Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/render/camera.cpp')
-rw-r--r--intern/cycles/render/camera.cpp1297
1 files changed, 643 insertions, 654 deletions
diff --git a/intern/cycles/render/camera.cpp b/intern/cycles/render/camera.cpp
index 82aeb324a00..9c9070c8a90 100644
--- a/intern/cycles/render/camera.cpp
+++ b/intern/cycles/render/camera.cpp
@@ -39,147 +39,148 @@
CCL_NAMESPACE_BEGIN
-static float shutter_curve_eval(float x,
- array<float>& shutter_curve)
+static float shutter_curve_eval(float x, array<float> &shutter_curve)
{
- if(shutter_curve.size() == 0) {
- return 1.0f;
- }
-
- x *= shutter_curve.size();
- int index = (int)x;
- float frac = x - index;
- if(index < shutter_curve.size() - 1) {
- return lerp(shutter_curve[index], shutter_curve[index + 1], frac);
- }
- else {
- return shutter_curve[shutter_curve.size() - 1];
- }
+ if (shutter_curve.size() == 0) {
+ return 1.0f;
+ }
+
+ x *= shutter_curve.size();
+ int index = (int)x;
+ float frac = x - index;
+ if (index < shutter_curve.size() - 1) {
+ return lerp(shutter_curve[index], shutter_curve[index + 1], frac);
+ }
+ else {
+ return shutter_curve[shutter_curve.size() - 1];
+ }
}
NODE_DEFINE(Camera)
{
- NodeType* type = NodeType::add("camera", create);
-
- SOCKET_FLOAT(shuttertime, "Shutter Time", 1.0f);
-
- static NodeEnum motion_position_enum;
- motion_position_enum.insert("start", MOTION_POSITION_START);
- motion_position_enum.insert("center", MOTION_POSITION_CENTER);
- motion_position_enum.insert("end", MOTION_POSITION_END);
- SOCKET_ENUM(motion_position, "Motion Position", motion_position_enum, MOTION_POSITION_CENTER);
-
- static NodeEnum rolling_shutter_type_enum;
- rolling_shutter_type_enum.insert("none", ROLLING_SHUTTER_NONE);
- rolling_shutter_type_enum.insert("top", ROLLING_SHUTTER_TOP);
- SOCKET_ENUM(rolling_shutter_type, "Rolling Shutter Type", rolling_shutter_type_enum, ROLLING_SHUTTER_NONE);
- SOCKET_FLOAT(rolling_shutter_duration, "Rolling Shutter Duration", 0.1f);
-
- SOCKET_FLOAT_ARRAY(shutter_curve, "Shutter Curve", array<float>());
-
- SOCKET_FLOAT(aperturesize, "Aperture Size", 0.0f);
- SOCKET_FLOAT(focaldistance, "Focal Distance", 10.0f);
- SOCKET_UINT(blades, "Blades", 0);
- SOCKET_FLOAT(bladesrotation, "Blades Rotation", 0.0f);
-
- SOCKET_TRANSFORM(matrix, "Matrix", transform_identity());
- SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());
-
- SOCKET_FLOAT(aperture_ratio, "Aperture Ratio", 1.0f);
-
- static NodeEnum type_enum;
- type_enum.insert("perspective", CAMERA_PERSPECTIVE);
- type_enum.insert("orthograph", CAMERA_ORTHOGRAPHIC);
- type_enum.insert("panorama", CAMERA_PANORAMA);
- SOCKET_ENUM(type, "Type", type_enum, CAMERA_PERSPECTIVE);
-
- static NodeEnum panorama_type_enum;
- panorama_type_enum.insert("equirectangular", PANORAMA_EQUIRECTANGULAR);
- panorama_type_enum.insert("mirrorball", PANORAMA_MIRRORBALL);
- panorama_type_enum.insert("fisheye_equidistant", PANORAMA_FISHEYE_EQUIDISTANT);
- panorama_type_enum.insert("fisheye_equisolid", PANORAMA_FISHEYE_EQUISOLID);
- SOCKET_ENUM(panorama_type, "Panorama Type", panorama_type_enum, PANORAMA_EQUIRECTANGULAR);
-
- SOCKET_FLOAT(fisheye_fov, "Fisheye FOV", M_PI_F);
- SOCKET_FLOAT(fisheye_lens, "Fisheye Lens", 10.5f);
- SOCKET_FLOAT(latitude_min, "Latitude Min", -M_PI_2_F);
- SOCKET_FLOAT(latitude_max, "Latitude Max", M_PI_2_F);
- SOCKET_FLOAT(longitude_min, "Longitude Min", -M_PI_F);
- SOCKET_FLOAT(longitude_max, "Longitude Max", M_PI_F);
- SOCKET_FLOAT(fov, "FOV", M_PI_4_F);
- SOCKET_FLOAT(fov_pre, "FOV Pre", M_PI_4_F);
- SOCKET_FLOAT(fov_post, "FOV Post", M_PI_4_F);
-
- static NodeEnum stereo_eye_enum;
- stereo_eye_enum.insert("none", STEREO_NONE);
- stereo_eye_enum.insert("left", STEREO_LEFT);
- stereo_eye_enum.insert("right", STEREO_RIGHT);
- SOCKET_ENUM(stereo_eye, "Stereo Eye", stereo_eye_enum, STEREO_NONE);
-
- SOCKET_FLOAT(interocular_distance, "Interocular Distance", 0.065f);
- SOCKET_FLOAT(convergence_distance, "Convergence Distance", 30.0f * 0.065f);
-
- SOCKET_BOOLEAN(use_pole_merge, "Use Pole Merge", false);
- SOCKET_FLOAT(pole_merge_angle_from, "Pole Merge Angle From", 60.0f * M_PI_F / 180.0f);
- SOCKET_FLOAT(pole_merge_angle_to, "Pole Merge Angle To", 75.0f * M_PI_F / 180.0f);
-
- SOCKET_FLOAT(sensorwidth, "Sensor Width", 0.036f);
- SOCKET_FLOAT(sensorheight, "Sensor Height", 0.024f);
-
- SOCKET_FLOAT(nearclip, "Near Clip", 1e-5f);
- SOCKET_FLOAT(farclip, "Far Clip", 1e5f);
-
- SOCKET_FLOAT(viewplane.left, "Viewplane Left", 0);
- SOCKET_FLOAT(viewplane.right, "Viewplane Right", 0);
- SOCKET_FLOAT(viewplane.bottom, "Viewplane Bottom", 0);
- SOCKET_FLOAT(viewplane.top, "Viewplane Top", 0);
-
- SOCKET_FLOAT(border.left, "Border Left", 0);
- SOCKET_FLOAT(border.right, "Border Right", 0);
- SOCKET_FLOAT(border.bottom, "Border Bottom", 0);
- SOCKET_FLOAT(border.top, "Border Top", 0);
-
- SOCKET_FLOAT(offscreen_dicing_scale, "Offscreen Dicing Scale", 1.0f);
-
- return type;
+ NodeType *type = NodeType::add("camera", create);
+
+ SOCKET_FLOAT(shuttertime, "Shutter Time", 1.0f);
+
+ static NodeEnum motion_position_enum;
+ motion_position_enum.insert("start", MOTION_POSITION_START);
+ motion_position_enum.insert("center", MOTION_POSITION_CENTER);
+ motion_position_enum.insert("end", MOTION_POSITION_END);
+ SOCKET_ENUM(motion_position, "Motion Position", motion_position_enum, MOTION_POSITION_CENTER);
+
+ static NodeEnum rolling_shutter_type_enum;
+ rolling_shutter_type_enum.insert("none", ROLLING_SHUTTER_NONE);
+ rolling_shutter_type_enum.insert("top", ROLLING_SHUTTER_TOP);
+ SOCKET_ENUM(rolling_shutter_type,
+ "Rolling Shutter Type",
+ rolling_shutter_type_enum,
+ ROLLING_SHUTTER_NONE);
+ SOCKET_FLOAT(rolling_shutter_duration, "Rolling Shutter Duration", 0.1f);
+
+ SOCKET_FLOAT_ARRAY(shutter_curve, "Shutter Curve", array<float>());
+
+ SOCKET_FLOAT(aperturesize, "Aperture Size", 0.0f);
+ SOCKET_FLOAT(focaldistance, "Focal Distance", 10.0f);
+ SOCKET_UINT(blades, "Blades", 0);
+ SOCKET_FLOAT(bladesrotation, "Blades Rotation", 0.0f);
+
+ SOCKET_TRANSFORM(matrix, "Matrix", transform_identity());
+ SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());
+
+ SOCKET_FLOAT(aperture_ratio, "Aperture Ratio", 1.0f);
+
+ static NodeEnum type_enum;
+ type_enum.insert("perspective", CAMERA_PERSPECTIVE);
+ type_enum.insert("orthograph", CAMERA_ORTHOGRAPHIC);
+ type_enum.insert("panorama", CAMERA_PANORAMA);
+ SOCKET_ENUM(type, "Type", type_enum, CAMERA_PERSPECTIVE);
+
+ static NodeEnum panorama_type_enum;
+ panorama_type_enum.insert("equirectangular", PANORAMA_EQUIRECTANGULAR);
+ panorama_type_enum.insert("mirrorball", PANORAMA_MIRRORBALL);
+ panorama_type_enum.insert("fisheye_equidistant", PANORAMA_FISHEYE_EQUIDISTANT);
+ panorama_type_enum.insert("fisheye_equisolid", PANORAMA_FISHEYE_EQUISOLID);
+ SOCKET_ENUM(panorama_type, "Panorama Type", panorama_type_enum, PANORAMA_EQUIRECTANGULAR);
+
+ SOCKET_FLOAT(fisheye_fov, "Fisheye FOV", M_PI_F);
+ SOCKET_FLOAT(fisheye_lens, "Fisheye Lens", 10.5f);
+ SOCKET_FLOAT(latitude_min, "Latitude Min", -M_PI_2_F);
+ SOCKET_FLOAT(latitude_max, "Latitude Max", M_PI_2_F);
+ SOCKET_FLOAT(longitude_min, "Longitude Min", -M_PI_F);
+ SOCKET_FLOAT(longitude_max, "Longitude Max", M_PI_F);
+ SOCKET_FLOAT(fov, "FOV", M_PI_4_F);
+ SOCKET_FLOAT(fov_pre, "FOV Pre", M_PI_4_F);
+ SOCKET_FLOAT(fov_post, "FOV Post", M_PI_4_F);
+
+ static NodeEnum stereo_eye_enum;
+ stereo_eye_enum.insert("none", STEREO_NONE);
+ stereo_eye_enum.insert("left", STEREO_LEFT);
+ stereo_eye_enum.insert("right", STEREO_RIGHT);
+ SOCKET_ENUM(stereo_eye, "Stereo Eye", stereo_eye_enum, STEREO_NONE);
+
+ SOCKET_FLOAT(interocular_distance, "Interocular Distance", 0.065f);
+ SOCKET_FLOAT(convergence_distance, "Convergence Distance", 30.0f * 0.065f);
+
+ SOCKET_BOOLEAN(use_pole_merge, "Use Pole Merge", false);
+ SOCKET_FLOAT(pole_merge_angle_from, "Pole Merge Angle From", 60.0f * M_PI_F / 180.0f);
+ SOCKET_FLOAT(pole_merge_angle_to, "Pole Merge Angle To", 75.0f * M_PI_F / 180.0f);
+
+ SOCKET_FLOAT(sensorwidth, "Sensor Width", 0.036f);
+ SOCKET_FLOAT(sensorheight, "Sensor Height", 0.024f);
+
+ SOCKET_FLOAT(nearclip, "Near Clip", 1e-5f);
+ SOCKET_FLOAT(farclip, "Far Clip", 1e5f);
+
+ SOCKET_FLOAT(viewplane.left, "Viewplane Left", 0);
+ SOCKET_FLOAT(viewplane.right, "Viewplane Right", 0);
+ SOCKET_FLOAT(viewplane.bottom, "Viewplane Bottom", 0);
+ SOCKET_FLOAT(viewplane.top, "Viewplane Top", 0);
+
+ SOCKET_FLOAT(border.left, "Border Left", 0);
+ SOCKET_FLOAT(border.right, "Border Right", 0);
+ SOCKET_FLOAT(border.bottom, "Border Bottom", 0);
+ SOCKET_FLOAT(border.top, "Border Top", 0);
+
+ SOCKET_FLOAT(offscreen_dicing_scale, "Offscreen Dicing Scale", 1.0f);
+
+ return type;
}
-Camera::Camera()
-: Node(node_type)
+Camera::Camera() : Node(node_type)
{
- shutter_table_offset = TABLE_OFFSET_INVALID;
+ shutter_table_offset = TABLE_OFFSET_INVALID;
- width = 1024;
- height = 512;
- resolution = 1;
+ width = 1024;
+ height = 512;
+ resolution = 1;
- use_perspective_motion = false;
+ use_perspective_motion = false;
- shutter_curve.resize(RAMP_TABLE_SIZE);
- for(int i = 0; i < shutter_curve.size(); ++i) {
- shutter_curve[i] = 1.0f;
- }
+ shutter_curve.resize(RAMP_TABLE_SIZE);
+ for (int i = 0; i < shutter_curve.size(); ++i) {
+ shutter_curve[i] = 1.0f;
+ }
- compute_auto_viewplane();
+ compute_auto_viewplane();
- screentoworld = projection_identity();
- rastertoworld = projection_identity();
- ndctoworld = projection_identity();
- rastertocamera = projection_identity();
- cameratoworld = transform_identity();
- worldtoraster = projection_identity();
+ screentoworld = projection_identity();
+ rastertoworld = projection_identity();
+ ndctoworld = projection_identity();
+ rastertocamera = projection_identity();
+ cameratoworld = transform_identity();
+ worldtoraster = projection_identity();
- full_rastertocamera = projection_identity();
+ full_rastertocamera = projection_identity();
- dx = make_float3(0.0f, 0.0f, 0.0f);
- dy = make_float3(0.0f, 0.0f, 0.0f);
+ dx = make_float3(0.0f, 0.0f, 0.0f);
+ dy = make_float3(0.0f, 0.0f, 0.0f);
- need_update = true;
- need_device_update = true;
- need_flags_update = true;
- previous_need_motion = -1;
+ need_update = true;
+ need_device_update = true;
+ need_flags_update = true;
+ previous_need_motion = -1;
- memset((void *)&kernel_camera, 0, sizeof(kernel_camera));
+ memset((void *)&kernel_camera, 0, sizeof(kernel_camera));
}
Camera::~Camera()
@@ -188,589 +189,577 @@ Camera::~Camera()
void Camera::compute_auto_viewplane()
{
- if(type == CAMERA_PANORAMA) {
- viewplane.left = 0.0f;
- viewplane.right = 1.0f;
- viewplane.bottom = 0.0f;
- viewplane.top = 1.0f;
- }
- else {
- float aspect = (float)width/(float)height;
- if(width >= height) {
- viewplane.left = -aspect;
- viewplane.right = aspect;
- viewplane.bottom = -1.0f;
- viewplane.top = 1.0f;
- }
- else {
- viewplane.left = -1.0f;
- viewplane.right = 1.0f;
- viewplane.bottom = -1.0f/aspect;
- viewplane.top = 1.0f/aspect;
- }
- }
+ if (type == CAMERA_PANORAMA) {
+ viewplane.left = 0.0f;
+ viewplane.right = 1.0f;
+ viewplane.bottom = 0.0f;
+ viewplane.top = 1.0f;
+ }
+ else {
+ float aspect = (float)width / (float)height;
+ if (width >= height) {
+ viewplane.left = -aspect;
+ viewplane.right = aspect;
+ viewplane.bottom = -1.0f;
+ viewplane.top = 1.0f;
+ }
+ else {
+ viewplane.left = -1.0f;
+ viewplane.right = 1.0f;
+ viewplane.bottom = -1.0f / aspect;
+ viewplane.top = 1.0f / aspect;
+ }
+ }
}
void Camera::update(Scene *scene)
{
- Scene::MotionType need_motion = scene->need_motion();
-
- if(previous_need_motion != need_motion) {
- /* scene's motion model could have been changed since previous device
- * camera update this could happen for example in case when one render
- * layer has got motion pass and another not */
- need_device_update = true;
- }
-
- if(!need_update)
- return;
-
- /* Full viewport to camera border in the viewport. */
- Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
- Transform bordertofull = transform_inverse(fulltoborder);
-
- /* ndc to raster */
- Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
- Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;
-
- /* raster to screen */
- Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);
-
- Transform screentoraster = ndctoraster * screentondc;
- Transform rastertoscreen = transform_inverse(screentoraster);
- Transform full_screentoraster = full_ndctoraster * screentondc;
- Transform full_rastertoscreen = transform_inverse(full_screentoraster);
-
- /* screen to camera */
- ProjectionTransform cameratoscreen;
- if(type == CAMERA_PERSPECTIVE)
- cameratoscreen = projection_perspective(fov, nearclip, farclip);
- else if(type == CAMERA_ORTHOGRAPHIC)
- cameratoscreen = projection_orthographic(nearclip, farclip);
- else
- cameratoscreen = projection_identity();
-
- ProjectionTransform screentocamera = projection_inverse(cameratoscreen);
-
- rastertocamera = screentocamera * rastertoscreen;
- full_rastertocamera = screentocamera * full_rastertoscreen;
- cameratoraster = screentoraster * cameratoscreen;
-
- cameratoworld = matrix;
- screentoworld = cameratoworld * screentocamera;
- rastertoworld = cameratoworld * rastertocamera;
- ndctoworld = rastertoworld * ndctoraster;
-
- /* note we recompose matrices instead of taking inverses of the above, this
- * is needed to avoid inverting near degenerate matrices that happen due to
- * precision issues with large scenes */
- worldtocamera = transform_inverse(matrix);
- worldtoscreen = cameratoscreen * worldtocamera;
- worldtondc = screentondc * worldtoscreen;
- worldtoraster = ndctoraster * worldtondc;
-
- /* differentials */
- if(type == CAMERA_ORTHOGRAPHIC) {
- dx = transform_perspective_direction(&rastertocamera, make_float3(1, 0, 0));
- dy = transform_perspective_direction(&rastertocamera, make_float3(0, 1, 0));
- full_dx = transform_perspective_direction(&full_rastertocamera, make_float3(1, 0, 0));
- full_dy = transform_perspective_direction(&full_rastertocamera, make_float3(0, 1, 0));
- }
- else if(type == CAMERA_PERSPECTIVE) {
- dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
- transform_perspective(&rastertocamera, make_float3(0, 0, 0));
- dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
- transform_perspective(&rastertocamera, make_float3(0, 0, 0));
- full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
- transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
- full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
- transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
- }
- else {
- dx = make_float3(0.0f, 0.0f, 0.0f);
- dy = make_float3(0.0f, 0.0f, 0.0f);
- }
-
- dx = transform_direction(&cameratoworld, dx);
- dy = transform_direction(&cameratoworld, dy);
- full_dx = transform_direction(&cameratoworld, full_dx);
- full_dy = transform_direction(&cameratoworld, full_dy);
-
- if(type == CAMERA_PERSPECTIVE) {
- float3 v = transform_perspective(&full_rastertocamera, make_float3(full_width, full_height, 1.0f));
-
- frustum_right_normal = normalize(make_float3(v.z, 0.0f, -v.x));
- frustum_top_normal = normalize(make_float3(0.0f, v.z, -v.y));
- }
-
- /* Compute kernel camera data. */
- KernelCamera *kcam = &kernel_camera;
-
- /* store matrices */
- kcam->screentoworld = screentoworld;
- kcam->rastertoworld = rastertoworld;
- kcam->rastertocamera = rastertocamera;
- kcam->cameratoworld = cameratoworld;
- kcam->worldtocamera = worldtocamera;
- kcam->worldtoscreen = worldtoscreen;
- kcam->worldtoraster = worldtoraster;
- kcam->worldtondc = worldtondc;
- kcam->ndctoworld = ndctoworld;
-
- /* camera motion */
- kcam->num_motion_steps = 0;
- kcam->have_perspective_motion = 0;
- kernel_camera_motion.clear();
-
- /* Test if any of the transforms are actually different. */
- bool have_motion = false;
- for(size_t i = 0; i < motion.size(); i++) {
- have_motion = have_motion || motion[i] != matrix;
- }
-
- if(need_motion == Scene::MOTION_PASS) {
- /* TODO(sergey): Support perspective (zoom, fov) motion. */
- if(type == CAMERA_PANORAMA) {
- if(have_motion) {
- kcam->motion_pass_pre = transform_inverse(motion[0]);
- kcam->motion_pass_post = transform_inverse(motion[motion.size()-1]);
- }
- else {
- kcam->motion_pass_pre = kcam->worldtocamera;
- kcam->motion_pass_post = kcam->worldtocamera;
- }
- }
- else {
- if(have_motion) {
- kcam->perspective_pre = cameratoraster * transform_inverse(motion[0]);
- kcam->perspective_post = cameratoraster * transform_inverse(motion[motion.size()-1]);
- }
- else {
- kcam->perspective_pre = worldtoraster;
- kcam->perspective_post = worldtoraster;
- }
- }
- }
- else if(need_motion == Scene::MOTION_BLUR) {
- if(have_motion) {
- kernel_camera_motion.resize(motion.size());
- transform_motion_decompose(kernel_camera_motion.data(), motion.data(), motion.size());
- kcam->num_motion_steps = motion.size();
- }
-
- /* TODO(sergey): Support other types of camera. */
- if(use_perspective_motion && type == CAMERA_PERSPECTIVE) {
- /* TODO(sergey): Move to an utility function and de-duplicate with
- * calculation above.
- */
- ProjectionTransform screentocamera_pre =
- projection_inverse(projection_perspective(fov_pre,
- nearclip,
- farclip));
- ProjectionTransform screentocamera_post =
- projection_inverse(projection_perspective(fov_post,
- nearclip,
- farclip));
-
- kcam->perspective_pre = screentocamera_pre * rastertoscreen;
- kcam->perspective_post = screentocamera_post * rastertoscreen;
- kcam->have_perspective_motion = 1;
- }
- }
-
- /* depth of field */
- kcam->aperturesize = aperturesize;
- kcam->focaldistance = focaldistance;
- kcam->blades = (blades < 3)? 0.0f: blades;
- kcam->bladesrotation = bladesrotation;
-
- /* motion blur */
- kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f;
-
- /* type */
- kcam->type = type;
-
- /* anamorphic lens bokeh */
- kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
-
- /* panorama */
- kcam->panorama_type = panorama_type;
- kcam->fisheye_fov = fisheye_fov;
- kcam->fisheye_lens = fisheye_lens;
- kcam->equirectangular_range = make_float4(longitude_min - longitude_max, -longitude_min,
- latitude_min - latitude_max, -latitude_min + M_PI_2_F);
-
- switch(stereo_eye) {
- case STEREO_LEFT:
- kcam->interocular_offset = -interocular_distance * 0.5f;
- break;
- case STEREO_RIGHT:
- kcam->interocular_offset = interocular_distance * 0.5f;
- break;
- case STEREO_NONE:
- default:
- kcam->interocular_offset = 0.0f;
- break;
- }
-
- kcam->convergence_distance = convergence_distance;
- if(use_pole_merge) {
- kcam->pole_merge_angle_from = pole_merge_angle_from;
- kcam->pole_merge_angle_to = pole_merge_angle_to;
- }
- else {
- kcam->pole_merge_angle_from = -1.0f;
- kcam->pole_merge_angle_to = -1.0f;
- }
-
- /* sensor size */
- kcam->sensorwidth = sensorwidth;
- kcam->sensorheight = sensorheight;
-
- /* render size */
- kcam->width = width;
- kcam->height = height;
- kcam->resolution = resolution;
-
- /* store differentials */
- kcam->dx = float3_to_float4(dx);
- kcam->dy = float3_to_float4(dy);
-
- /* clipping */
- kcam->nearclip = nearclip;
- kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip;
-
- /* Camera in volume. */
- kcam->is_inside_volume = 0;
-
- /* Rolling shutter effect */
- kcam->rolling_shutter_type = rolling_shutter_type;
- kcam->rolling_shutter_duration = rolling_shutter_duration;
-
- /* Set further update flags */
- need_update = false;
- need_device_update = true;
- need_flags_update = true;
- previous_need_motion = need_motion;
+ Scene::MotionType need_motion = scene->need_motion();
+
+ if (previous_need_motion != need_motion) {
+ /* scene's motion model could have been changed since previous device
+ * camera update this could happen for example in case when one render
+ * layer has got motion pass and another not */
+ need_device_update = true;
+ }
+
+ if (!need_update)
+ return;
+
+ /* Full viewport to camera border in the viewport. */
+ Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
+ Transform bordertofull = transform_inverse(fulltoborder);
+
+ /* ndc to raster */
+ Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
+ Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;
+
+ /* raster to screen */
+ Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);
+
+ Transform screentoraster = ndctoraster * screentondc;
+ Transform rastertoscreen = transform_inverse(screentoraster);
+ Transform full_screentoraster = full_ndctoraster * screentondc;
+ Transform full_rastertoscreen = transform_inverse(full_screentoraster);
+
+ /* screen to camera */
+ ProjectionTransform cameratoscreen;
+ if (type == CAMERA_PERSPECTIVE)
+ cameratoscreen = projection_perspective(fov, nearclip, farclip);
+ else if (type == CAMERA_ORTHOGRAPHIC)
+ cameratoscreen = projection_orthographic(nearclip, farclip);
+ else
+ cameratoscreen = projection_identity();
+
+ ProjectionTransform screentocamera = projection_inverse(cameratoscreen);
+
+ rastertocamera = screentocamera * rastertoscreen;
+ full_rastertocamera = screentocamera * full_rastertoscreen;
+ cameratoraster = screentoraster * cameratoscreen;
+
+ cameratoworld = matrix;
+ screentoworld = cameratoworld * screentocamera;
+ rastertoworld = cameratoworld * rastertocamera;
+ ndctoworld = rastertoworld * ndctoraster;
+
+ /* note we recompose matrices instead of taking inverses of the above, this
+ * is needed to avoid inverting near degenerate matrices that happen due to
+ * precision issues with large scenes */
+ worldtocamera = transform_inverse(matrix);
+ worldtoscreen = cameratoscreen * worldtocamera;
+ worldtondc = screentondc * worldtoscreen;
+ worldtoraster = ndctoraster * worldtondc;
+
+ /* differentials */
+ if (type == CAMERA_ORTHOGRAPHIC) {
+ dx = transform_perspective_direction(&rastertocamera, make_float3(1, 0, 0));
+ dy = transform_perspective_direction(&rastertocamera, make_float3(0, 1, 0));
+ full_dx = transform_perspective_direction(&full_rastertocamera, make_float3(1, 0, 0));
+ full_dy = transform_perspective_direction(&full_rastertocamera, make_float3(0, 1, 0));
+ }
+ else if (type == CAMERA_PERSPECTIVE) {
+ dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
+ transform_perspective(&rastertocamera, make_float3(0, 0, 0));
+ dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
+ transform_perspective(&rastertocamera, make_float3(0, 0, 0));
+ full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
+ transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
+ full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
+ transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
+ }
+ else {
+ dx = make_float3(0.0f, 0.0f, 0.0f);
+ dy = make_float3(0.0f, 0.0f, 0.0f);
+ }
+
+ dx = transform_direction(&cameratoworld, dx);
+ dy = transform_direction(&cameratoworld, dy);
+ full_dx = transform_direction(&cameratoworld, full_dx);
+ full_dy = transform_direction(&cameratoworld, full_dy);
+
+ if (type == CAMERA_PERSPECTIVE) {
+ float3 v = transform_perspective(&full_rastertocamera,
+ make_float3(full_width, full_height, 1.0f));
+
+ frustum_right_normal = normalize(make_float3(v.z, 0.0f, -v.x));
+ frustum_top_normal = normalize(make_float3(0.0f, v.z, -v.y));
+ }
+
+ /* Compute kernel camera data. */
+ KernelCamera *kcam = &kernel_camera;
+
+ /* store matrices */
+ kcam->screentoworld = screentoworld;
+ kcam->rastertoworld = rastertoworld;
+ kcam->rastertocamera = rastertocamera;
+ kcam->cameratoworld = cameratoworld;
+ kcam->worldtocamera = worldtocamera;
+ kcam->worldtoscreen = worldtoscreen;
+ kcam->worldtoraster = worldtoraster;
+ kcam->worldtondc = worldtondc;
+ kcam->ndctoworld = ndctoworld;
+
+ /* camera motion */
+ kcam->num_motion_steps = 0;
+ kcam->have_perspective_motion = 0;
+ kernel_camera_motion.clear();
+
+ /* Test if any of the transforms are actually different. */
+ bool have_motion = false;
+ for (size_t i = 0; i < motion.size(); i++) {
+ have_motion = have_motion || motion[i] != matrix;
+ }
+
+ if (need_motion == Scene::MOTION_PASS) {
+ /* TODO(sergey): Support perspective (zoom, fov) motion. */
+ if (type == CAMERA_PANORAMA) {
+ if (have_motion) {
+ kcam->motion_pass_pre = transform_inverse(motion[0]);
+ kcam->motion_pass_post = transform_inverse(motion[motion.size() - 1]);
+ }
+ else {
+ kcam->motion_pass_pre = kcam->worldtocamera;
+ kcam->motion_pass_post = kcam->worldtocamera;
+ }
+ }
+ else {
+ if (have_motion) {
+ kcam->perspective_pre = cameratoraster * transform_inverse(motion[0]);
+ kcam->perspective_post = cameratoraster * transform_inverse(motion[motion.size() - 1]);
+ }
+ else {
+ kcam->perspective_pre = worldtoraster;
+ kcam->perspective_post = worldtoraster;
+ }
+ }
+ }
+ else if (need_motion == Scene::MOTION_BLUR) {
+ if (have_motion) {
+ kernel_camera_motion.resize(motion.size());
+ transform_motion_decompose(kernel_camera_motion.data(), motion.data(), motion.size());
+ kcam->num_motion_steps = motion.size();
+ }
+
+ /* TODO(sergey): Support other types of camera. */
+ if (use_perspective_motion && type == CAMERA_PERSPECTIVE) {
+ /* TODO(sergey): Move to an utility function and de-duplicate with
+ * calculation above.
+ */
+ ProjectionTransform screentocamera_pre = projection_inverse(
+ projection_perspective(fov_pre, nearclip, farclip));
+ ProjectionTransform screentocamera_post = projection_inverse(
+ projection_perspective(fov_post, nearclip, farclip));
+
+ kcam->perspective_pre = screentocamera_pre * rastertoscreen;
+ kcam->perspective_post = screentocamera_post * rastertoscreen;
+ kcam->have_perspective_motion = 1;
+ }
+ }
+
+ /* depth of field */
+ kcam->aperturesize = aperturesize;
+ kcam->focaldistance = focaldistance;
+ kcam->blades = (blades < 3) ? 0.0f : blades;
+ kcam->bladesrotation = bladesrotation;
+
+ /* motion blur */
+ kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime : -1.0f;
+
+ /* type */
+ kcam->type = type;
+
+ /* anamorphic lens bokeh */
+ kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
+
+ /* panorama */
+ kcam->panorama_type = panorama_type;
+ kcam->fisheye_fov = fisheye_fov;
+ kcam->fisheye_lens = fisheye_lens;
+ kcam->equirectangular_range = make_float4(longitude_min - longitude_max,
+ -longitude_min,
+ latitude_min - latitude_max,
+ -latitude_min + M_PI_2_F);
+
+ switch (stereo_eye) {
+ case STEREO_LEFT:
+ kcam->interocular_offset = -interocular_distance * 0.5f;
+ break;
+ case STEREO_RIGHT:
+ kcam->interocular_offset = interocular_distance * 0.5f;
+ break;
+ case STEREO_NONE:
+ default:
+ kcam->interocular_offset = 0.0f;
+ break;
+ }
+
+ kcam->convergence_distance = convergence_distance;
+ if (use_pole_merge) {
+ kcam->pole_merge_angle_from = pole_merge_angle_from;
+ kcam->pole_merge_angle_to = pole_merge_angle_to;
+ }
+ else {
+ kcam->pole_merge_angle_from = -1.0f;
+ kcam->pole_merge_angle_to = -1.0f;
+ }
+
+ /* sensor size */
+ kcam->sensorwidth = sensorwidth;
+ kcam->sensorheight = sensorheight;
+
+ /* render size */
+ kcam->width = width;
+ kcam->height = height;
+ kcam->resolution = resolution;
+
+ /* store differentials */
+ kcam->dx = float3_to_float4(dx);
+ kcam->dy = float3_to_float4(dy);
+
+ /* clipping */
+ kcam->nearclip = nearclip;
+ kcam->cliplength = (farclip == FLT_MAX) ? FLT_MAX : farclip - nearclip;
+
+ /* Camera in volume. */
+ kcam->is_inside_volume = 0;
+
+ /* Rolling shutter effect */
+ kcam->rolling_shutter_type = rolling_shutter_type;
+ kcam->rolling_shutter_duration = rolling_shutter_duration;
+
+ /* Set further update flags */
+ need_update = false;
+ need_device_update = true;
+ need_flags_update = true;
+ previous_need_motion = need_motion;
}
-void Camera::device_update(Device * /* device */,
- DeviceScene *dscene,
- Scene *scene)
+void Camera::device_update(Device * /* device */, DeviceScene *dscene, Scene *scene)
{
- update(scene);
-
- if(!need_device_update)
- return;
-
- scene->lookup_tables->remove_table(&shutter_table_offset);
- if(kernel_camera.shuttertime != -1.0f) {
- vector<float> shutter_table;
- util_cdf_inverted(SHUTTER_TABLE_SIZE,
- 0.0f,
- 1.0f,
- function_bind(shutter_curve_eval, _1, shutter_curve),
- false,
- shutter_table);
- shutter_table_offset = scene->lookup_tables->add_table(dscene,
- shutter_table);
- kernel_camera.shutter_table_offset = (int)shutter_table_offset;
- }
-
- dscene->data.cam = kernel_camera;
-
- size_t num_motion_steps = kernel_camera_motion.size();
- if(num_motion_steps) {
- DecomposedTransform *camera_motion = dscene->camera_motion.alloc(num_motion_steps);
- memcpy(camera_motion, kernel_camera_motion.data(), sizeof(*camera_motion) * num_motion_steps);
- dscene->camera_motion.copy_to_device();
- }
- else {
- dscene->camera_motion.free();
- }
+ update(scene);
+
+ if (!need_device_update)
+ return;
+
+ scene->lookup_tables->remove_table(&shutter_table_offset);
+ if (kernel_camera.shuttertime != -1.0f) {
+ vector<float> shutter_table;
+ util_cdf_inverted(SHUTTER_TABLE_SIZE,
+ 0.0f,
+ 1.0f,
+ function_bind(shutter_curve_eval, _1, shutter_curve),
+ false,
+ shutter_table);
+ shutter_table_offset = scene->lookup_tables->add_table(dscene, shutter_table);
+ kernel_camera.shutter_table_offset = (int)shutter_table_offset;
+ }
+
+ dscene->data.cam = kernel_camera;
+
+ size_t num_motion_steps = kernel_camera_motion.size();
+ if (num_motion_steps) {
+ DecomposedTransform *camera_motion = dscene->camera_motion.alloc(num_motion_steps);
+ memcpy(camera_motion, kernel_camera_motion.data(), sizeof(*camera_motion) * num_motion_steps);
+ dscene->camera_motion.copy_to_device();
+ }
+ else {
+ dscene->camera_motion.free();
+ }
}
-void Camera::device_update_volume(Device * /*device*/,
- DeviceScene *dscene,
- Scene *scene)
+void Camera::device_update_volume(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
- if(!need_device_update && !need_flags_update) {
- return;
- }
- KernelCamera *kcam = &dscene->data.cam;
- BoundBox viewplane_boundbox = viewplane_bounds_get();
- for(size_t i = 0; i < scene->objects.size(); ++i) {
- Object *object = scene->objects[i];
- if(object->mesh->has_volume &&
- viewplane_boundbox.intersects(object->bounds))
- {
- /* TODO(sergey): Consider adding more grained check. */
- VLOG(1) << "Detected camera inside volume.";
- kcam->is_inside_volume = 1;
- break;
- }
- }
- if(!kcam->is_inside_volume) {
- VLOG(1) << "Camera is outside of the volume.";
- }
- need_device_update = false;
- need_flags_update = false;
+ if (!need_device_update && !need_flags_update) {
+ return;
+ }
+ KernelCamera *kcam = &dscene->data.cam;
+ BoundBox viewplane_boundbox = viewplane_bounds_get();
+ for (size_t i = 0; i < scene->objects.size(); ++i) {
+ Object *object = scene->objects[i];
+ if (object->mesh->has_volume && viewplane_boundbox.intersects(object->bounds)) {
+ /* TODO(sergey): Consider adding more grained check. */
+ VLOG(1) << "Detected camera inside volume.";
+ kcam->is_inside_volume = 1;
+ break;
+ }
+ }
+ if (!kcam->is_inside_volume) {
+ VLOG(1) << "Camera is outside of the volume.";
+ }
+ need_device_update = false;
+ need_flags_update = false;
}
-void Camera::device_free(Device * /*device*/,
- DeviceScene *dscene,
- Scene *scene)
+void Camera::device_free(Device * /*device*/, DeviceScene *dscene, Scene *scene)
{
- scene->lookup_tables->remove_table(&shutter_table_offset);
- dscene->camera_motion.free();
+ scene->lookup_tables->remove_table(&shutter_table_offset);
+ dscene->camera_motion.free();
}
-bool Camera::modified(const Camera& cam)
+bool Camera::modified(const Camera &cam)
{
- return !Node::equals(cam);
+ return !Node::equals(cam);
}
-bool Camera::motion_modified(const Camera& cam)
+bool Camera::motion_modified(const Camera &cam)
{
- return !((motion == cam.motion) &&
- (use_perspective_motion == cam.use_perspective_motion));
+ return !((motion == cam.motion) && (use_perspective_motion == cam.use_perspective_motion));
}
void Camera::tag_update()
{
- need_update = true;
+ need_update = true;
}
float3 Camera::transform_raster_to_world(float raster_x, float raster_y)
{
- float3 D, P;
- if(type == CAMERA_PERSPECTIVE) {
- D = transform_perspective(&rastertocamera,
- make_float3(raster_x, raster_y, 0.0f));
- float3 Pclip = normalize(D);
- P = make_float3(0.0f, 0.0f, 0.0f);
- /* TODO(sergey): Aperture support? */
- P = transform_point(&cameratoworld, P);
- D = normalize(transform_direction(&cameratoworld, D));
- /* TODO(sergey): Clipping is conditional in kernel, and hence it could
- * be mistakes in here, currently leading to wrong camera-in-volume
- * detection.
- */
- P += nearclip * D / Pclip.z;
- }
- else if(type == CAMERA_ORTHOGRAPHIC) {
- D = make_float3(0.0f, 0.0f, 1.0f);
- /* TODO(sergey): Aperture support? */
- P = transform_perspective(&rastertocamera,
- make_float3(raster_x, raster_y, 0.0f));
- P = transform_point(&cameratoworld, P);
- D = normalize(transform_direction(&cameratoworld, D));
- }
- else {
- assert(!"unsupported camera type");
- }
- return P;
+ float3 D, P;
+ if (type == CAMERA_PERSPECTIVE) {
+ D = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
+ float3 Pclip = normalize(D);
+ P = make_float3(0.0f, 0.0f, 0.0f);
+ /* TODO(sergey): Aperture support? */
+ P = transform_point(&cameratoworld, P);
+ D = normalize(transform_direction(&cameratoworld, D));
+ /* TODO(sergey): Clipping is conditional in kernel, and hence it could
+ * be mistakes in here, currently leading to wrong camera-in-volume
+ * detection.
+ */
+ P += nearclip * D / Pclip.z;
+ }
+ else if (type == CAMERA_ORTHOGRAPHIC) {
+ D = make_float3(0.0f, 0.0f, 1.0f);
+ /* TODO(sergey): Aperture support? */
+ P = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
+ P = transform_point(&cameratoworld, P);
+ D = normalize(transform_direction(&cameratoworld, D));
+ }
+ else {
+ assert(!"unsupported camera type");
+ }
+ return P;
}
BoundBox Camera::viewplane_bounds_get()
{
- /* TODO(sergey): This is all rather stupid, but is there a way to perform
- * checks we need in a more clear and smart fasion?
- */
- BoundBox bounds = BoundBox::empty;
-
- if(type == CAMERA_PANORAMA) {
- if(use_spherical_stereo == false) {
- bounds.grow(make_float3(cameratoworld.x.w,
- cameratoworld.y.w,
- cameratoworld.z.w));
- }
- else {
- float half_eye_distance = interocular_distance * 0.5f;
-
- bounds.grow(make_float3(cameratoworld.x.w + half_eye_distance,
- cameratoworld.y.w,
- cameratoworld.z.w));
-
- bounds.grow(make_float3(cameratoworld.z.w,
- cameratoworld.y.w + half_eye_distance,
- cameratoworld.z.w));
-
- bounds.grow(make_float3(cameratoworld.x.w - half_eye_distance,
- cameratoworld.y.w,
- cameratoworld.z.w));
-
- bounds.grow(make_float3(cameratoworld.x.w,
- cameratoworld.y.w - half_eye_distance,
- cameratoworld.z.w));
- }
- }
- else {
- bounds.grow(transform_raster_to_world(0.0f, 0.0f));
- bounds.grow(transform_raster_to_world(0.0f, (float)height));
- bounds.grow(transform_raster_to_world((float)width, (float)height));
- bounds.grow(transform_raster_to_world((float)width, 0.0f));
- if(type == CAMERA_PERSPECTIVE) {
- /* Center point has the most distance in local Z axis,
- * use it to construct bounding box/
- */
- bounds.grow(transform_raster_to_world(0.5f*width, 0.5f*height));
- }
- }
- return bounds;
+ /* TODO(sergey): This is all rather stupid, but is there a way to perform
+ * checks we need in a more clear and smart fasion?
+ */
+ BoundBox bounds = BoundBox::empty;
+
+ if (type == CAMERA_PANORAMA) {
+ if (use_spherical_stereo == false) {
+ bounds.grow(make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w));
+ }
+ else {
+ float half_eye_distance = interocular_distance * 0.5f;
+
+ bounds.grow(make_float3(
+ cameratoworld.x.w + half_eye_distance, cameratoworld.y.w, cameratoworld.z.w));
+
+ bounds.grow(make_float3(
+ cameratoworld.z.w, cameratoworld.y.w + half_eye_distance, cameratoworld.z.w));
+
+ bounds.grow(make_float3(
+ cameratoworld.x.w - half_eye_distance, cameratoworld.y.w, cameratoworld.z.w));
+
+ bounds.grow(make_float3(
+ cameratoworld.x.w, cameratoworld.y.w - half_eye_distance, cameratoworld.z.w));
+ }
+ }
+ else {
+ bounds.grow(transform_raster_to_world(0.0f, 0.0f));
+ bounds.grow(transform_raster_to_world(0.0f, (float)height));
+ bounds.grow(transform_raster_to_world((float)width, (float)height));
+ bounds.grow(transform_raster_to_world((float)width, 0.0f));
+ if (type == CAMERA_PERSPECTIVE) {
+ /* Center point has the most distance in local Z axis,
+ * use it to construct bounding box/
+ */
+ bounds.grow(transform_raster_to_world(0.5f * width, 0.5f * height));
+ }
+ }
+ return bounds;
}
float Camera::world_to_raster_size(float3 P)
{
- float res = 1.0f;
-
- if(type == CAMERA_ORTHOGRAPHIC) {
- res = min(len(full_dx), len(full_dy));
-
- if(offscreen_dicing_scale > 1.0f) {
- float3 p = transform_point(&worldtocamera, P);
- float3 v = transform_perspective(&full_rastertocamera, make_float3(full_width, full_height, 0.0f));
-
- /* Create point clamped to frustum */
- float3 c;
- c.x = max(-v.x, min(v.x, p.x));
- c.y = max(-v.y, min(v.y, p.y));
- c.z = max(0.0f, p.z);
-
- float f_dist = len(p - c) / sqrtf((v.x*v.x+v.y*v.y)*0.5f);
-
- if(f_dist > 0.0f) {
- res += res * f_dist * (offscreen_dicing_scale - 1.0f);
- }
- }
- }
- else if(type == CAMERA_PERSPECTIVE) {
- /* Calculate as if point is directly ahead of the camera. */
- float3 raster = make_float3(0.5f*full_width, 0.5f*full_height, 0.0f);
- float3 Pcamera = transform_perspective(&full_rastertocamera, raster);
-
- /* dDdx */
- float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
- float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
- float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);
-
- /* dPdx */
- float dist = len(transform_point(&worldtocamera, P));
- float3 D = normalize(Ddiff);
- res = len(dist*dDdx - dot(dist*dDdx, D)*D);
-
- /* Decent approx distance to frustum (doesn't handle corners correctly, but not that big of a deal) */
- float f_dist = 0.0f;
-
- if(offscreen_dicing_scale > 1.0f) {
- float3 p = transform_point(&worldtocamera, P);
-
- /* Distance from the four planes */
- float r = dot(p, frustum_right_normal);
- float t = dot(p, frustum_top_normal);
- p = make_float3(-p.x, -p.y, p.z);
- float l = dot(p, frustum_right_normal);
- float b = dot(p, frustum_top_normal);
- p = make_float3(-p.x, -p.y, p.z);
-
- if(r <= 0.0f && l <= 0.0f && t <= 0.0f && b <= 0.0f) {
- /* Point is inside frustum */
- f_dist = 0.0f;
- }
- else if(r > 0.0f && l > 0.0f && t > 0.0f && b > 0.0f) {
- /* Point is behind frustum */
- f_dist = len(p);
- }
- else {
- /* Point may be behind or off to the side, need to check */
- float3 along_right = make_float3(-frustum_right_normal.z, 0.0f, frustum_right_normal.x);
- float3 along_left = make_float3(frustum_right_normal.z, 0.0f, frustum_right_normal.x);
- float3 along_top = make_float3(0.0f, -frustum_top_normal.z, frustum_top_normal.y);
- float3 along_bottom = make_float3(0.0f, frustum_top_normal.z, frustum_top_normal.y);
-
- float dist[] = {r, l, t, b};
- float3 along[] = {along_right, along_left, along_top, along_bottom};
-
- bool test_o = false;
-
- float *d = dist;
- float3 *a = along;
- for(int i = 0; i < 4; i++, d++, a++) {
- /* Test if we should check this side at all */
- if(*d > 0.0f) {
- if(dot(p, *a) >= 0.0f) {
- /* We are in front of the back edge of this side of the frustum */
- f_dist = max(f_dist, *d);
- }
- else {
- /* Possibly far enough behind the frustum to use distance to origin instead of edge */
- test_o = true;
- }
- }
- }
-
- if(test_o) {
- f_dist = (f_dist > 0) ? min(f_dist, len(p)) : len(p);
- }
- }
-
- if(f_dist > 0.0f) {
- res += len(dDdx - dot(dDdx, D)*D) * f_dist * (offscreen_dicing_scale - 1.0f);
- }
- }
- }
- else if(type == CAMERA_PANORAMA) {
- float3 D = transform_point(&worldtocamera, P);
- float dist = len(D);
-
- Ray ray = {{0}};
-
- /* Distortion can become so great that the results become meaningless, there
- * may be a better way to do this, but calculating differentials from the
- * point directly ahead seems to produce good enough results. */
+ float res = 1.0f;
+
+ if (type == CAMERA_ORTHOGRAPHIC) {
+ res = min(len(full_dx), len(full_dy));
+
+ if (offscreen_dicing_scale > 1.0f) {
+ float3 p = transform_point(&worldtocamera, P);
+ float3 v = transform_perspective(&full_rastertocamera,
+ make_float3(full_width, full_height, 0.0f));
+
+ /* Create point clamped to frustum */
+ float3 c;
+ c.x = max(-v.x, min(v.x, p.x));
+ c.y = max(-v.y, min(v.y, p.y));
+ c.z = max(0.0f, p.z);
+
+ float f_dist = len(p - c) / sqrtf((v.x * v.x + v.y * v.y) * 0.5f);
+
+ if (f_dist > 0.0f) {
+ res += res * f_dist * (offscreen_dicing_scale - 1.0f);
+ }
+ }
+ }
+ else if (type == CAMERA_PERSPECTIVE) {
+ /* Calculate as if point is directly ahead of the camera. */
+ float3 raster = make_float3(0.5f * full_width, 0.5f * full_height, 0.0f);
+ float3 Pcamera = transform_perspective(&full_rastertocamera, raster);
+
+ /* dDdx */
+ float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
+ float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
+ float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);
+
+ /* dPdx */
+ float dist = len(transform_point(&worldtocamera, P));
+ float3 D = normalize(Ddiff);
+ res = len(dist * dDdx - dot(dist * dDdx, D) * D);
+
+ /* Decent approx distance to frustum (doesn't handle corners correctly, but not that big of a deal) */
+ float f_dist = 0.0f;
+
+ if (offscreen_dicing_scale > 1.0f) {
+ float3 p = transform_point(&worldtocamera, P);
+
+ /* Distance from the four planes */
+ float r = dot(p, frustum_right_normal);
+ float t = dot(p, frustum_top_normal);
+ p = make_float3(-p.x, -p.y, p.z);
+ float l = dot(p, frustum_right_normal);
+ float b = dot(p, frustum_top_normal);
+ p = make_float3(-p.x, -p.y, p.z);
+
+ if (r <= 0.0f && l <= 0.0f && t <= 0.0f && b <= 0.0f) {
+ /* Point is inside frustum */
+ f_dist = 0.0f;
+ }
+ else if (r > 0.0f && l > 0.0f && t > 0.0f && b > 0.0f) {
+ /* Point is behind frustum */
+ f_dist = len(p);
+ }
+ else {
+ /* Point may be behind or off to the side, need to check */
+ float3 along_right = make_float3(-frustum_right_normal.z, 0.0f, frustum_right_normal.x);
+ float3 along_left = make_float3(frustum_right_normal.z, 0.0f, frustum_right_normal.x);
+ float3 along_top = make_float3(0.0f, -frustum_top_normal.z, frustum_top_normal.y);
+ float3 along_bottom = make_float3(0.0f, frustum_top_normal.z, frustum_top_normal.y);
+
+ float dist[] = {r, l, t, b};
+ float3 along[] = {along_right, along_left, along_top, along_bottom};
+
+ bool test_o = false;
+
+ float *d = dist;
+ float3 *a = along;
+ for (int i = 0; i < 4; i++, d++, a++) {
+ /* Test if we should check this side at all */
+ if (*d > 0.0f) {
+ if (dot(p, *a) >= 0.0f) {
+ /* We are in front of the back edge of this side of the frustum */
+ f_dist = max(f_dist, *d);
+ }
+ else {
+ /* Possibly far enough behind the frustum to use distance to origin instead of edge */
+ test_o = true;
+ }
+ }
+ }
+
+ if (test_o) {
+ f_dist = (f_dist > 0) ? min(f_dist, len(p)) : len(p);
+ }
+ }
+
+ if (f_dist > 0.0f) {
+ res += len(dDdx - dot(dDdx, D) * D) * f_dist * (offscreen_dicing_scale - 1.0f);
+ }
+ }
+ }
+ else if (type == CAMERA_PANORAMA) {
+ float3 D = transform_point(&worldtocamera, P);
+ float dist = len(D);
+
+ Ray ray = {{0}};
+
+ /* Distortion can become so great that the results become meaningless, there
+ * may be a better way to do this, but calculating differentials from the
+ * point directly ahead seems to produce good enough results. */
#if 0
- float2 dir = direction_to_panorama(&kernel_camera, kernel_camera_motion.data(), normalize(D));
- float3 raster = transform_perspective(&full_cameratoraster, make_float3(dir.x, dir.y, 0.0f));
-
- ray.t = 1.0f;
- camera_sample_panorama(&kernel_camera, kernel_camera_motion.data(), raster.x, raster.y, 0.0f, 0.0f, &ray);
- if(ray.t == 0.0f) {
- /* No differentials, just use from directly ahead. */
- camera_sample_panorama(&kernel_camera, kernel_camera_motion.data(), 0.5f*full_width, 0.5f*full_height, 0.0f, 0.0f, &ray);
- }
+ float2 dir = direction_to_panorama(&kernel_camera, kernel_camera_motion.data(), normalize(D));
+ float3 raster = transform_perspective(&full_cameratoraster, make_float3(dir.x, dir.y, 0.0f));
+
+ ray.t = 1.0f;
+ camera_sample_panorama(&kernel_camera, kernel_camera_motion.data(), raster.x, raster.y, 0.0f, 0.0f, &ray);
+ if(ray.t == 0.0f) {
+ /* No differentials, just use from directly ahead. */
+ camera_sample_panorama(&kernel_camera, kernel_camera_motion.data(), 0.5f*full_width, 0.5f*full_height, 0.0f, 0.0f, &ray);
+ }
#else
- camera_sample_panorama(&kernel_camera, kernel_camera_motion.data(), 0.5f*full_width, 0.5f*full_height, 0.0f, 0.0f, &ray);
+ camera_sample_panorama(&kernel_camera,
+ kernel_camera_motion.data(),
+ 0.5f * full_width,
+ 0.5f * full_height,
+ 0.0f,
+ 0.0f,
+ &ray);
#endif
- differential_transfer(&ray.dP, ray.dP, ray.D, ray.dD, ray.D, dist);
+ differential_transfer(&ray.dP, ray.dP, ray.D, ray.dD, ray.D, dist);
- return max(len(ray.dP.dx),len(ray.dP.dy));
- }
+ return max(len(ray.dP.dx), len(ray.dP.dy));
+ }
- return res;
+ return res;
}
bool Camera::use_motion() const
{
- return motion.size() > 1;
+ return motion.size() > 1;
}
float Camera::motion_time(int step) const
{
- return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
+ return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
}
int Camera::motion_step(float time) const
{
- if(use_motion()) {
- for(int step = 0; step < motion.size(); step++) {
- if(time == motion_time(step)) {
- return step;
- }
- }
- }
-
- return -1;
+ if (use_motion()) {
+ for (int step = 0; step < motion.size(); step++) {
+ if (time == motion_time(step)) {
+ return step;
+ }
+ }
+ }
+
+ return -1;
}
CCL_NAMESPACE_END