Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/scene/light.cpp')
-rw-r--r--intern/cycles/scene/light.cpp1150
1 files changed, 1150 insertions, 0 deletions
diff --git a/intern/cycles/scene/light.cpp b/intern/cycles/scene/light.cpp
new file mode 100644
index 00000000000..26f208d58e5
--- /dev/null
+++ b/intern/cycles/scene/light.cpp
@@ -0,0 +1,1150 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "device/device.h"
+
+#include "scene/background.h"
+#include "scene/film.h"
+#include "scene/integrator.h"
+#include "scene/light.h"
+#include "scene/mesh.h"
+#include "scene/object.h"
+#include "scene/scene.h"
+#include "scene/shader.h"
+#include "scene/shader_graph.h"
+#include "scene/shader_nodes.h"
+#include "scene/stats.h"
+
+#include "integrator/shader_eval.h"
+
+#include "util/util_foreach.h"
+#include "util/util_hash.h"
+#include "util/util_logging.h"
+#include "util/util_path.h"
+#include "util/util_progress.h"
+#include "util/util_task.h"
+
+CCL_NAMESPACE_BEGIN
+
+static void shade_background_pixels(Device *device,
+ DeviceScene *dscene,
+ int width,
+ int height,
+ vector<float3> &pixels,
+ Progress &progress)
+{
+ /* Needs to be up to data for attribute access. */
+ device->const_copy_to("__data", &dscene->data, sizeof(dscene->data));
+
+ const int size = width * height;
+ const int num_channels = 3;
+ pixels.resize(size);
+
+ /* Evaluate shader on device. */
+ ShaderEval shader_eval(device, progress);
+ shader_eval.eval(
+ SHADER_EVAL_BACKGROUND,
+ size,
+ num_channels,
+ [&](device_vector<KernelShaderEvalInput> &d_input) {
+ /* Fill coordinates for shading. */
+ KernelShaderEvalInput *d_input_data = d_input.data();
+
+ for (int y = 0; y < height; y++) {
+ for (int x = 0; x < width; x++) {
+ float u = (x + 0.5f) / width;
+ float v = (y + 0.5f) / height;
+
+ KernelShaderEvalInput in;
+ in.object = OBJECT_NONE;
+ in.prim = PRIM_NONE;
+ in.u = u;
+ in.v = v;
+ d_input_data[x + y * width] = in;
+ }
+ }
+
+ return size;
+ },
+ [&](device_vector<float> &d_output) {
+ /* Copy output to pixel buffer. */
+ float *d_output_data = d_output.data();
+
+ for (int y = 0; y < height; y++) {
+ for (int x = 0; x < width; x++) {
+ pixels[y * width + x].x = d_output_data[(y * width + x) * num_channels + 0];
+ pixels[y * width + x].y = d_output_data[(y * width + x) * num_channels + 1];
+ pixels[y * width + x].z = d_output_data[(y * width + x) * num_channels + 2];
+ }
+ }
+ });
+}
+
+/* Light */
+
+NODE_DEFINE(Light)
+{
+ NodeType *type = NodeType::add("light", create);
+
+ static NodeEnum type_enum;
+ type_enum.insert("point", LIGHT_POINT);
+ type_enum.insert("distant", LIGHT_DISTANT);
+ type_enum.insert("background", LIGHT_BACKGROUND);
+ type_enum.insert("area", LIGHT_AREA);
+ type_enum.insert("spot", LIGHT_SPOT);
+ SOCKET_ENUM(light_type, "Type", type_enum, LIGHT_POINT);
+
+ SOCKET_COLOR(strength, "Strength", one_float3());
+
+ SOCKET_POINT(co, "Co", zero_float3());
+
+ SOCKET_VECTOR(dir, "Dir", zero_float3());
+ SOCKET_FLOAT(size, "Size", 0.0f);
+ SOCKET_FLOAT(angle, "Angle", 0.0f);
+
+ SOCKET_VECTOR(axisu, "Axis U", zero_float3());
+ SOCKET_FLOAT(sizeu, "Size U", 1.0f);
+ SOCKET_VECTOR(axisv, "Axis V", zero_float3());
+ SOCKET_FLOAT(sizev, "Size V", 1.0f);
+ SOCKET_BOOLEAN(round, "Round", false);
+ SOCKET_FLOAT(spread, "Spread", M_PI_F);
+
+ SOCKET_INT(map_resolution, "Map Resolution", 0);
+
+ SOCKET_FLOAT(spot_angle, "Spot Angle", M_PI_4_F);
+ SOCKET_FLOAT(spot_smooth, "Spot Smooth", 0.0f);
+
+ SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
+
+ SOCKET_BOOLEAN(cast_shadow, "Cast Shadow", true);
+ SOCKET_BOOLEAN(use_mis, "Use Mis", false);
+ SOCKET_BOOLEAN(use_camera, "Use Camera", true);
+ SOCKET_BOOLEAN(use_diffuse, "Use Diffuse", true);
+ SOCKET_BOOLEAN(use_glossy, "Use Glossy", true);
+ SOCKET_BOOLEAN(use_transmission, "Use Transmission", true);
+ SOCKET_BOOLEAN(use_scatter, "Use Scatter", true);
+
+ SOCKET_INT(max_bounces, "Max Bounces", 1024);
+ SOCKET_UINT(random_id, "Random ID", 0);
+
+ SOCKET_BOOLEAN(is_shadow_catcher, "Shadow Catcher", true);
+ SOCKET_BOOLEAN(is_portal, "Is Portal", false);
+ SOCKET_BOOLEAN(is_enabled, "Is Enabled", true);
+
+ SOCKET_NODE(shader, "Shader", Shader::get_node_type());
+
+ return type;
+}
+
+Light::Light() : Node(get_node_type())
+{
+ dereference_all_used_nodes();
+}
+
+void Light::tag_update(Scene *scene)
+{
+ if (is_modified()) {
+ scene->light_manager->tag_update(scene, LightManager::LIGHT_MODIFIED);
+ }
+}
+
+bool Light::has_contribution(Scene *scene)
+{
+ if (strength == zero_float3()) {
+ return false;
+ }
+ if (is_portal) {
+ return false;
+ }
+ if (light_type == LIGHT_BACKGROUND) {
+ return true;
+ }
+ return (shader) ? shader->has_surface_emission : scene->default_light->has_surface_emission;
+}
+
+/* Light Manager */
+
+LightManager::LightManager()
+{
+ update_flags = UPDATE_ALL;
+ need_update_background = true;
+ last_background_enabled = false;
+ last_background_resolution = 0;
+}
+
+LightManager::~LightManager()
+{
+ foreach (IESSlot *slot, ies_slots) {
+ delete slot;
+ }
+}
+
+bool LightManager::has_background_light(Scene *scene)
+{
+ foreach (Light *light, scene->lights) {
+ if (light->light_type == LIGHT_BACKGROUND && light->is_enabled) {
+ return true;
+ }
+ }
+ return false;
+}
+
+void LightManager::test_enabled_lights(Scene *scene)
+{
+ /* Make all lights enabled by default, and perform some preliminary checks
+ * needed for finer-tuning of settings (for example, check whether we've
+ * got portals or not).
+ */
+ bool has_portal = false, has_background = false;
+ foreach (Light *light, scene->lights) {
+ light->is_enabled = light->has_contribution(scene);
+ has_portal |= light->is_portal;
+ has_background |= light->light_type == LIGHT_BACKGROUND;
+ }
+
+ bool background_enabled = false;
+ int background_resolution = 0;
+
+ if (has_background) {
+ /* Ignore background light if:
+ * - If unsupported on a device
+ * - If we don't need it (no HDRs etc.)
+ */
+ Shader *shader = scene->background->get_shader(scene);
+ const bool disable_mis = !(has_portal || shader->has_surface_spatial_varying);
+ VLOG_IF(1, disable_mis) << "Background MIS has been disabled.\n";
+ foreach (Light *light, scene->lights) {
+ if (light->light_type == LIGHT_BACKGROUND) {
+ light->is_enabled = !disable_mis;
+ background_enabled = !disable_mis;
+ background_resolution = light->map_resolution;
+ }
+ }
+ }
+
+ if (last_background_enabled != background_enabled ||
+ last_background_resolution != background_resolution) {
+ last_background_enabled = background_enabled;
+ last_background_resolution = background_resolution;
+ need_update_background = true;
+ }
+}
+
+bool LightManager::object_usable_as_light(Object *object)
+{
+ Geometry *geom = object->get_geometry();
+ if (geom->geometry_type != Geometry::MESH && geom->geometry_type != Geometry::VOLUME) {
+ return false;
+ }
+ /* Skip objects with NaNs */
+ if (!object->bounds.valid()) {
+ return false;
+ }
+ /* Skip if we are not visible for BSDFs. */
+ if (!(object->get_visibility() & (PATH_RAY_DIFFUSE | PATH_RAY_GLOSSY | PATH_RAY_TRANSMIT))) {
+ return false;
+ }
+ /* Skip if we have no emission shaders. */
+ /* TODO(sergey): Ideally we want to avoid such duplicated loop, since it'll
+ * iterate all geometry shaders twice (when counting and when calculating
+ * triangle area.
+ */
+ foreach (Node *node, geom->get_used_shaders()) {
+ Shader *shader = static_cast<Shader *>(node);
+ if (shader->get_use_mis() && shader->has_surface_emission) {
+ return true;
+ }
+ }
+ return false;
+}
+
+void LightManager::device_update_distribution(Device *,
+ DeviceScene *dscene,
+ Scene *scene,
+ Progress &progress)
+{
+ progress.set_status("Updating Lights", "Computing distribution");
+
+ /* count */
+ size_t num_lights = 0;
+ size_t num_portals = 0;
+ size_t num_background_lights = 0;
+ size_t num_triangles = 0;
+
+ bool background_mis = false;
+
+ foreach (Light *light, scene->lights) {
+ if (light->is_enabled) {
+ num_lights++;
+ }
+ if (light->is_portal) {
+ num_portals++;
+ }
+ }
+
+ foreach (Object *object, scene->objects) {
+ if (progress.get_cancel())
+ return;
+
+ if (!object_usable_as_light(object)) {
+ continue;
+ }
+
+ /* Count triangles. */
+ Mesh *mesh = static_cast<Mesh *>(object->get_geometry());
+ size_t mesh_num_triangles = mesh->num_triangles();
+ for (size_t i = 0; i < mesh_num_triangles; i++) {
+ int shader_index = mesh->get_shader()[i];
+ Shader *shader = (shader_index < mesh->get_used_shaders().size()) ?
+ static_cast<Shader *>(mesh->get_used_shaders()[shader_index]) :
+ scene->default_surface;
+
+ if (shader->get_use_mis() && shader->has_surface_emission) {
+ num_triangles++;
+ }
+ }
+ }
+
+ size_t num_distribution = num_triangles + num_lights;
+ VLOG(1) << "Total " << num_distribution << " of light distribution primitives.";
+
+ /* emission area */
+ KernelLightDistribution *distribution = dscene->light_distribution.alloc(num_distribution + 1);
+ float totarea = 0.0f;
+
+ /* triangles */
+ size_t offset = 0;
+ int j = 0;
+
+ foreach (Object *object, scene->objects) {
+ if (progress.get_cancel())
+ return;
+
+ if (!object_usable_as_light(object)) {
+ j++;
+ continue;
+ }
+ /* Sum area. */
+ Mesh *mesh = static_cast<Mesh *>(object->get_geometry());
+ bool transform_applied = mesh->transform_applied;
+ Transform tfm = object->get_tfm();
+ int object_id = j;
+ int shader_flag = 0;
+
+ if (!(object->get_visibility() & PATH_RAY_CAMERA)) {
+ shader_flag |= SHADER_EXCLUDE_CAMERA;
+ }
+ if (!(object->get_visibility() & PATH_RAY_DIFFUSE)) {
+ shader_flag |= SHADER_EXCLUDE_DIFFUSE;
+ }
+ if (!(object->get_visibility() & PATH_RAY_GLOSSY)) {
+ shader_flag |= SHADER_EXCLUDE_GLOSSY;
+ }
+ if (!(object->get_visibility() & PATH_RAY_TRANSMIT)) {
+ shader_flag |= SHADER_EXCLUDE_TRANSMIT;
+ }
+ if (!(object->get_visibility() & PATH_RAY_VOLUME_SCATTER)) {
+ shader_flag |= SHADER_EXCLUDE_SCATTER;
+ }
+ if (!(object->get_is_shadow_catcher())) {
+ shader_flag |= SHADER_EXCLUDE_SHADOW_CATCHER;
+ }
+
+ size_t mesh_num_triangles = mesh->num_triangles();
+ for (size_t i = 0; i < mesh_num_triangles; i++) {
+ int shader_index = mesh->get_shader()[i];
+ Shader *shader = (shader_index < mesh->get_used_shaders().size()) ?
+ static_cast<Shader *>(mesh->get_used_shaders()[shader_index]) :
+ scene->default_surface;
+
+ if (shader->get_use_mis() && shader->has_surface_emission) {
+ distribution[offset].totarea = totarea;
+ distribution[offset].prim = i + mesh->prim_offset;
+ distribution[offset].mesh_light.shader_flag = shader_flag;
+ distribution[offset].mesh_light.object_id = object_id;
+ offset++;
+
+ Mesh::Triangle t = mesh->get_triangle(i);
+ if (!t.valid(&mesh->get_verts()[0])) {
+ continue;
+ }
+ float3 p1 = mesh->get_verts()[t.v[0]];
+ float3 p2 = mesh->get_verts()[t.v[1]];
+ float3 p3 = mesh->get_verts()[t.v[2]];
+
+ if (!transform_applied) {
+ p1 = transform_point(&tfm, p1);
+ p2 = transform_point(&tfm, p2);
+ p3 = transform_point(&tfm, p3);
+ }
+
+ totarea += triangle_area(p1, p2, p3);
+ }
+ }
+
+ j++;
+ }
+
+ float trianglearea = totarea;
+ /* point lights */
+ bool use_lamp_mis = false;
+ int light_index = 0;
+
+ if (num_lights > 0) {
+ float lightarea = (totarea > 0.0f) ? totarea / num_lights : 1.0f;
+ foreach (Light *light, scene->lights) {
+ if (!light->is_enabled)
+ continue;
+
+ distribution[offset].totarea = totarea;
+ distribution[offset].prim = ~light_index;
+ distribution[offset].lamp.pad = 1.0f;
+ distribution[offset].lamp.size = light->size;
+ totarea += lightarea;
+
+ if (light->light_type == LIGHT_DISTANT) {
+ use_lamp_mis |= (light->angle > 0.0f && light->use_mis);
+ }
+ else if (light->light_type == LIGHT_POINT || light->light_type == LIGHT_SPOT) {
+ use_lamp_mis |= (light->size > 0.0f && light->use_mis);
+ }
+ else if (light->light_type == LIGHT_AREA) {
+ use_lamp_mis |= light->use_mis;
+ }
+ else if (light->light_type == LIGHT_BACKGROUND) {
+ num_background_lights++;
+ background_mis |= light->use_mis;
+ }
+
+ light_index++;
+ offset++;
+ }
+ }
+
+ /* normalize cumulative distribution functions */
+ distribution[num_distribution].totarea = totarea;
+ distribution[num_distribution].prim = 0.0f;
+ distribution[num_distribution].lamp.pad = 0.0f;
+ distribution[num_distribution].lamp.size = 0.0f;
+
+ if (totarea > 0.0f) {
+ for (size_t i = 0; i < num_distribution; i++)
+ distribution[i].totarea /= totarea;
+ distribution[num_distribution].totarea = 1.0f;
+ }
+
+ if (progress.get_cancel())
+ return;
+
+ /* update device */
+ KernelIntegrator *kintegrator = &dscene->data.integrator;
+ KernelBackground *kbackground = &dscene->data.background;
+ KernelFilm *kfilm = &dscene->data.film;
+ kintegrator->use_direct_light = (totarea > 0.0f);
+
+ if (kintegrator->use_direct_light) {
+ /* number of emissives */
+ kintegrator->num_distribution = num_distribution;
+
+ /* precompute pdfs */
+ kintegrator->pdf_triangles = 0.0f;
+ kintegrator->pdf_lights = 0.0f;
+
+ /* sample one, with 0.5 probability of light or triangle */
+ kintegrator->num_all_lights = num_lights;
+
+ if (trianglearea > 0.0f) {
+ kintegrator->pdf_triangles = 1.0f / trianglearea;
+ if (num_lights)
+ kintegrator->pdf_triangles *= 0.5f;
+ }
+
+ if (num_lights) {
+ kintegrator->pdf_lights = 1.0f / num_lights;
+ if (trianglearea > 0.0f)
+ kintegrator->pdf_lights *= 0.5f;
+ }
+
+ kintegrator->use_lamp_mis = use_lamp_mis;
+
+ /* bit of an ugly hack to compensate for emitting triangles influencing
+ * amount of samples we get for this pass */
+ kfilm->pass_shadow_scale = 1.0f;
+
+ if (kintegrator->pdf_triangles != 0.0f)
+ kfilm->pass_shadow_scale /= 0.5f;
+
+ if (num_background_lights < num_lights)
+ kfilm->pass_shadow_scale /= (float)(num_lights - num_background_lights) / (float)num_lights;
+
+ /* CDF */
+ dscene->light_distribution.copy_to_device();
+
+ /* Portals */
+ if (num_portals > 0) {
+ kbackground->portal_offset = light_index;
+ kbackground->num_portals = num_portals;
+ kbackground->portal_weight = 1.0f;
+ }
+ else {
+ kbackground->num_portals = 0;
+ kbackground->portal_offset = 0;
+ kbackground->portal_weight = 0.0f;
+ }
+
+ /* Map */
+ kbackground->map_weight = background_mis ? 1.0f : 0.0f;
+ }
+ else {
+ dscene->light_distribution.free();
+
+ kintegrator->num_distribution = 0;
+ kintegrator->num_all_lights = 0;
+ kintegrator->pdf_triangles = 0.0f;
+ kintegrator->pdf_lights = 0.0f;
+ kintegrator->use_lamp_mis = false;
+
+ kbackground->num_portals = 0;
+ kbackground->portal_offset = 0;
+ kbackground->portal_weight = 0.0f;
+ kbackground->sun_weight = 0.0f;
+ kbackground->map_weight = 0.0f;
+
+ kfilm->pass_shadow_scale = 1.0f;
+ }
+}
+
+static void background_cdf(
+ int start, int end, int res_x, int res_y, const vector<float3> *pixels, float2 *cond_cdf)
+{
+ int cdf_width = res_x + 1;
+ /* Conditional CDFs (rows, U direction). */
+ for (int i = start; i < end; i++) {
+ float sin_theta = sinf(M_PI_F * (i + 0.5f) / res_y);
+ float3 env_color = (*pixels)[i * res_x];
+ float ave_luminance = average(env_color);
+
+ cond_cdf[i * cdf_width].x = ave_luminance * sin_theta;
+ cond_cdf[i * cdf_width].y = 0.0f;
+
+ for (int j = 1; j < res_x; j++) {
+ env_color = (*pixels)[i * res_x + j];
+ ave_luminance = average(env_color);
+
+ cond_cdf[i * cdf_width + j].x = ave_luminance * sin_theta;
+ cond_cdf[i * cdf_width + j].y = cond_cdf[i * cdf_width + j - 1].y +
+ cond_cdf[i * cdf_width + j - 1].x / res_x;
+ }
+
+ const float cdf_total = cond_cdf[i * cdf_width + res_x - 1].y +
+ cond_cdf[i * cdf_width + res_x - 1].x / res_x;
+
+ /* stuff the total into the brightness value for the last entry, because
+ * we are going to normalize the CDFs to 0.0 to 1.0 afterwards */
+ cond_cdf[i * cdf_width + res_x].x = cdf_total;
+
+ if (cdf_total > 0.0f) {
+ const float cdf_total_inv = 1.0f / cdf_total;
+ for (int j = 1; j < res_x; j++) {
+ cond_cdf[i * cdf_width + j].y *= cdf_total_inv;
+ }
+ }
+
+ cond_cdf[i * cdf_width + res_x].y = 1.0f;
+ }
+}
+
+void LightManager::device_update_background(Device *device,
+ DeviceScene *dscene,
+ Scene *scene,
+ Progress &progress)
+{
+ KernelBackground *kbackground = &dscene->data.background;
+ Light *background_light = NULL;
+
+ /* find background light */
+ foreach (Light *light, scene->lights) {
+ if (light->light_type == LIGHT_BACKGROUND) {
+ background_light = light;
+ break;
+ }
+ }
+
+ /* no background light found, signal renderer to skip sampling */
+ if (!background_light || !background_light->is_enabled) {
+ kbackground->map_res_x = 0;
+ kbackground->map_res_y = 0;
+ kbackground->map_weight = 0.0f;
+ kbackground->sun_weight = 0.0f;
+ kbackground->use_mis = (kbackground->portal_weight > 0.0f);
+ return;
+ }
+
+ progress.set_status("Updating Lights", "Importance map");
+
+ assert(dscene->data.integrator.use_direct_light);
+
+ int2 environment_res = make_int2(0, 0);
+ Shader *shader = scene->background->get_shader(scene);
+ int num_suns = 0;
+ foreach (ShaderNode *node, shader->graph->nodes) {
+ if (node->type == EnvironmentTextureNode::get_node_type()) {
+ EnvironmentTextureNode *env = (EnvironmentTextureNode *)node;
+ ImageMetaData metadata;
+ if (!env->handle.empty()) {
+ ImageMetaData metadata = env->handle.metadata();
+ environment_res.x = max(environment_res.x, metadata.width);
+ environment_res.y = max(environment_res.y, metadata.height);
+ }
+ }
+ if (node->type == SkyTextureNode::get_node_type()) {
+ SkyTextureNode *sky = (SkyTextureNode *)node;
+ if (sky->get_sky_type() == NODE_SKY_NISHITA && sky->get_sun_disc()) {
+ /* Ensure that the input coordinates aren't transformed before they reach the node.
+ * If that is the case, the logic used for sampling the sun's location does not work
+ * and we have to fall back to map-based sampling. */
+ const ShaderInput *vec_in = sky->input("Vector");
+ if (vec_in && vec_in->link && vec_in->link->parent) {
+ ShaderNode *vec_src = vec_in->link->parent;
+ if ((vec_src->type != TextureCoordinateNode::get_node_type()) ||
+ (vec_in->link != vec_src->output("Generated"))) {
+ environment_res.x = max(environment_res.x, 4096);
+ environment_res.y = max(environment_res.y, 2048);
+ continue;
+ }
+ }
+
+ /* Determine sun direction from lat/long and texture mapping. */
+ float latitude = sky->get_sun_elevation();
+ float longitude = M_2PI_F - sky->get_sun_rotation() + M_PI_2_F;
+ float3 sun_direction = make_float3(
+ cosf(latitude) * cosf(longitude), cosf(latitude) * sinf(longitude), sinf(latitude));
+ Transform sky_transform = transform_inverse(sky->tex_mapping.compute_transform());
+ sun_direction = transform_direction(&sky_transform, sun_direction);
+
+ /* Pack sun direction and size. */
+ float half_angle = sky->get_sun_size() * 0.5f;
+ kbackground->sun = make_float4(
+ sun_direction.x, sun_direction.y, sun_direction.z, half_angle);
+
+ kbackground->sun_weight = 4.0f;
+ environment_res.x = max(environment_res.x, 512);
+ environment_res.y = max(environment_res.y, 256);
+ num_suns++;
+ }
+ }
+ }
+
+ /* If there's more than one sun, fall back to map sampling instead. */
+ if (num_suns != 1) {
+ kbackground->sun_weight = 0.0f;
+ environment_res.x = max(environment_res.x, 4096);
+ environment_res.y = max(environment_res.y, 2048);
+ }
+
+ /* Enable MIS for background sampling if any strategy is active. */
+ kbackground->use_mis = (kbackground->portal_weight + kbackground->map_weight +
+ kbackground->sun_weight) > 0.0f;
+
+ /* get the resolution from the light's size (we stuff it in there) */
+ int2 res = make_int2(background_light->map_resolution, background_light->map_resolution / 2);
+ /* If the resolution isn't set manually, try to find an environment texture. */
+ if (res.x == 0) {
+ res = environment_res;
+ if (res.x > 0 && res.y > 0) {
+ VLOG(2) << "Automatically set World MIS resolution to " << res.x << " by " << res.y << "\n";
+ }
+ }
+ /* If it's still unknown, just use the default. */
+ if (res.x == 0 || res.y == 0) {
+ res = make_int2(1024, 512);
+ VLOG(2) << "Setting World MIS resolution to default\n";
+ }
+ kbackground->map_res_x = res.x;
+ kbackground->map_res_y = res.y;
+
+ vector<float3> pixels;
+ shade_background_pixels(device, dscene, res.x, res.y, pixels, progress);
+
+ if (progress.get_cancel())
+ return;
+
+ /* build row distributions and column distribution for the infinite area environment light */
+ int cdf_width = res.x + 1;
+ float2 *marg_cdf = dscene->light_background_marginal_cdf.alloc(res.y + 1);
+ float2 *cond_cdf = dscene->light_background_conditional_cdf.alloc(cdf_width * res.y);
+
+ double time_start = time_dt();
+
+ /* Create CDF in parallel. */
+ const int rows_per_task = divide_up(10240, res.x);
+ parallel_for(blocked_range<size_t>(0, res.y, rows_per_task),
+ [&](const blocked_range<size_t> &r) {
+ background_cdf(r.begin(), r.end(), res.x, res.y, &pixels, cond_cdf);
+ });
+
+ /* marginal CDFs (column, V direction, sum of rows) */
+ marg_cdf[0].x = cond_cdf[res.x].x;
+ marg_cdf[0].y = 0.0f;
+
+ for (int i = 1; i < res.y; i++) {
+ marg_cdf[i].x = cond_cdf[i * cdf_width + res.x].x;
+ marg_cdf[i].y = marg_cdf[i - 1].y + marg_cdf[i - 1].x / res.y;
+ }
+
+ float cdf_total = marg_cdf[res.y - 1].y + marg_cdf[res.y - 1].x / res.y;
+ marg_cdf[res.y].x = cdf_total;
+
+ if (cdf_total > 0.0f)
+ for (int i = 1; i < res.y; i++)
+ marg_cdf[i].y /= cdf_total;
+
+ marg_cdf[res.y].y = 1.0f;
+
+ VLOG(2) << "Background MIS build time " << time_dt() - time_start << "\n";
+
+ /* update device */
+ dscene->light_background_marginal_cdf.copy_to_device();
+ dscene->light_background_conditional_cdf.copy_to_device();
+}
+
+void LightManager::device_update_points(Device *, DeviceScene *dscene, Scene *scene)
+{
+ int num_scene_lights = scene->lights.size();
+
+ int num_lights = 0;
+ foreach (Light *light, scene->lights) {
+ if (light->is_enabled || light->is_portal) {
+ num_lights++;
+ }
+ }
+
+ KernelLight *klights = dscene->lights.alloc(num_lights);
+
+ if (num_lights == 0) {
+ VLOG(1) << "No effective light, ignoring points update.";
+ return;
+ }
+
+ int light_index = 0;
+
+ foreach (Light *light, scene->lights) {
+ if (!light->is_enabled) {
+ continue;
+ }
+
+ float3 co = light->co;
+ Shader *shader = (light->shader) ? light->shader : scene->default_light;
+ int shader_id = scene->shader_manager->get_shader_id(shader);
+ int max_bounces = light->max_bounces;
+ float random = (float)light->random_id * (1.0f / (float)0xFFFFFFFF);
+
+ if (!light->cast_shadow)
+ shader_id &= ~SHADER_CAST_SHADOW;
+
+ if (!light->use_camera) {
+ shader_id |= SHADER_EXCLUDE_CAMERA;
+ }
+ if (!light->use_diffuse) {
+ shader_id |= SHADER_EXCLUDE_DIFFUSE;
+ }
+ if (!light->use_glossy) {
+ shader_id |= SHADER_EXCLUDE_GLOSSY;
+ }
+ if (!light->use_transmission) {
+ shader_id |= SHADER_EXCLUDE_TRANSMIT;
+ }
+ if (!light->use_scatter) {
+ shader_id |= SHADER_EXCLUDE_SCATTER;
+ }
+ if (!light->is_shadow_catcher) {
+ shader_id |= SHADER_EXCLUDE_SHADOW_CATCHER;
+ }
+
+ klights[light_index].type = light->light_type;
+ klights[light_index].strength[0] = light->strength.x;
+ klights[light_index].strength[1] = light->strength.y;
+ klights[light_index].strength[2] = light->strength.z;
+
+ if (light->light_type == LIGHT_POINT) {
+ shader_id &= ~SHADER_AREA_LIGHT;
+
+ float radius = light->size;
+ float invarea = (radius > 0.0f) ? 1.0f / (M_PI_F * radius * radius) : 1.0f;
+
+ if (light->use_mis && radius > 0.0f)
+ shader_id |= SHADER_USE_MIS;
+
+ klights[light_index].co[0] = co.x;
+ klights[light_index].co[1] = co.y;
+ klights[light_index].co[2] = co.z;
+
+ klights[light_index].spot.radius = radius;
+ klights[light_index].spot.invarea = invarea;
+ }
+ else if (light->light_type == LIGHT_DISTANT) {
+ shader_id &= ~SHADER_AREA_LIGHT;
+
+ float angle = light->angle / 2.0f;
+ float radius = tanf(angle);
+ float cosangle = cosf(angle);
+ float area = M_PI_F * radius * radius;
+ float invarea = (area > 0.0f) ? 1.0f / area : 1.0f;
+ float3 dir = light->dir;
+
+ dir = safe_normalize(dir);
+
+ if (light->use_mis && area > 0.0f)
+ shader_id |= SHADER_USE_MIS;
+
+ klights[light_index].co[0] = dir.x;
+ klights[light_index].co[1] = dir.y;
+ klights[light_index].co[2] = dir.z;
+
+ klights[light_index].distant.invarea = invarea;
+ klights[light_index].distant.radius = radius;
+ klights[light_index].distant.cosangle = cosangle;
+ }
+ else if (light->light_type == LIGHT_BACKGROUND) {
+ uint visibility = scene->background->get_visibility();
+
+ shader_id &= ~SHADER_AREA_LIGHT;
+ shader_id |= SHADER_USE_MIS;
+
+ if (!(visibility & PATH_RAY_DIFFUSE)) {
+ shader_id |= SHADER_EXCLUDE_DIFFUSE;
+ }
+ if (!(visibility & PATH_RAY_GLOSSY)) {
+ shader_id |= SHADER_EXCLUDE_GLOSSY;
+ }
+ if (!(visibility & PATH_RAY_TRANSMIT)) {
+ shader_id |= SHADER_EXCLUDE_TRANSMIT;
+ }
+ if (!(visibility & PATH_RAY_VOLUME_SCATTER)) {
+ shader_id |= SHADER_EXCLUDE_SCATTER;
+ }
+ }
+ else if (light->light_type == LIGHT_AREA) {
+ float3 axisu = light->axisu * (light->sizeu * light->size);
+ float3 axisv = light->axisv * (light->sizev * light->size);
+ float area = len(axisu) * len(axisv);
+ if (light->round) {
+ area *= -M_PI_4_F;
+ }
+ float invarea = (area != 0.0f) ? 1.0f / area : 1.0f;
+ float3 dir = light->dir;
+
+ /* Convert from spread angle 0..180 to 90..0, clamping to a minimum
+ * angle to avoid excessive noise. */
+ const float min_spread_angle = 1.0f * M_PI_F / 180.0f;
+ const float spread_angle = 0.5f * (M_PI_F - max(light->spread, min_spread_angle));
+ /* Normalization computed using:
+ * integrate cos(x) * (1 - tan(x) * tan(a)) * sin(x) from x = 0 to pi/2 - a. */
+ const float tan_spread = tanf(spread_angle);
+ const float normalize_spread = 2.0f / (2.0f + (2.0f * spread_angle - M_PI_F) * tan_spread);
+
+ dir = safe_normalize(dir);
+
+ if (light->use_mis && area != 0.0f)
+ shader_id |= SHADER_USE_MIS;
+
+ klights[light_index].co[0] = co.x;
+ klights[light_index].co[1] = co.y;
+ klights[light_index].co[2] = co.z;
+
+ klights[light_index].area.axisu[0] = axisu.x;
+ klights[light_index].area.axisu[1] = axisu.y;
+ klights[light_index].area.axisu[2] = axisu.z;
+ klights[light_index].area.axisv[0] = axisv.x;
+ klights[light_index].area.axisv[1] = axisv.y;
+ klights[light_index].area.axisv[2] = axisv.z;
+ klights[light_index].area.invarea = invarea;
+ klights[light_index].area.dir[0] = dir.x;
+ klights[light_index].area.dir[1] = dir.y;
+ klights[light_index].area.dir[2] = dir.z;
+ klights[light_index].area.tan_spread = tan_spread;
+ klights[light_index].area.normalize_spread = normalize_spread;
+ }
+ else if (light->light_type == LIGHT_SPOT) {
+ shader_id &= ~SHADER_AREA_LIGHT;
+
+ float radius = light->size;
+ float invarea = (radius > 0.0f) ? 1.0f / (M_PI_F * radius * radius) : 1.0f;
+ float spot_angle = cosf(light->spot_angle * 0.5f);
+ float spot_smooth = (1.0f - spot_angle) * light->spot_smooth;
+ float3 dir = light->dir;
+
+ dir = safe_normalize(dir);
+
+ if (light->use_mis && radius > 0.0f)
+ shader_id |= SHADER_USE_MIS;
+
+ klights[light_index].co[0] = co.x;
+ klights[light_index].co[1] = co.y;
+ klights[light_index].co[2] = co.z;
+
+ klights[light_index].spot.radius = radius;
+ klights[light_index].spot.invarea = invarea;
+ klights[light_index].spot.spot_angle = spot_angle;
+ klights[light_index].spot.spot_smooth = spot_smooth;
+ klights[light_index].spot.dir[0] = dir.x;
+ klights[light_index].spot.dir[1] = dir.y;
+ klights[light_index].spot.dir[2] = dir.z;
+ }
+
+ klights[light_index].shader_id = shader_id;
+
+ klights[light_index].max_bounces = max_bounces;
+ klights[light_index].random = random;
+
+ klights[light_index].tfm = light->tfm;
+ klights[light_index].itfm = transform_inverse(light->tfm);
+
+ light_index++;
+ }
+
+ /* TODO(sergey): Consider moving portals update to their own function
+ * keeping this one more manageable.
+ */
+ foreach (Light *light, scene->lights) {
+ if (!light->is_portal)
+ continue;
+ assert(light->light_type == LIGHT_AREA);
+
+ float3 co = light->co;
+ float3 axisu = light->axisu * (light->sizeu * light->size);
+ float3 axisv = light->axisv * (light->sizev * light->size);
+ float area = len(axisu) * len(axisv);
+ if (light->round) {
+ area *= -M_PI_4_F;
+ }
+ float invarea = (area != 0.0f) ? 1.0f / area : 1.0f;
+ float3 dir = light->dir;
+
+ dir = safe_normalize(dir);
+
+ klights[light_index].co[0] = co.x;
+ klights[light_index].co[1] = co.y;
+ klights[light_index].co[2] = co.z;
+
+ klights[light_index].area.axisu[0] = axisu.x;
+ klights[light_index].area.axisu[1] = axisu.y;
+ klights[light_index].area.axisu[2] = axisu.z;
+ klights[light_index].area.axisv[0] = axisv.x;
+ klights[light_index].area.axisv[1] = axisv.y;
+ klights[light_index].area.axisv[2] = axisv.z;
+ klights[light_index].area.invarea = invarea;
+ klights[light_index].area.dir[0] = dir.x;
+ klights[light_index].area.dir[1] = dir.y;
+ klights[light_index].area.dir[2] = dir.z;
+ klights[light_index].tfm = light->tfm;
+ klights[light_index].itfm = transform_inverse(light->tfm);
+
+ light_index++;
+ }
+
+ VLOG(1) << "Number of lights sent to the device: " << light_index;
+
+ VLOG(1) << "Number of lights without contribution: " << num_scene_lights - light_index;
+
+ dscene->lights.copy_to_device();
+}
+
+void LightManager::device_update(Device *device,
+ DeviceScene *dscene,
+ Scene *scene,
+ Progress &progress)
+{
+ if (!need_update())
+ return;
+
+ scoped_callback_timer timer([scene](double time) {
+ if (scene->update_stats) {
+ scene->update_stats->light.times.add_entry({"device_update", time});
+ }
+ });
+
+ VLOG(1) << "Total " << scene->lights.size() << " lights.";
+
+ /* Detect which lights are enabled, also determines if we need to update the background. */
+ test_enabled_lights(scene);
+
+ device_free(device, dscene, need_update_background);
+
+ device_update_points(device, dscene, scene);
+ if (progress.get_cancel())
+ return;
+
+ device_update_distribution(device, dscene, scene, progress);
+ if (progress.get_cancel())
+ return;
+
+ if (need_update_background) {
+ device_update_background(device, dscene, scene, progress);
+ if (progress.get_cancel())
+ return;
+ }
+
+ device_update_ies(dscene);
+ if (progress.get_cancel())
+ return;
+
+ update_flags = UPDATE_NONE;
+ need_update_background = false;
+}
+
+void LightManager::device_free(Device *, DeviceScene *dscene, const bool free_background)
+{
+ dscene->light_distribution.free();
+ dscene->lights.free();
+ if (free_background) {
+ dscene->light_background_marginal_cdf.free();
+ dscene->light_background_conditional_cdf.free();
+ }
+ dscene->ies_lights.free();
+}
+
+void LightManager::tag_update(Scene * /*scene*/, uint32_t flag)
+{
+ update_flags |= flag;
+}
+
+bool LightManager::need_update() const
+{
+ return update_flags != UPDATE_NONE;
+}
+
+int LightManager::add_ies_from_file(const string &filename)
+{
+ string content;
+
+ /* If the file can't be opened, call with an empty line */
+ if (filename.empty() || !path_read_text(filename.c_str(), content)) {
+ content = "\n";
+ }
+
+ return add_ies(content);
+}
+
+int LightManager::add_ies(const string &content)
+{
+ uint hash = hash_string(content.c_str());
+
+ thread_scoped_lock ies_lock(ies_mutex);
+
+ /* Check whether this IES already has a slot. */
+ size_t slot;
+ for (slot = 0; slot < ies_slots.size(); slot++) {
+ if (ies_slots[slot]->hash == hash) {
+ ies_slots[slot]->users++;
+ return slot;
+ }
+ }
+
+ /* Try to find an empty slot for the new IES. */
+ for (slot = 0; slot < ies_slots.size(); slot++) {
+ if (ies_slots[slot]->users == 0 && ies_slots[slot]->hash == 0) {
+ break;
+ }
+ }
+
+ /* If there's no free slot, add one. */
+ if (slot == ies_slots.size()) {
+ ies_slots.push_back(new IESSlot());
+ }
+
+ ies_slots[slot]->ies.load(content);
+ ies_slots[slot]->users = 1;
+ ies_slots[slot]->hash = hash;
+
+ update_flags = UPDATE_ALL;
+ need_update_background = true;
+
+ return slot;
+}
+
+void LightManager::remove_ies(int slot)
+{
+ thread_scoped_lock ies_lock(ies_mutex);
+
+ if (slot < 0 || slot >= ies_slots.size()) {
+ assert(false);
+ return;
+ }
+
+ assert(ies_slots[slot]->users > 0);
+ ies_slots[slot]->users--;
+
+ /* If the slot has no more users, update the device to remove it. */
+ if (ies_slots[slot]->users == 0) {
+ update_flags |= UPDATE_ALL;
+ need_update_background = true;
+ }
+}
+
+void LightManager::device_update_ies(DeviceScene *dscene)
+{
+ /* Clear empty slots. */
+ foreach (IESSlot *slot, ies_slots) {
+ if (slot->users == 0) {
+ slot->hash = 0;
+ slot->ies.clear();
+ }
+ }
+
+ /* Shrink the slot table by removing empty slots at the end. */
+ int slot_end;
+ for (slot_end = ies_slots.size(); slot_end; slot_end--) {
+ if (ies_slots[slot_end - 1]->users > 0) {
+ /* If the preceding slot has users, we found the new end of the table. */
+ break;
+ }
+ else {
+ /* The slot will be past the new end of the table, so free it. */
+ delete ies_slots[slot_end - 1];
+ }
+ }
+ ies_slots.resize(slot_end);
+
+ if (ies_slots.size() > 0) {
+ int packed_size = 0;
+ foreach (IESSlot *slot, ies_slots) {
+ packed_size += slot->ies.packed_size();
+ }
+
+ /* ies_lights starts with an offset table that contains the offset of every slot,
+ * or -1 if the slot is invalid.
+ * Following that table, the packed valid IES lights are stored. */
+ float *data = dscene->ies_lights.alloc(ies_slots.size() + packed_size);
+
+ int offset = ies_slots.size();
+ for (int i = 0; i < ies_slots.size(); i++) {
+ int size = ies_slots[i]->ies.packed_size();
+ if (size > 0) {
+ data[i] = __int_as_float(offset);
+ ies_slots[i]->ies.pack(data + offset);
+ offset += size;
+ }
+ else {
+ data[i] = __int_as_float(-1);
+ }
+ }
+
+ dscene->ies_lights.copy_to_device();
+ }
+}
+
+CCL_NAMESPACE_END