 1.0f / (float)level;
+ bool hit = false;
+
+ /* begin loop */
+ while(!(tree >> (depth))) {
+ const float i_st = tree * resol;
+ const float i_en = i_st + (level * resol);
+
+#ifdef __KERNEL_SSE2__
+ ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
+ ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
+ ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
+
+ ssef vbmin = min(vp_st, vp_en);
+ ssef vbmax = max(vp_st, vp_en);
+
+ float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
+ float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
+ float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
+ float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
+#else
+ float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
+ float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
+
+ float bminx = min(p_st.x, p_en.x);
+ float bmaxx = max(p_st.x, p_en.x);
+ float bminy = min(p_st.y, p_en.y);
+ float bmaxy = max(p_st.y, p_en.y);
+ float bminz = min(p_st.z, p_en.z);
+ float bmaxz = max(p_st.z, p_en.z);
+#endif
+
+ if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
+ bminx = min(bminx,xextrem[1]);
+ bmaxx = max(bmaxx,xextrem[1]);
+ }
+ if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
+ bminx = min(bminx,xextrem[3]);
+ bmaxx = max(bmaxx,xextrem[3]);
+ }
+ if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
+ bminy = min(bminy,yextrem[1]);
+ bmaxy = max(bmaxy,yextrem[1]);
+ }
+ if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
+ bminy = min(bminy,yextrem[3]);
+ bmaxy = max(bmaxy,yextrem[3]);
+ }
+ if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
+ bminz = min(bminz,zextrem[1]);
+ bmaxz = max(bmaxz,zextrem[1]);
+ }
+ if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
+ bminz = min(bminz,zextrem[3]);
+ bmaxz = max(bmaxz,zextrem[3]);
+ }
+
+ float r1 = r_st + (r_en - r_st) * i_st;
+ float r2 = r_st + (r_en - r_st) * i_en;
+ r_curr = max(r1, r2);
+
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ float r_ext = mw_extension + r_curr;
+ float coverage = 1.0f;
+
+ if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
+ /* the bounding box does not overlap the square centered at O */
+ tree += level;
+ level = tree & -tree;
+ }
+ else if(level == 1) {
+
+ /* the maximum recursion depth is reached.
+ * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
+ * dP* is reversed if necessary.*/
+ float t = isect->t;
+ float u = 0.0f;
+ float gd = 0.0f;
+
+ if(flags & CURVE_KN_RIBBONS) {
+ float3 tg = (p_en - p_st);
+#ifdef __KERNEL_SSE__
+ const float3 tg_sq = tg * tg;
+ float w = tg_sq.x + tg_sq.y;
+#else
+ float w = tg.x * tg.x + tg.y * tg.y;
+#endif
+ if(w == 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+#ifdef __KERNEL_SSE__
+ const float3 p_sttg = p_st * tg;
+ w = -(p_sttg.x + p_sttg.y) / w;
+#else
+ w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
+#endif
+ w = saturate(w);
+
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+ r_curr = r_st + (r_en - r_st) * u;
+ /* compare x-y distances */
+ float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+ if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ /* compute coverage */
+ float r_ext = r_curr;
+ coverage = 1.0f;
+ if(difl != 0.0f) {
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ r_ext = mw_extension + r_curr;
+#ifdef __KERNEL_SSE__
+ const float3 p_curr_sq = p_curr * p_curr;
+ const float3 dxxx(_mm_sqrt_ss(_mm_hadd_ps(p_curr_sq.m128, p_curr_sq.m128)));
+ float d = dxxx.x;
+#else
+ float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y);
+#endif
+ float d0 = d - r_curr;
+ float d1 = d + r_curr;
+ float inv_mw_extension = 1.0f/mw_extension;
+ if(d0 >= 0)
+ coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ else // inside
+ coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ }
+
+ if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ t = p_curr.z;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ else {
+ float l = len(p_en - p_st);
+ /* minimum width extension */
+ float or1 = r1;
+ float or2 = r2;
+
+ if(difl != 0.0f) {
+ mw_extension = min(len(p_st - P) * difl, extmax);
+ or1 = r1 < mw_extension ? mw_extension : r1;
+ mw_extension = min(len(p_en - P) * difl, extmax);
+ or2 = r2 < mw_extension ? mw_extension : r2;
+ }
+ /* --- */
+ float invl = 1.0f/l;
+ float3 tg = (p_en - p_st) * invl;
+ gd = (or2 - or1) * invl;
+ float difz = -dot(p_st,tg);
+ float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
+ float invcyla = 1.0f/cyla;
+ float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1)));
+ float tcentre = -halfb*invcyla;
+ float zcentre = difz + (tg.z * tcentre);
+ float3 tdif = - p_st;
+ tdif.z += tcentre;
+ float tdifz = dot(tdif,tg);
+ float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
+ float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
+ float td = tb*tb - 4*cyla*tc;
+ if(td < 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float rootd = sqrtf(td);
+ float correction = (-tb - rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+
+ if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
+ correction = (-tb + rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+ }
+
+ if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float w = (zcentre + (tg.z * correction)) * invl;
+ w = saturate(w);
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ r_curr = r1 + (r2 - r1) * w;
+ r_ext = or1 + (or2 - or1) * w;
+ coverage = r_curr/r_ext;
+
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ /* we found a new intersection */
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = u;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+ hit = true;
+ }
+
+ tree++;
+ level = tree & -tree;
+ }
+ else {
+ /* split the curve into two curves and process */
+ level = level >> 1;
+ }
+ }
+
+ return hit;
+}
+
+ccl_device_curveintersect bool curve_intersect(KernelGlobals *kg,
+ Intersection *isect,
+ float3 P,
+ float3 direction,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ /* define few macros to minimize code duplication for SSE */
+#ifndef __KERNEL_SSE2__
+# define len3_squared(x) len_squared(x)
+# define len3(x) len(x)
+# define dot3(x, y) dot(x, y)
+#endif
+
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ /* curve Intersection check */
+ int flags = kernel_data.curve.curveflags;
+
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int cnum = __float_as_int(v00.x);
+ int k0 = cnum + segment;
+ int k1 = k0 + 1;
+
+#ifndef __KERNEL_SSE2__
+ float4 P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
+ }
+
+ float or1 = P_curve[0].w;
+ float or2 = P_curve[1].w;
+ float3 p1 = float4_to_float3(P_curve[0]);
+ float3 p2 = float4_to_float3(P_curve[1]);
+
+ /* minimum width extension */
+ float r1 = or1;
+ float r2 = or2;
+ float3 dif = P - p1;
+ float3 dif_second = P - p2;
+ if(difl != 0.0f) {
+ float pixelsize = min(len3(dif) * difl, extmax);
+ r1 = or1 < pixelsize ? pixelsize : or1;
+ pixelsize = min(len3(dif_second) * difl, extmax);
+ r2 = or2 < pixelsize ? pixelsize : or2;
+ }
+ /* --- */
+
+ float3 p21_diff = p2 - p1;
+ float3 sphere_dif1 = (dif + dif_second) * 0.5f;
+ float3 dir = direction;
+ float sphere_b_tmp = dot3(dir, sphere_dif1);
+ float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
+#else
+ ssef P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve);
+ }
+
+ const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
+
+ ssef r12 = or12;
+ const ssef vP = load4f(P);
+ const ssef dif = vP - P_curve[0];
+ const ssef dif_second = vP - P_curve[1];
+ if(difl != 0.0f) {
+ const ssef len1_sq = len3_squared_splat(dif);
+ const ssef len2_sq = len3_squared_splat(dif_second);
+ const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq));
+ const ssef pixelsize12 = min(len12 * difl, ssef(extmax));
+ r12 = max(or12, pixelsize12);
+ }
+ float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12));
+ float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));
+
+ const ssef p21_diff = P_curve[1] - P_curve[0];
+ const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
+ const ssef dir = load4f(direction);
+ const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
+ const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
+#endif
+
+ float mr = max(r1, r2);
+ float l = len3(p21_diff);
+ float invl = 1.0f / l;
+ float sp_r = mr + 0.5f * l;
+
+ float sphere_b = dot3(dir, sphere_dif2);
+ float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;
+
+ if(sdisc < 0.0f)
+ return false;
+
+ /* obtain parameters and test midpoint distance for suitable modes */
+#ifndef __KERNEL_SSE2__
+ float3 tg = p21_diff * invl;
+#else
+ const ssef tg = p21_diff * invl;
+#endif
+ float gd = (r2 - r1) * invl;
+
+ float dirz = dot3(dir, tg);
+ float difz = dot3(dif, tg);
+
+ float a = 1.0f - (dirz*dirz*(1 + gd*gd));
+
+ float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1));
+
+ float tcentre = -halfb/a;
+ float zcentre = difz + (dirz * tcentre);
+
+ if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
+ return false;
+ if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
+ return false;
+
+ /* test minimum separation */
+#ifndef __KERNEL_SSE2__
+ float3 cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross(tg, dif));
+#else
+ const ssef cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross_zxy(tg, dif));
+#endif
+ float cprodsq = len3_squared(cprod);
+ float distscaled = dot3(cprod, dif);
+
+ if(cprodsq == 0)
+ distscaled = cprod2sq;
+ else
+ distscaled = (distscaled*distscaled)/cprodsq;
+
+ if(distscaled > mr*mr)
+ return false;
+
+ /* calculate true intersection */
+#ifndef __KERNEL_SSE2__
+ float3 tdif = dif + tcentre * dir;
+#else
+ const ssef tdif = madd(ssef(tcentre), dir, dif);
+#endif
+ float tdifz = dot3(tdif, tg);
+ float tdifma = tdifz*gd + r1;
+ float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma));
+ float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
+ float td = tb*tb - 4*a*tc;
+
+ if(td < 0.0f)
+ return false;
+
+ float rootd = 0.0f;
+ float correction = 0.0f;
+ if(flags & CURVE_KN_ACCURATE) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ }
+
+ float t = tcentre + correction;
+
+ if(t < isect->t) {
+
+ if(flags & CURVE_KN_INTERSECTCORRECTION) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ t = tcentre + correction;
+ }
+
+ float z = zcentre + (dirz * correction);
+ // bool backface = false;
+
+ if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
+ // backface = true;
+ correction = ((-tb + rootd)/(2*a));
+ t = tcentre + correction;
+ z = zcentre + (dirz * correction);
+ }
+
+ /* stochastic fade from minimum width */
+ float adjradius = or1 + z * (or2 - or1) * invl;
+ adjradius = adjradius / (r1 + z * gd);
+ if(lcg_state && adjradius != 1.0f) {
+ if(lcg_step_float(lcg_state) > adjradius)
+ return false;
+ }
+ /* --- */
+
+ if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
+
+ if(flags & CURVE_KN_ENCLOSEFILTER) {
+ float enc_ratio = 1.01f;
+ if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
+ float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
+ float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
+ if(a2*c2 < 0.0f)
+ return false;
+ }
+ }
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = z*invl;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+
+#ifndef __KERNEL_SSE2__
+# undef len3_squared
+# undef len3
+# undef dot3
+#endif
+}
+
+ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float fc = 0.71f;
+ float data[4];
+ float t2 = t * t;
+ data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
+ data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
+ data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
+ data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float data[4];
+ float fc = 0.71f;
+ float t2 = t * t;
+ float t3 = t2 * t;
+ data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
+ data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
+ data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
+ data[3] = fc * t3 - fc * t2;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curve_refine(KernelGlobals *kg,
+ ShaderData *sd,
+ const Intersection *isect,
+ const Ray *ray)
+{
+ int flag = kernel_data.curve.curveflags;
+ float t = isect->t;
+ float3 P = ray->P;
+ float3 D = ray->D;
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_itfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D*t);
+ D = normalize_len(D, &t);
+ }
+
+ int prim = kernel_tex_fetch(__prim_index, isect->prim);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ int k1 = k0 + 1;
+
+ float3 tg;
+
+ if(flag & CURVE_KN_INTERPOLATE) {
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p[4];
+ p[0] = float4_to_float3(P_curve[0]);
+ p[1] = float4_to_float3(P_curve[1]);
+ p[2] = float4_to_float3(P_curve[2]);
+ p[3] = float4_to_float3(P_curve[3]);
+
+ P = P + D*t;
+
+#ifdef __UV__
+ sd->u = isect->u;
+ sd->v = 0.0f;
+#endif
+
+ tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
+
+ if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
+ sd->Ng = normalize(-(D - tg * (dot(tg, D))));
+ }
+ else {
+ /* direction from inside to surface of curve */
+ float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
+ sd->Ng = normalize(P - p_curr);
+
+ /* adjustment for changing radius */
+ float gd = isect->v;
+
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ /* todo: sometimes the normal is still so that this is detected as
+ * backfacing even if cull backfaces is enabled */
+
+ sd->N = sd->Ng;
+ }
+ else {
+ float4 P_curve[2];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
+ }
+
+ float l = 1.0f;
+ tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);
+
+ P = P + D*t;
+
+ float3 dif = P - float4_to_float3(P_curve[0]);
+
+#ifdef __UV__
+ sd->u = dot(dif,tg)/l;
+ sd->v = 0.0f;
+#endif
+
+ if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
+ sd->Ng = -(D - tg * dot(tg, D));
+ sd->Ng = normalize(sd->Ng);
+ }
+ else {
+ float gd = isect->v;
+
+ /* direction from inside to surface of curve */
+ sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd);
+
+ /* adjustment for changing radius */
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ sd->N = sd->Ng;
+ }
+
+#ifdef __DPDU__
+ /* dPdu/dPdv */
+ sd->dPdu = tg;
+ sd->dPdv = cross(tg, sd->Ng);
+#endif
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_tfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ }
+
+ return P;
+}
+
+#endif
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_compat_cuda.h b/intern/cycles/kernel/kernel_compat_cuda.h
index 38708f7ff0b..6d1cf055f2c 100644
--- a/intern/cycles/kernel/kernel_compat_cuda.h
+++ b/intern/cycles/kernel/kernel_compat_cuda.h
@@ -53,6 +53,10 @@
#define ccl_may_alias
#define ccl_addr_space
#define ccl_restrict __restrict__
+/* TODO(sergey): In theory we might use references with CUDA, however
+ * performance impact yet to be investigated.
+ */
+#define ccl_ref
#define ccl_align(n) __align__(n)
#define ATTR_FALLTHROUGH
diff --git a/intern/cycles/kernel/kernel_compat_opencl.h b/intern/cycles/kernel/kernel_compat_opencl.h
index ece99b4313a..36d6031d042 100644
--- a/intern/cycles/kernel/kernel_compat_opencl.h
+++ b/intern/cycles/kernel/kernel_compat_opencl.h
@@ -42,6 +42,7 @@
#define ccl_local_param __local
#define ccl_private __private
#define ccl_restrict restrict
+#define ccl_ref
#define ccl_align(n) __attribute__((aligned(n)))
#ifdef __SPLIT_KERNEL__
@@ -142,7 +143,7 @@
/* data lookup defines */
#define kernel_data (*kg->data)
-#define kernel_tex_fetch(t, index) kg->t[index]
+#define kernel_tex_fetch(tex, index) ((ccl_global tex##_t*)(kg->buffers[kg->tex.buffer] + kg->tex.offset))[(index)]
/* define NULL */
#define NULL 0
diff --git a/intern/cycles/kernel/kernel_globals.h b/intern/cycles/kernel/kernel_globals.h
index f95f0d98c52..c078f09e1d7 100644
--- a/intern/cycles/kernel/kernel_globals.h
+++ b/intern/cycles/kernel/kernel_globals.h
@@ -23,6 +23,10 @@
# include "util/util_vector.h"
#endif
+#ifdef __KERNEL_OPENCL__
+# include "util/util_atomic.h"
+#endif
+
CCL_NAMESPACE_BEGIN
/* On the CPU, we pass along the struct KernelGlobals to nearly everywhere in
@@ -109,11 +113,22 @@ typedef struct KernelGlobals {
#ifdef __KERNEL_OPENCL__
+# define KERNEL_TEX(type, ttype, name) \
+typedef type name##_t;
+# include "kernel/kernel_textures.h"
+
+typedef struct tex_info_t {
+ uint buffer, padding;
+ ulong offset;
+ uint width, height, depth, options;
+} tex_info_t;
+
typedef ccl_addr_space struct KernelGlobals {
ccl_constant KernelData *data;
+ ccl_global char *buffers[8];
# define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name;
+ tex_info_t name;
# include "kernel/kernel_textures.h"
# ifdef __SPLIT_KERNEL__
@@ -122,6 +137,57 @@ typedef ccl_addr_space struct KernelGlobals {
# endif
} KernelGlobals;
+#define KERNEL_BUFFER_PARAMS \
+ ccl_global char *buffer0, \
+ ccl_global char *buffer1, \
+ ccl_global char *buffer2, \
+ ccl_global char *buffer3, \
+ ccl_global char *buffer4, \
+ ccl_global char *buffer5, \
+ ccl_global char *buffer6, \
+ ccl_global char *buffer7
+
+#define KERNEL_BUFFER_ARGS buffer0, buffer1, buffer2, buffer3, buffer4, buffer5, buffer6, buffer7
+
+ccl_device_inline void kernel_set_buffer_pointers(KernelGlobals *kg, KERNEL_BUFFER_PARAMS)
+{
+#ifdef __SPLIT_KERNEL__
+ if(ccl_local_id(0) + ccl_local_id(1) == 0)
+#endif
+ {
+ kg->buffers[0] = buffer0;
+ kg->buffers[1] = buffer1;
+ kg->buffers[2] = buffer2;
+ kg->buffers[3] = buffer3;
+ kg->buffers[4] = buffer4;
+ kg->buffers[5] = buffer5;
+ kg->buffers[6] = buffer6;
+ kg->buffers[7] = buffer7;
+ }
+
+# ifdef __SPLIT_KERNEL__
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+# endif
+}
+
+ccl_device_inline void kernel_set_buffer_info(KernelGlobals *kg)
+{
+# ifdef __SPLIT_KERNEL__
+ if(ccl_local_id(0) + ccl_local_id(1) == 0)
+# endif
+ {
+ ccl_global tex_info_t *info = (ccl_global tex_info_t*)kg->buffers[0];
+
+# define KERNEL_TEX(type, ttype, name) \
+ kg->name = *(info++);
+# include "kernel/kernel_textures.h"
+ }
+
+# ifdef __SPLIT_KERNEL__
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+# endif
+}
+
#endif /* __KERNEL_OPENCL__ */
/* Interpolated lookup table access */
diff --git a/intern/cycles/kernel/kernel_image_opencl.h b/intern/cycles/kernel/kernel_image_opencl.h
index 90747e09357..9e3373432ec 100644
--- a/intern/cycles/kernel/kernel_image_opencl.h
+++ b/intern/cycles/kernel/kernel_image_opencl.h
@@ -15,30 +15,42 @@
*/
-/* For OpenCL all images are packed in a single array, and we do manual lookup
- * and interpolation. */
+/* For OpenCL we do manual lookup and interpolation. */
+
+ccl_device_inline ccl_global tex_info_t* kernel_tex_info(KernelGlobals *kg, uint id) {
+ const uint tex_offset = id
+#define KERNEL_TEX(type, ttype, name) + 1
+#include "kernel/kernel_textures.h"
+ ;
+
+ return &((ccl_global tex_info_t*)kg->buffers[0])[tex_offset];
+}
+
+#define tex_fetch(type, info, index) ((ccl_global type*)(kg->buffers[info->buffer] + info->offset))[(index)]
ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int id, int offset)
{
+ const ccl_global tex_info_t *info = kernel_tex_info(kg, id);
const int texture_type = kernel_tex_type(id);
+
/* Float4 */
if(texture_type == IMAGE_DATA_TYPE_FLOAT4) {
- return kernel_tex_fetch(__tex_image_float4_packed, offset);
+ return tex_fetch(float4, info, offset);
}
/* Byte4 */
else if(texture_type == IMAGE_DATA_TYPE_BYTE4) {
- uchar4 r = kernel_tex_fetch(__tex_image_byte4_packed, offset);
+ uchar4 r = tex_fetch(uchar4, info, offset);
float f = 1.0f/255.0f;
return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
}
/* Float */
else if(texture_type == IMAGE_DATA_TYPE_FLOAT) {
- float f = kernel_tex_fetch(__tex_image_float_packed, offset);
+ float f = tex_fetch(float, info, offset);
return make_float4(f, f, f, 1.0f);
}
/* Byte */
else {
- uchar r = kernel_tex_fetch(__tex_image_byte_packed, offset);
+ uchar r = tex_fetch(uchar, info, offset);
float f = r * (1.0f/255.0f);
return make_float4(f, f, f, 1.0f);
}
@@ -64,17 +76,17 @@ ccl_device_inline float svm_image_texture_frac(float x, int *ix)
return x - (float)i;
}
-ccl_device_inline uint kernel_decode_image_interpolation(uint4 info)
+ccl_device_inline uint kernel_decode_image_interpolation(uint info)
{
- return (info.w & (1 << 0)) ? INTERPOLATION_CLOSEST : INTERPOLATION_LINEAR;
+ return (info & (1 << 0)) ? INTERPOLATION_CLOSEST : INTERPOLATION_LINEAR;
}
-ccl_device_inline uint kernel_decode_image_extension(uint4 info)
+ccl_device_inline uint kernel_decode_image_extension(uint info)
{
- if(info.w & (1 << 1)) {
+ if(info & (1 << 1)) {
return EXTENSION_REPEAT;
}
- else if(info.w & (1 << 2)) {
+ else if(info & (1 << 2)) {
return EXTENSION_EXTEND;
}
else {
@@ -84,13 +96,16 @@ ccl_device_inline uint kernel_decode_image_extension(uint4 info)
ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
- uint4 info = kernel_tex_fetch(__tex_image_packed_info, id*2);
- uint width = info.x;
- uint height = info.y;
- uint offset = info.z;
+ const ccl_global tex_info_t *info = kernel_tex_info(kg, id);
+
+ uint width = info->width;
+ uint height = info->height;
+ uint offset = 0;
+
/* Decode image options. */
- uint interpolation = kernel_decode_image_interpolation(info);
- uint extension = kernel_decode_image_extension(info);
+ uint interpolation = kernel_decode_image_interpolation(info->options);
+ uint extension = kernel_decode_image_extension(info->options);
+
/* Actual sampling. */
float4 r;
int ix, iy, nix, niy;
@@ -150,14 +165,17 @@ ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, fl
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z)
{
- uint4 info = kernel_tex_fetch(__tex_image_packed_info, id*2);
- uint width = info.x;
- uint height = info.y;
- uint offset = info.z;
- uint depth = kernel_tex_fetch(__tex_image_packed_info, id*2+1).x;
+ const ccl_global tex_info_t *info = kernel_tex_info(kg, id);
+
+ uint width = info->width;
+ uint height = info->height;
+ uint offset = 0;
+ uint depth = info->depth;
+
/* Decode image options. */
- uint interpolation = kernel_decode_image_interpolation(info);
- uint extension = kernel_decode_image_extension(info);
+ uint interpolation = kernel_decode_image_interpolation(info->options);
+ uint extension = kernel_decode_image_extension(info->options);
+
/* Actual sampling. */
float4 r;
int ix, iy, iz, nix, niy, niz;
diff --git a/intern/cycles/kernel/kernel_shader.h b/intern/cycles/kernel/kernel_shader.h
index c66f52255f0..90b936d83c9 100644
--- a/intern/cycles/kernel/kernel_shader.h
+++ b/intern/cycles/kernel/kernel_shader.h
@@ -83,7 +83,7 @@ ccl_device_noinline void shader_setup_from_ray(KernelGlobals *kg,
float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
sd->shader = __float_as_int(curvedata.z);
- sd->P = bvh_curve_refine(kg, sd, isect, ray);
+ sd->P = curve_refine(kg, sd, isect, ray);
}
else
#endif
diff --git a/intern/cycles/kernel/kernel_textures.h b/intern/cycles/kernel/kernel_textures.h
index aa5b32803a5..dc6bbbb9924 100644
--- a/intern/cycles/kernel/kernel_textures.h
+++ b/intern/cycles/kernel/kernel_textures.h
@@ -184,15 +184,8 @@ KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_665)
# else
/* bindless textures */
KERNEL_TEX(uint, texture_uint, __bindless_mapping)
-# endif
-#endif
-
-/* packed image (opencl) */
-KERNEL_TEX(uchar4, texture_uchar4, __tex_image_byte4_packed)
-KERNEL_TEX(float4, texture_float4, __tex_image_float4_packed)
-KERNEL_TEX(uchar, texture_uchar, __tex_image_byte_packed)
-KERNEL_TEX(float, texture_float, __tex_image_float_packed)
-KERNEL_TEX(uint4, texture_uint4, __tex_image_packed_info)
+# endif /* __CUDA_ARCH__ */
+#endif /* __KERNEL_CUDA__ */
#undef KERNEL_TEX
#undef KERNEL_IMAGE_TEX
diff --git a/intern/cycles/kernel/kernels/opencl/kernel.cl b/intern/cycles/kernel/kernels/opencl/kernel.cl
index 078acc1631e..83d63b4fba3 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel.cl
@@ -52,9 +52,7 @@ __kernel void kernel_ocl_path_trace(
ccl_global float *buffer,
ccl_global uint *rng_state,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int sample,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -63,9 +61,8 @@ __kernel void kernel_ocl_path_trace(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
int x = sx + ccl_global_id(0);
int y = sy + ccl_global_id(1);
@@ -82,9 +79,7 @@ __kernel void kernel_ocl_shader(
ccl_global float4 *output,
ccl_global float *output_luma,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int type, int sx, int sw, int offset, int sample)
{
@@ -92,9 +87,8 @@ __kernel void kernel_ocl_shader(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
int x = sx + ccl_global_id(0);
@@ -114,9 +108,7 @@ __kernel void kernel_ocl_bake(
ccl_global uint4 *input,
ccl_global float4 *output,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int type, int filter, int sx, int sw, int offset, int sample)
{
@@ -124,9 +116,8 @@ __kernel void kernel_ocl_bake(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
int x = sx + ccl_global_id(0);
@@ -144,9 +135,7 @@ __kernel void kernel_ocl_convert_to_byte(
ccl_global uchar4 *rgba,
ccl_global float *buffer,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
float sample_scale,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -155,9 +144,8 @@ __kernel void kernel_ocl_convert_to_byte(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
int x = sx + ccl_global_id(0);
int y = sy + ccl_global_id(1);
@@ -171,9 +159,7 @@ __kernel void kernel_ocl_convert_to_half_float(
ccl_global uchar4 *rgba,
ccl_global float *buffer,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
float sample_scale,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -182,9 +168,8 @@ __kernel void kernel_ocl_convert_to_half_float(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
int x = sx + ccl_global_id(0);
int y = sy + ccl_global_id(1);
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl b/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
index 8b85d362f8a..95b35e40a45 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
@@ -25,11 +25,7 @@ __kernel void kernel_ocl_path_trace_data_init(
int num_elements,
ccl_global char *ray_state,
ccl_global uint *rng_state,
-
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
-
+ KERNEL_BUFFER_PARAMS,
int start_sample,
int end_sample,
int sx, int sy, int sw, int sh, int offset, int stride,
@@ -46,10 +42,7 @@ __kernel void kernel_ocl_path_trace_data_init(
num_elements,
ray_state,
rng_state,
-
-#define KERNEL_TEX(type, ttype, name) name,
-#include "kernel/kernel_textures.h"
-
+ KERNEL_BUFFER_ARGS,
start_sample,
end_sample,
sx, sy, sw, sh, offset, stride,
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_split_function.h b/intern/cycles/kernel/kernels/opencl/kernel_split_function.h
index f1e914a70d4..591c3846ef2 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_split_function.h
+++ b/intern/cycles/kernel/kernels/opencl/kernel_split_function.h
@@ -25,9 +25,7 @@ __kernel void KERNEL_NAME_EVAL(kernel_ocl_path_trace, KERNEL_NAME)(
ccl_global char *ray_state,
ccl_global uint *rng_state,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
ccl_global int *queue_index,
ccl_global char *use_queues_flag,
@@ -52,12 +50,9 @@ __kernel void KERNEL_NAME_EVAL(kernel_ocl_path_trace, KERNEL_NAME)(
split_data_init(kg, &kernel_split_state, ccl_global_size(0)*ccl_global_size(1), split_data_buffer, ray_state);
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
}
- ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
KERNEL_NAME_EVAL(kernel, KERNEL_NAME)(
kg
diff --git a/intern/cycles/kernel/split/kernel_data_init.h b/intern/cycles/kernel/split/kernel_data_init.h
index e4545d66eff..6f3297de342 100644
--- a/intern/cycles/kernel/split/kernel_data_init.h
+++ b/intern/cycles/kernel/split/kernel_data_init.h
@@ -52,9 +52,7 @@ void KERNEL_FUNCTION_FULL_NAME(data_init)(
ccl_global uint *rng_state,
#ifdef __KERNEL_OPENCL__
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "kernel/kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
#endif
int start_sample,
@@ -100,9 +98,8 @@ void KERNEL_FUNCTION_FULL_NAME(data_init)(
split_data_init(kg, &kernel_split_state, num_elements, split_data_buffer, ray_state);
#ifdef __KERNEL_OPENCL__
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "kernel/kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
#endif
int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);