Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/util/math_matrix.h')
-rw-r--r--intern/cycles/util/math_matrix.h454
1 files changed, 454 insertions, 0 deletions
diff --git a/intern/cycles/util/math_matrix.h b/intern/cycles/util/math_matrix.h
new file mode 100644
index 00000000000..bff7ddb4cee
--- /dev/null
+++ b/intern/cycles/util/math_matrix.h
@@ -0,0 +1,454 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __UTIL_MATH_MATRIX_H__
+#define __UTIL_MATH_MATRIX_H__
+
+CCL_NAMESPACE_BEGIN
+
+#define MAT(A, size, row, col) A[(row) * (size) + (col)]
+
+/* Variants that use a constant stride on GPUS. */
+#ifdef __KERNEL_GPU__
+# define MATS(A, n, r, c, s) A[((r) * (n) + (c)) * (s)]
+/* Element access when only the lower-triangular elements are stored. */
+# define MATHS(A, r, c, s) A[((r) * ((r) + 1) / 2 + (c)) * (s)]
+# define VECS(V, i, s) V[(i) * (s)]
+#else
+# define MATS(A, n, r, c, s) MAT(A, n, r, c)
+# define MATHS(A, r, c, s) A[(r) * ((r) + 1) / 2 + (c)]
+# define VECS(V, i, s) V[i]
+#endif
+
+/* Zeroing helpers. */
+
+ccl_device_inline void math_vector_zero(ccl_private float *v, int n)
+{
+ for (int i = 0; i < n; i++) {
+ v[i] = 0.0f;
+ }
+}
+
+ccl_device_inline void math_matrix_zero(ccl_private float *A, int n)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MAT(A, n, row, col) = 0.0f;
+ }
+ }
+}
+
+/* Elementary vector operations. */
+
+ccl_device_inline void math_vector_add(ccl_private float *a,
+ ccl_private const float *ccl_restrict b,
+ int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i] += b[i];
+ }
+}
+
+ccl_device_inline void math_vector_mul(ccl_private float *a,
+ ccl_private const float *ccl_restrict b,
+ int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i] *= b[i];
+ }
+}
+
+ccl_device_inline void math_vector_mul_strided(ccl_global float *a,
+ ccl_private const float *ccl_restrict b,
+ int astride,
+ int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i * astride] *= b[i];
+ }
+}
+
+ccl_device_inline void math_vector_scale(ccl_private float *a, float b, int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i] *= b;
+ }
+}
+
+ccl_device_inline void math_vector_max(ccl_private float *a,
+ ccl_private const float *ccl_restrict b,
+ int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i] = max(a[i], b[i]);
+ }
+}
+
+ccl_device_inline void math_vec3_add(ccl_private float3 *v, int n, ccl_private float *x, float3 w)
+{
+ for (int i = 0; i < n; i++) {
+ v[i] += w * x[i];
+ }
+}
+
+ccl_device_inline void math_vec3_add_strided(
+ ccl_global float3 *v, int n, ccl_private float *x, float3 w, int stride)
+{
+ for (int i = 0; i < n; i++) {
+ ccl_global float *elem = (ccl_global float *)(v + i * stride);
+ atomic_add_and_fetch_float(elem + 0, w.x * x[i]);
+ atomic_add_and_fetch_float(elem + 1, w.y * x[i]);
+ atomic_add_and_fetch_float(elem + 2, w.z * x[i]);
+ }
+}
+
+/* Elementary matrix operations.
+ * Note: TriMatrix refers to a square matrix that is symmetric,
+ * and therefore its upper-triangular part isn't stored. */
+
+ccl_device_inline void math_trimatrix_add_diagonal(ccl_global float *A,
+ int n,
+ float val,
+ int stride)
+{
+ for (int row = 0; row < n; row++) {
+ MATHS(A, row, row, stride) += val;
+ }
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is vt*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_matrix_add_gramian(ccl_private float *A,
+ int n,
+ ccl_private const float *ccl_restrict v,
+ float weight)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MAT(A, n, row, col) += v[row] * v[col] * weight;
+ }
+ }
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is vt*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_trimatrix_add_gramian_strided(
+ ccl_global float *A, int n, ccl_private const float *ccl_restrict v, float weight, int stride)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ atomic_add_and_fetch_float(&MATHS(A, row, col, stride), v[row] * v[col] * weight);
+ }
+ }
+}
+
+ccl_device_inline void math_trimatrix_add_gramian(ccl_global float *A,
+ int n,
+ ccl_private const float *ccl_restrict v,
+ float weight)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MATHS(A, row, col, 1) += v[row] * v[col] * weight;
+ }
+ }
+}
+
+/* Transpose matrix A in place. */
+ccl_device_inline void math_matrix_transpose(ccl_global float *A, int n, int stride)
+{
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < i; j++) {
+ float temp = MATS(A, n, i, j, stride);
+ MATS(A, n, i, j, stride) = MATS(A, n, j, i, stride);
+ MATS(A, n, j, i, stride) = temp;
+ }
+ }
+}
+
+/* Solvers for matrix problems */
+
+/* In-place Cholesky-Banachiewicz decomposition of the square, positive-definite matrix A
+ * into a lower triangular matrix L so that A = L*L^T. A is being overwritten by L.
+ * Also, only the lower triangular part of A is ever accessed. */
+ccl_device void math_trimatrix_cholesky(ccl_global float *A, int n, int stride)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ float sum_col = MATHS(A, row, col, stride);
+ for (int k = 0; k < col; k++) {
+ sum_col -= MATHS(A, row, k, stride) * MATHS(A, col, k, stride);
+ }
+ if (row == col) {
+ sum_col = sqrtf(max(sum_col, 0.0f));
+ }
+ else {
+ sum_col /= MATHS(A, col, col, stride);
+ }
+ MATHS(A, row, col, stride) = sum_col;
+ }
+ }
+}
+
+/* Solve A*S=y for S given A and y,
+ * where A is symmetrical positive-semi-definite and both inputs are destroyed in the process.
+ *
+ * We can apply Cholesky decomposition to find a lower triangular L so that L*Lt = A.
+ * With that we get (L*Lt)*S = L*(Lt*S) = L*b = y, defining b as Lt*S.
+ * Since L is lower triangular, finding b is relatively easy since y is known.
+ * Then, the remaining problem is Lt*S = b, which again can be solved easily.
+ *
+ * This is useful for solving the normal equation S=inv(Xt*W*X)*Xt*W*y, since Xt*W*X is
+ * symmetrical positive-semidefinite by construction,
+ * so we can just use this function with A=Xt*W*X and y=Xt*W*y. */
+ccl_device_inline void math_trimatrix_vec3_solve(ccl_global float *A,
+ ccl_global float3 *y,
+ int n,
+ int stride)
+{
+ /* Since the first entry of the design row is always 1, the upper-left element of XtWX is a good
+ * heuristic for the amount of pixels considered (with weighting),
+ * therefore the amount of correction is scaled based on it. */
+ math_trimatrix_add_diagonal(A, n, 3e-7f * A[0], stride); /* Improve the numerical stability. */
+ math_trimatrix_cholesky(A, n, stride); /* Replace A with L so that L*Lt = A. */
+
+ /* Use forward substitution to solve L*b = y, replacing y by b. */
+ for (int row = 0; row < n; row++) {
+ float3 sum = VECS(y, row, stride);
+ for (int col = 0; col < row; col++)
+ sum -= MATHS(A, row, col, stride) * VECS(y, col, stride);
+ VECS(y, row, stride) = sum / MATHS(A, row, row, stride);
+ }
+
+ /* Use backward substitution to solve Lt*S = b, replacing b by S. */
+ for (int row = n - 1; row >= 0; row--) {
+ float3 sum = VECS(y, row, stride);
+ for (int col = row + 1; col < n; col++)
+ sum -= MATHS(A, col, row, stride) * VECS(y, col, stride);
+ VECS(y, row, stride) = sum / MATHS(A, row, row, stride);
+ }
+}
+
+/* Perform the Jacobi Eigenvalue Method on matrix A.
+ * A is assumed to be a symmetrical matrix, therefore only the lower-triangular part is ever
+ * accessed. The algorithm overwrites the contents of A.
+ *
+ * After returning, A will be overwritten with D, which is (almost) diagonal,
+ * and V will contain the eigenvectors of the original A in its rows (!),
+ * so that A = V^T*D*V. Therefore, the diagonal elements of D are the (sorted) eigenvalues of A.
+ */
+ccl_device void math_matrix_jacobi_eigendecomposition(ccl_private float *A,
+ ccl_global float *V,
+ int n,
+ int v_stride)
+{
+ const float singular_epsilon = 1e-9f;
+
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col < n; col++) {
+ MATS(V, n, row, col, v_stride) = (col == row) ? 1.0f : 0.0f;
+ }
+ }
+
+ for (int sweep = 0; sweep < 8; sweep++) {
+ float off_diagonal = 0.0f;
+ for (int row = 1; row < n; row++) {
+ for (int col = 0; col < row; col++) {
+ off_diagonal += fabsf(MAT(A, n, row, col));
+ }
+ }
+ if (off_diagonal < 1e-7f) {
+ /* The matrix has nearly reached diagonal form.
+ * Since the eigenvalues are only used to determine truncation, their exact values aren't
+ * required - a relative error of a few ULPs won't matter at all. */
+ break;
+ }
+
+ /* Set the threshold for the small element rotation skip in the first sweep:
+ * Skip all elements that are less than a tenth of the average off-diagonal element. */
+ float threshold = 0.2f * off_diagonal / (n * n);
+
+ for (int row = 1; row < n; row++) {
+ for (int col = 0; col < row; col++) {
+ /* Perform a Jacobi rotation on this element that reduces it to zero. */
+ float element = MAT(A, n, row, col);
+ float abs_element = fabsf(element);
+
+ /* If we're in a later sweep and the element already is very small,
+ * just set it to zero and skip the rotation. */
+ if (sweep > 3 && abs_element <= singular_epsilon * fabsf(MAT(A, n, row, row)) &&
+ abs_element <= singular_epsilon * fabsf(MAT(A, n, col, col))) {
+ MAT(A, n, row, col) = 0.0f;
+ continue;
+ }
+
+ if (element == 0.0f) {
+ continue;
+ }
+
+ /* If we're in one of the first sweeps and the element is smaller than the threshold,
+ * skip it. */
+ if (sweep < 3 && (abs_element < threshold)) {
+ continue;
+ }
+
+ /* Determine rotation: The rotation is characterized by its angle phi - or,
+ * in the actual implementation, sin(phi) and cos(phi).
+ * To find those, we first compute their ratio - that might be unstable if the angle
+ * approaches 90°, so there's a fallback for that case.
+ * Then, we compute sin(phi) and cos(phi) themselves. */
+ float singular_diff = MAT(A, n, row, row) - MAT(A, n, col, col);
+ float ratio;
+ if (abs_element > singular_epsilon * fabsf(singular_diff)) {
+ float cot_2phi = 0.5f * singular_diff / element;
+ ratio = 1.0f / (fabsf(cot_2phi) + sqrtf(1.0f + cot_2phi * cot_2phi));
+ if (cot_2phi < 0.0f)
+ ratio = -ratio; /* Copy sign. */
+ }
+ else {
+ ratio = element / singular_diff;
+ }
+
+ float c = 1.0f / sqrtf(1.0f + ratio * ratio);
+ float s = ratio * c;
+ /* To improve numerical stability by avoiding cancellation, the update equations are
+ * reformulized to use sin(phi) and tan(phi/2) instead. */
+ float tan_phi_2 = s / (1.0f + c);
+
+ /* Update the singular values in the diagonal. */
+ float singular_delta = ratio * element;
+ MAT(A, n, row, row) += singular_delta;
+ MAT(A, n, col, col) -= singular_delta;
+
+ /* Set the element itself to zero. */
+ MAT(A, n, row, col) = 0.0f;
+
+ /* Perform the actual rotations on the matrices. */
+#define ROT(M, r1, c1, r2, c2, stride) \
+ { \
+ float M1 = MATS(M, n, r1, c1, stride); \
+ float M2 = MATS(M, n, r2, c2, stride); \
+ MATS(M, n, r1, c1, stride) -= s * (M2 + tan_phi_2 * M1); \
+ MATS(M, n, r2, c2, stride) += s * (M1 - tan_phi_2 * M2); \
+ }
+
+ /* Split into three parts to ensure correct accesses since we only store the
+ * lower-triangular part of A. */
+ for (int i = 0; i < col; i++)
+ ROT(A, col, i, row, i, 1);
+ for (int i = col + 1; i < row; i++)
+ ROT(A, i, col, row, i, 1);
+ for (int i = row + 1; i < n; i++)
+ ROT(A, i, col, i, row, 1);
+
+ for (int i = 0; i < n; i++)
+ ROT(V, col, i, row, i, v_stride);
+#undef ROT
+ }
+ }
+ }
+
+ /* Sort eigenvalues and the associated eigenvectors. */
+ for (int i = 0; i < n - 1; i++) {
+ float v = MAT(A, n, i, i);
+ int k = i;
+ for (int j = i; j < n; j++) {
+ if (MAT(A, n, j, j) >= v) {
+ v = MAT(A, n, j, j);
+ k = j;
+ }
+ }
+ if (k != i) {
+ /* Swap eigenvalues. */
+ MAT(A, n, k, k) = MAT(A, n, i, i);
+ MAT(A, n, i, i) = v;
+ /* Swap eigenvectors. */
+ for (int j = 0; j < n; j++) {
+ float v = MATS(V, n, i, j, v_stride);
+ MATS(V, n, i, j, v_stride) = MATS(V, n, k, j, v_stride);
+ MATS(V, n, k, j, v_stride) = v;
+ }
+ }
+ }
+}
+
+#ifdef __KERNEL_SSE3__
+ccl_device_inline void math_vector_zero_sse(float4 *A, int n)
+{
+ for (int i = 0; i < n; i++) {
+ A[i] = make_float4(0.0f);
+ }
+}
+
+ccl_device_inline void math_matrix_zero_sse(float4 *A, int n)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MAT(A, n, row, col) = make_float4(0.0f);
+ }
+ }
+}
+
+/* Add Gramian matrix of v to A.
+ * The Gramian matrix of v is v^T*v, so element (i,j) is v[i]*v[j]. */
+ccl_device_inline void math_matrix_add_gramian_sse(float4 *A,
+ int n,
+ const float4 *ccl_restrict v,
+ float4 weight)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MAT(A, n, row, col) = MAT(A, n, row, col) + v[row] * v[col] * weight;
+ }
+ }
+}
+
+ccl_device_inline void math_vector_add_sse(float4 *V, int n, const float4 *ccl_restrict a)
+{
+ for (int i = 0; i < n; i++) {
+ V[i] += a[i];
+ }
+}
+
+ccl_device_inline void math_vector_mul_sse(float4 *V, int n, const float4 *ccl_restrict a)
+{
+ for (int i = 0; i < n; i++) {
+ V[i] *= a[i];
+ }
+}
+
+ccl_device_inline void math_vector_max_sse(float4 *a, const float4 *ccl_restrict b, int n)
+{
+ for (int i = 0; i < n; i++) {
+ a[i] = max(a[i], b[i]);
+ }
+}
+
+ccl_device_inline void math_matrix_hsum(float *A, int n, const float4 *ccl_restrict B)
+{
+ for (int row = 0; row < n; row++) {
+ for (int col = 0; col <= row; col++) {
+ MAT(A, n, row, col) = reduce_add(MAT(B, n, row, col))[0];
+ }
+ }
+}
+#endif
+
+#undef MAT
+
+CCL_NAMESPACE_END
+
+#endif /* __UTIL_MATH_MATRIX_H__ */