Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/render/mesh_volume.cpp')
-rw-r--r--intern/cycles/render/mesh_volume.cpp514
1 files changed, 279 insertions, 235 deletions
diff --git a/intern/cycles/render/mesh_volume.cpp b/intern/cycles/render/mesh_volume.cpp
index 607363d01c6..70189ea4812 100644
--- a/intern/cycles/render/mesh_volume.cpp
+++ b/intern/cycles/render/mesh_volume.cpp
@@ -15,34 +15,25 @@
*/
#include "render/attribute.h"
+#include "render/image_vdb.h"
#include "render/mesh.h"
#include "render/scene.h"
+#ifdef WITH_OPENVDB
+# include <openvdb/tools/Dense.h>
+# include <openvdb/tools/GridTransformer.h>
+# include <openvdb/tools/Morphology.h>
+#endif
+
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
+#include "util/util_openvdb.h"
#include "util/util_progress.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
-const int64_t VOXEL_INDEX_NONE = -1;
-
-static int64_t compute_voxel_index(const int3 &resolution, int64_t x, int64_t y, int64_t z)
-{
- if (x < 0 || x >= resolution.x) {
- return VOXEL_INDEX_NONE;
- }
- else if (y < 0 || y >= resolution.y) {
- return VOXEL_INDEX_NONE;
- }
- else if (z < 0 || z >= resolution.z) {
- return VOXEL_INDEX_NONE;
- }
-
- return x + y * resolution.x + z * resolution.x * resolution.y;
-}
-
struct QuadData {
int v0, v1, v2, v3;
@@ -123,122 +114,146 @@ static void create_quad(int3 corners[8],
quads.push_back(quad);
}
-struct VolumeParams {
- int3 resolution;
- float3 cell_size;
- float3 start_point;
- int pad_size;
-};
-
-static const int CUBE_SIZE = 8;
-
/* Create a mesh from a volume.
*
* The way the algorithm works is as follows:
*
- * - The coordinates of active voxels from a dense volume (or 3d image) are
- * gathered inside an auxiliary volume.
- * - Each set of coordinates of an CUBE_SIZE cube are mapped to the same
- * coordinate of the auxiliary volume.
- * - Quads are created between active and non-active voxels in the auxiliary
- * volume to generate a tight mesh around the volume.
+ * - The topologies of input OpenVDB grids are merged into a temporary grid.
+ * - Voxels of the temporary grid are dilated to account for the padding necessary for volume
+ * sampling.
+ * - Quads are created on the boundary between active and inactive leaf nodes of the temporary
+ * grid.
*/
class VolumeMeshBuilder {
- /* Auxiliary volume that is used to check if a node already added. */
- vector<char> grid;
-
- /* The resolution of the auxiliary volume, set to be equal to 1/CUBE_SIZE
- * of the original volume on each axis. */
- int3 res;
-
- size_t number_of_nodes;
-
- /* Offset due to padding in the original grid. Padding will transform the
- * coordinates of the original grid from 0...res to -padding...res+padding,
- * so some coordinates are negative, and we need to properly account for
- * them. */
- int3 pad_offset;
-
- VolumeParams *params;
-
public:
- VolumeMeshBuilder(VolumeParams *volume_params);
+#ifdef WITH_OPENVDB
+ /* use a MaskGrid to store the topology to save memory */
+ openvdb::MaskGrid::Ptr topology_grid;
+ openvdb::CoordBBox bbox;
+#endif
+ bool first_grid;
- void add_node(int x, int y, int z);
+ VolumeMeshBuilder();
- void add_node_with_padding(int x, int y, int z);
+#ifdef WITH_OPENVDB
+ void add_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping);
+#endif
- void create_mesh(vector<float3> &vertices, vector<int> &indices, vector<float3> &face_normals);
+ void add_padding(int pad_size);
+
+ void create_mesh(vector<float3> &vertices,
+ vector<int> &indices,
+ vector<float3> &face_normals,
+ const float face_overlap_avoidance);
- private:
void generate_vertices_and_quads(vector<int3> &vertices_is, vector<QuadData> &quads);
- void convert_object_space(const vector<int3> &vertices, vector<float3> &out_vertices);
+ void convert_object_space(const vector<int3> &vertices,
+ vector<float3> &out_vertices,
+ const float face_overlap_avoidance);
void convert_quads_to_tris(const vector<QuadData> &quads,
vector<int> &tris,
vector<float3> &face_normals);
-};
-VolumeMeshBuilder::VolumeMeshBuilder(VolumeParams *volume_params)
-{
- params = volume_params;
- number_of_nodes = 0;
+ bool empty_grid() const;
- const int64_t x = divide_up(params->resolution.x, CUBE_SIZE);
- const int64_t y = divide_up(params->resolution.y, CUBE_SIZE);
- const int64_t z = divide_up(params->resolution.z, CUBE_SIZE);
+#ifdef WITH_OPENVDB
+ template <typename GridType>
+ void merge_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping)
+ {
+ typename GridType::ConstPtr typed_grid = openvdb::gridConstPtrCast<GridType>(grid);
- /* Adding 2*pad_size since we pad in both positive and negative directions
- * along the axis. */
- const int64_t px = divide_up(params->resolution.x + 2 * params->pad_size, CUBE_SIZE);
- const int64_t py = divide_up(params->resolution.y + 2 * params->pad_size, CUBE_SIZE);
- const int64_t pz = divide_up(params->resolution.z + 2 * params->pad_size, CUBE_SIZE);
+ if (do_clipping) {
+ using ValueType = typename GridType::ValueType;
+ typename GridType::Ptr copy = typed_grid->deepCopy();
+ typename GridType::ValueOnIter iter = copy->beginValueOn();
- res = make_int3(px, py, pz);
- pad_offset = make_int3(px - x, py - y, pz - z);
+ for (; iter; ++iter) {
+ if (iter.getValue() < ValueType(volume_clipping)) {
+ iter.setValueOff();
+ }
+ }
- grid.resize(px * py * pz, 0);
-}
+ typed_grid = copy;
+ }
-void VolumeMeshBuilder::add_node(int x, int y, int z)
-{
- /* Map coordinates to index space. */
- const int index_x = (x / CUBE_SIZE) + pad_offset.x;
- const int index_y = (y / CUBE_SIZE) + pad_offset.y;
- const int index_z = (z / CUBE_SIZE) + pad_offset.z;
+ topology_grid->topologyUnion(*typed_grid);
+ }
+#endif
+};
- assert((index_x >= 0) && (index_y >= 0) && (index_z >= 0));
+VolumeMeshBuilder::VolumeMeshBuilder()
+{
+ first_grid = true;
+}
- const int64_t index = compute_voxel_index(res, index_x, index_y, index_z);
- if (index == VOXEL_INDEX_NONE) {
- return;
+#ifdef WITH_OPENVDB
+void VolumeMeshBuilder::add_grid(openvdb::GridBase::ConstPtr grid, bool do_clipping, float volume_clipping)
+{
+ /* set the transform of our grid from the first one */
+ if (first_grid) {
+ topology_grid = openvdb::MaskGrid::create();
+ topology_grid->setTransform(grid->transform().copy());
+ first_grid = false;
}
-
- /* We already have a node here. */
- if (grid[index] == 1) {
- return;
+ /* if the transforms do not match, we need to resample one of the grids so that
+ * its index space registers with that of the other, here we resample our mask
+ * grid so memory usage is kept low */
+ else if (topology_grid->transform() != grid->transform()) {
+ openvdb::MaskGrid::Ptr temp_grid = topology_grid->copyWithNewTree();
+ temp_grid->setTransform(grid->transform().copy());
+ openvdb::tools::resampleToMatch<openvdb::tools::BoxSampler>(*topology_grid, *temp_grid);
+ topology_grid = temp_grid;
+ topology_grid->setTransform(grid->transform().copy());
}
- ++number_of_nodes;
-
- grid[index] = 1;
+ if (grid->isType<openvdb::FloatGrid>()) {
+ merge_grid<openvdb::FloatGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Vec3fGrid>()) {
+ merge_grid<openvdb::Vec3fGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Vec4fGrid>()) {
+ merge_grid<openvdb::Vec4fGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::BoolGrid>()) {
+ merge_grid<openvdb::BoolGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::DoubleGrid>()) {
+ merge_grid<openvdb::DoubleGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Int32Grid>()) {
+ merge_grid<openvdb::Int32Grid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Int64Grid>()) {
+ merge_grid<openvdb::Int64Grid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Vec3IGrid>()) {
+ merge_grid<openvdb::Vec3IGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::Vec3dGrid>()) {
+ merge_grid<openvdb::Vec3dGrid>(grid, do_clipping, volume_clipping);
+ }
+ else if (grid->isType<openvdb::MaskGrid>()) {
+ topology_grid->topologyUnion(*openvdb::gridConstPtrCast<openvdb::MaskGrid>(grid));
+ }
}
+#endif
-void VolumeMeshBuilder::add_node_with_padding(int x, int y, int z)
+void VolumeMeshBuilder::add_padding(int pad_size)
{
- for (int px = x - params->pad_size; px < x + params->pad_size; ++px) {
- for (int py = y - params->pad_size; py < y + params->pad_size; ++py) {
- for (int pz = z - params->pad_size; pz < z + params->pad_size; ++pz) {
- add_node(px, py, pz);
- }
- }
- }
+#ifdef WITH_OPENVDB
+ openvdb::tools::dilateVoxels(topology_grid->tree(), pad_size);
+#else
+ (void)pad_size;
+#endif
}
void VolumeMeshBuilder::create_mesh(vector<float3> &vertices,
vector<int> &indices,
- vector<float3> &face_normals)
+ vector<float3> &face_normals,
+ const float face_overlap_avoidance)
{
/* We create vertices in index space (is), and only convert them to object
* space when done. */
@@ -247,7 +262,7 @@ void VolumeMeshBuilder::create_mesh(vector<float3> &vertices,
generate_vertices_and_quads(vertices_is, quads);
- convert_object_space(vertices_is, vertices);
+ convert_object_space(vertices_is, vertices, face_overlap_avoidance);
convert_quads_to_tris(quads, indices, face_normals);
}
@@ -255,85 +270,97 @@ void VolumeMeshBuilder::create_mesh(vector<float3> &vertices,
void VolumeMeshBuilder::generate_vertices_and_quads(vector<ccl::int3> &vertices_is,
vector<QuadData> &quads)
{
- unordered_map<size_t, int> used_verts;
+#ifdef WITH_OPENVDB
+ const openvdb::MaskGrid::TreeType &tree = topology_grid->tree();
+ tree.evalLeafBoundingBox(bbox);
- for (int z = 0; z < res.z; ++z) {
- for (int y = 0; y < res.y; ++y) {
- for (int x = 0; x < res.x; ++x) {
- int64_t voxel_index = compute_voxel_index(res, x, y, z);
- if (grid[voxel_index] == 0) {
- continue;
- }
+ const int3 resolution = make_int3(bbox.dim().x(), bbox.dim().y(), bbox.dim().z());
- /* Compute min and max coords of the node in index space. */
- int3 min = make_int3((x - pad_offset.x) * CUBE_SIZE,
- (y - pad_offset.y) * CUBE_SIZE,
- (z - pad_offset.z) * CUBE_SIZE);
-
- /* Maximum is just CUBE_SIZE voxels away from minimum on each axis. */
- int3 max = make_int3(min.x + CUBE_SIZE, min.y + CUBE_SIZE, min.z + CUBE_SIZE);
-
- int3 corners[8] = {
- make_int3(min[0], min[1], min[2]),
- make_int3(max[0], min[1], min[2]),
- make_int3(max[0], max[1], min[2]),
- make_int3(min[0], max[1], min[2]),
- make_int3(min[0], min[1], max[2]),
- make_int3(max[0], min[1], max[2]),
- make_int3(max[0], max[1], max[2]),
- make_int3(min[0], max[1], max[2]),
- };
-
- /* Only create a quad if on the border between an active and
- * an inactive node.
- */
-
- voxel_index = compute_voxel_index(res, x - 1, y, z);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_X_MIN);
- }
+ unordered_map<size_t, int> used_verts;
- voxel_index = compute_voxel_index(res, x + 1, y, z);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_X_MAX);
- }
+ for (auto iter = tree.cbeginLeaf(); iter; ++iter) {
+ openvdb::CoordBBox leaf_bbox = iter->getNodeBoundingBox();
+ /* +1 to convert from exclusive to include bounds. */
+ leaf_bbox.max() = leaf_bbox.max().offsetBy(1);
+
+ int3 min = make_int3(leaf_bbox.min().x(), leaf_bbox.min().y(), leaf_bbox.min().z());
+ int3 max = make_int3(leaf_bbox.max().x(), leaf_bbox.max().y(), leaf_bbox.max().z());
+
+ int3 corners[8] = {
+ make_int3(min[0], min[1], min[2]),
+ make_int3(max[0], min[1], min[2]),
+ make_int3(max[0], max[1], min[2]),
+ make_int3(min[0], max[1], min[2]),
+ make_int3(min[0], min[1], max[2]),
+ make_int3(max[0], min[1], max[2]),
+ make_int3(max[0], max[1], max[2]),
+ make_int3(min[0], max[1], max[2]),
+ };
+
+ /* Only create a quad if on the border between an active and an inactive leaf.
+ *
+ * We verify that a leaf exists by probing a coordinate that is at its center,
+ * to do so we compute the center of the current leaf and offset this coordinate
+ * by the size of a leaf in each direction.
+ */
+ static const int LEAF_DIM = openvdb::MaskGrid::TreeType::LeafNodeType::DIM;
+ auto center = leaf_bbox.min() + openvdb::Coord(LEAF_DIM / 2);
+
+ if (!tree.probeLeaf(openvdb::Coord(center.x() - LEAF_DIM, center.y(), center.z()))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_X_MIN);
+ }
- voxel_index = compute_voxel_index(res, x, y - 1, z);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_Y_MIN);
- }
+ if (!tree.probeLeaf(openvdb::Coord(center.x() + LEAF_DIM, center.y(), center.z()))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_X_MAX);
+ }
- voxel_index = compute_voxel_index(res, x, y + 1, z);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_Y_MAX);
- }
+ if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y() - LEAF_DIM, center.z()))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Y_MIN);
+ }
- voxel_index = compute_voxel_index(res, x, y, z - 1);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_Z_MIN);
- }
+ if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y() + LEAF_DIM, center.z()))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Y_MAX);
+ }
- voxel_index = compute_voxel_index(res, x, y, z + 1);
- if (voxel_index == VOXEL_INDEX_NONE || grid[voxel_index] == 0) {
- create_quad(corners, vertices_is, quads, res, used_verts, QUAD_Z_MAX);
- }
- }
+ if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y(), center.z() - LEAF_DIM))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Z_MIN);
+ }
+
+ if (!tree.probeLeaf(openvdb::Coord(center.x(), center.y(), center.z() + LEAF_DIM))) {
+ create_quad(corners, vertices_is, quads, resolution, used_verts, QUAD_Z_MAX);
}
}
+#else
+ (void)vertices_is;
+ (void)quads;
+#endif
}
void VolumeMeshBuilder::convert_object_space(const vector<int3> &vertices,
- vector<float3> &out_vertices)
+ vector<float3> &out_vertices,
+ const float face_overlap_avoidance)
{
+#ifdef WITH_OPENVDB
+ /* compute the offset for the face overlap avoidance */
+ bbox = topology_grid->evalActiveVoxelBoundingBox();
+ openvdb::Coord dim = bbox.dim();
+
+ float3 cell_size = make_float3(1.0f / dim.x(), 1.0f / dim.y(), 1.0f / dim.z());
+ float3 point_offset = cell_size * face_overlap_avoidance;
+
out_vertices.reserve(vertices.size());
for (size_t i = 0; i < vertices.size(); ++i) {
- float3 vertex = make_float3(vertices[i].x, vertices[i].y, vertices[i].z);
- vertex *= params->cell_size;
- vertex += params->start_point;
-
- out_vertices.push_back(vertex);
+ openvdb::math::Vec3d p = topology_grid->indexToWorld(
+ openvdb::math::Vec3d(vertices[i].x, vertices[i].y, vertices[i].z));
+ float3 vertex = make_float3((float)p.x(), (float)p.y(), (float)p.z());
+ out_vertices.push_back(vertex + point_offset);
}
+#else
+ (void)vertices;
+ (void)out_vertices;
+ (void)face_overlap_avoidance;
+#endif
}
void VolumeMeshBuilder::convert_quads_to_tris(const vector<QuadData> &quads,
@@ -359,57 +386,115 @@ void VolumeMeshBuilder::convert_quads_to_tris(const vector<QuadData> &quads,
}
}
-/* ************************************************************************** */
+bool VolumeMeshBuilder::empty_grid() const
+{
+#ifdef WITH_OPENVDB
+ return !topology_grid || topology_grid->tree().leafCount() == 0;
+#else
+ return true;
+#endif
+}
-struct VoxelAttributeGrid {
- float *data;
- int channels;
-};
+#ifdef WITH_OPENVDB
+template<typename GridType>
+static openvdb::GridBase::ConstPtr openvdb_grid_from_device_texture(device_texture *image_memory,
+ float volume_clipping,
+ Transform transform_3d)
+{
+ using ValueType = typename GridType::ValueType;
+
+ openvdb::CoordBBox dense_bbox(0,
+ 0,
+ 0,
+ image_memory->data_width - 1,
+ image_memory->data_height - 1,
+ image_memory->data_depth - 1);
+ openvdb::tools::Dense<ValueType, openvdb::tools::MemoryLayout::LayoutXYZ> dense(
+ dense_bbox, static_cast<ValueType *>(image_memory->host_pointer));
+
+ typename GridType::Ptr sparse = GridType::create(ValueType(0.0f));
+ openvdb::tools::copyFromDense(dense, *sparse, ValueType(volume_clipping));
+
+ /* copyFromDense will remove any leaf node that contains constant data and replace it with a tile,
+ * however, we need to preserve the leaves in order to generate the mesh, so revoxelize the leaves
+ * that were pruned. This should not affect areas that were skipped due to the volume_clipping parameter. */
+ sparse->tree().voxelizeActiveTiles();
+
+ /* Compute index to world matrix. */
+ float3 voxel_size = make_float3(1.0f / image_memory->data_width, 1.0f / image_memory->data_height, 1.0f / image_memory->data_depth);
+
+ transform_3d = transform_inverse(transform_3d);
+
+ openvdb::Mat4R index_to_world_mat((double)(voxel_size.x * transform_3d[0][0]), 0.0, 0.0, 0.0,
+ 0.0, (double)(voxel_size.y * transform_3d[1][1]), 0.0, 0.0,
+ 0.0, 0.0, (double)(voxel_size.z * transform_3d[2][2]), 0.0,
+ (double)transform_3d[0][3], (double)transform_3d[1][3], (double)transform_3d[2][3], 1.0);
+
+ openvdb::math::Transform::Ptr index_to_world_tfm = openvdb::math::Transform::createLinearTransform(index_to_world_mat);
+
+ sparse->setTransform(index_to_world_tfm);
+
+ return sparse;
+}
+#endif
+
+/* ************************************************************************** */
void GeometryManager::create_volume_mesh(Mesh *mesh, Progress &progress)
{
string msg = string_printf("Computing Volume Mesh %s", mesh->name.c_str());
progress.set_status("Updating Mesh", msg);
- vector<VoxelAttributeGrid> voxel_grids;
-
- /* Compute volume parameters. */
- VolumeParams volume_params;
- volume_params.resolution = make_int3(0, 0, 0);
-
- Transform transform = transform_identity();
+ VolumeMeshBuilder builder;
+#ifdef WITH_OPENVDB
foreach (Attribute &attr, mesh->attributes.attributes) {
if (attr.element != ATTR_ELEMENT_VOXEL) {
continue;
}
+ bool do_clipping = false;
+
ImageHandle &handle = attr.data_voxel();
- device_texture *image_memory = handle.image_memory();
- int3 resolution = make_int3(
- image_memory->data_width, image_memory->data_height, image_memory->data_depth);
- if (volume_params.resolution == make_int3(0, 0, 0)) {
- volume_params.resolution = resolution;
- }
- else if (volume_params.resolution != resolution) {
- /* TODO: support this as it's common for OpenVDB. */
- VLOG(1) << "Can't create accurate volume mesh, all voxel grid resolutions must be equal\n";
- continue;
+ /* Try building from OpenVDB grid directly. */
+ VDBImageLoader *vdb_loader = handle.vdb_loader();
+ openvdb::GridBase::ConstPtr grid;
+ if (vdb_loader) {
+ grid = vdb_loader->get_grid();
+
+ /* If building from an OpenVDB grid, we need to manually clip the values. */
+ do_clipping = true;
}
- VoxelAttributeGrid voxel_grid;
- voxel_grid.data = static_cast<float *>(image_memory->host_pointer);
- voxel_grid.channels = image_memory->data_elements;
- voxel_grids.push_back(voxel_grid);
+ /* Else fall back to creating an OpenVDB grid from the dense volume data. */
+ if (!grid) {
+ device_texture *image_memory = handle.image_memory();
- /* TODO: support multiple transforms. */
- if (image_memory->info.use_transform_3d) {
- transform = image_memory->info.transform_3d;
+ if (image_memory->data_elements == 1) {
+ grid = openvdb_grid_from_device_texture<openvdb::FloatGrid>(image_memory,
+ mesh->volume_clipping,
+ handle.metadata().transform_3d);
+ }
+ else if (image_memory->data_elements == 3) {
+ grid = openvdb_grid_from_device_texture<openvdb::Vec3fGrid>(image_memory,
+ mesh->volume_clipping,
+ handle.metadata().transform_3d);
+ }
+ else if (image_memory->data_elements == 4) {
+ grid = openvdb_grid_from_device_texture<openvdb::Vec4fGrid>(image_memory,
+ mesh->volume_clipping,
+ handle.metadata().transform_3d);
+ }
+ }
+
+ if (grid) {
+ builder.add_grid(grid, do_clipping, mesh->volume_clipping);
}
}
+#endif
- if (voxel_grids.empty()) {
+ if (builder.empty_grid()) {
return;
}
@@ -438,56 +523,19 @@ void GeometryManager::create_volume_mesh(Mesh *mesh, Progress &progress)
return;
}
- /* Compute start point and cell size from transform. */
- const int3 resolution = volume_params.resolution;
- float3 start_point = make_float3(0.0f, 0.0f, 0.0f);
- float3 cell_size = make_float3(1.0f / resolution.x, 1.0f / resolution.y, 1.0f / resolution.z);
-
- /* TODO: support arbitrary transforms, not just scale + translate. */
- const Transform itfm = transform_inverse(transform);
- start_point = transform_point(&itfm, start_point);
- cell_size = transform_direction(&itfm, cell_size);
+ builder.add_padding(pad_size);
/* Slightly offset vertex coordinates to avoid overlapping faces with other
* volumes or meshes. The proper solution would be to improve intersection in
* the kernel to support robust handling of multiple overlapping faces or use
* an all-hit intersection similar to shadows. */
- const float3 face_overlap_avoidance = cell_size * 0.1f *
- hash_uint_to_float(hash_string(mesh->name.c_str()));
-
- volume_params.start_point = start_point + face_overlap_avoidance;
- volume_params.cell_size = cell_size;
- volume_params.pad_size = pad_size;
-
- /* Build bounding mesh around non-empty volume cells. */
- VolumeMeshBuilder builder(&volume_params);
- const float clipping = mesh->volume_clipping;
-
- for (int z = 0; z < resolution.z; ++z) {
- for (int y = 0; y < resolution.y; ++y) {
- for (int x = 0; x < resolution.x; ++x) {
- int64_t voxel_index = compute_voxel_index(resolution, x, y, z);
-
- for (size_t i = 0; i < voxel_grids.size(); ++i) {
- const VoxelAttributeGrid &voxel_grid = voxel_grids[i];
- const int channels = voxel_grid.channels;
-
- for (int c = 0; c < channels; c++) {
- if (voxel_grid.data[voxel_index * channels + c] >= clipping) {
- builder.add_node_with_padding(x, y, z);
- break;
- }
- }
- }
- }
- }
- }
+ const float face_overlap_avoidance = 0.1f * hash_uint_to_float(hash_string(mesh->name.c_str()));
/* Create mesh. */
vector<float3> vertices;
vector<int> indices;
vector<float3> face_normals;
- builder.create_mesh(vertices, indices, face_normals);
+ builder.create_mesh(vertices, indices, face_normals, face_overlap_avoidance);
mesh->clear(true);
mesh->reserve_mesh(vertices.size(), indices.size() / 3);
@@ -514,10 +562,6 @@ void GeometryManager::create_volume_mesh(Mesh *mesh, Progress &progress)
indices.size() * sizeof(int)) /
(1024.0 * 1024.0)
<< "Mb.";
-
- VLOG(1) << "Memory usage volume grid: "
- << (resolution.x * resolution.y * resolution.z * sizeof(float)) / (1024.0 * 1024.0)
- << "Mb.";
}
CCL_NAMESPACE_END