Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/util/transform.h')
-rw-r--r--intern/cycles/util/transform.h512
1 files changed, 512 insertions, 0 deletions
diff --git a/intern/cycles/util/transform.h b/intern/cycles/util/transform.h
new file mode 100644
index 00000000000..7bfe747fcfb
--- /dev/null
+++ b/intern/cycles/util/transform.h
@@ -0,0 +1,512 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __UTIL_TRANSFORM_H__
+#define __UTIL_TRANSFORM_H__
+
+#ifndef __KERNEL_GPU__
+# include <string.h>
+#endif
+
+#include "util/math.h"
+#include "util/types.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* Affine transformation, stored as 4x3 matrix. */
+
+typedef struct Transform {
+ float4 x, y, z;
+
+#ifndef __KERNEL_GPU__
+ float4 operator[](int i) const
+ {
+ return *(&x + i);
+ }
+ float4 &operator[](int i)
+ {
+ return *(&x + i);
+ }
+#endif
+} Transform;
+
+/* Transform decomposed in rotation/translation/scale. we use the same data
+ * structure as Transform, and tightly pack decomposition into it. first the
+ * rotation (4), then translation (3), then 3x3 scale matrix (9). */
+
+typedef struct DecomposedTransform {
+ float4 x, y, z, w;
+} DecomposedTransform;
+
+/* Functions */
+
+ccl_device_inline float3 transform_point(ccl_private const Transform *t, const float3 a)
+{
+ /* TODO(sergey): Disabled for now, causes crashes in certain cases. */
+#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
+ ssef x, y, z, w, aa;
+ aa = a.m128;
+
+ x = _mm_loadu_ps(&t->x.x);
+ y = _mm_loadu_ps(&t->y.x);
+ z = _mm_loadu_ps(&t->z.x);
+ w = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
+
+ _MM_TRANSPOSE4_PS(x, y, z, w);
+
+ ssef tmp = shuffle<0>(aa) * x;
+ tmp = madd(shuffle<1>(aa), y, tmp);
+ tmp = madd(shuffle<2>(aa), z, tmp);
+ tmp += w;
+
+ return float3(tmp.m128);
+#else
+ float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z + t->x.w,
+ a.x * t->y.x + a.y * t->y.y + a.z * t->y.z + t->y.w,
+ a.x * t->z.x + a.y * t->z.y + a.z * t->z.z + t->z.w);
+
+ return c;
+#endif
+}
+
+ccl_device_inline float3 transform_direction(ccl_private const Transform *t, const float3 a)
+{
+#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
+ ssef x, y, z, w, aa;
+ aa = a.m128;
+ x = _mm_loadu_ps(&t->x.x);
+ y = _mm_loadu_ps(&t->y.x);
+ z = _mm_loadu_ps(&t->z.x);
+ w = _mm_setzero_ps();
+
+ _MM_TRANSPOSE4_PS(x, y, z, w);
+
+ ssef tmp = shuffle<0>(aa) * x;
+ tmp = madd(shuffle<1>(aa), y, tmp);
+ tmp = madd(shuffle<2>(aa), z, tmp);
+
+ return float3(tmp.m128);
+#else
+ float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z,
+ a.x * t->y.x + a.y * t->y.y + a.z * t->y.z,
+ a.x * t->z.x + a.y * t->z.y + a.z * t->z.z);
+
+ return c;
+#endif
+}
+
+ccl_device_inline float3 transform_direction_transposed(ccl_private const Transform *t,
+ const float3 a)
+{
+ float3 x = make_float3(t->x.x, t->y.x, t->z.x);
+ float3 y = make_float3(t->x.y, t->y.y, t->z.y);
+ float3 z = make_float3(t->x.z, t->y.z, t->z.z);
+
+ return make_float3(dot(x, a), dot(y, a), dot(z, a));
+}
+
+ccl_device_inline Transform make_transform(float a,
+ float b,
+ float c,
+ float d,
+ float e,
+ float f,
+ float g,
+ float h,
+ float i,
+ float j,
+ float k,
+ float l)
+{
+ Transform t;
+
+ t.x.x = a;
+ t.x.y = b;
+ t.x.z = c;
+ t.x.w = d;
+ t.y.x = e;
+ t.y.y = f;
+ t.y.z = g;
+ t.y.w = h;
+ t.z.x = i;
+ t.z.y = j;
+ t.z.z = k;
+ t.z.w = l;
+
+ return t;
+}
+
+ccl_device_inline Transform euler_to_transform(const float3 euler)
+{
+ float cx = cosf(euler.x);
+ float cy = cosf(euler.y);
+ float cz = cosf(euler.z);
+ float sx = sinf(euler.x);
+ float sy = sinf(euler.y);
+ float sz = sinf(euler.z);
+
+ Transform t;
+ t.x.x = cy * cz;
+ t.y.x = cy * sz;
+ t.z.x = -sy;
+
+ t.x.y = sy * sx * cz - cx * sz;
+ t.y.y = sy * sx * sz + cx * cz;
+ t.z.y = cy * sx;
+
+ t.x.z = sy * cx * cz + sx * sz;
+ t.y.z = sy * cx * sz - sx * cz;
+ t.z.z = cy * cx;
+
+ t.x.w = t.y.w = t.z.w = 0.0f;
+ return t;
+}
+
+/* Constructs a coordinate frame from a normalized normal. */
+ccl_device_inline Transform make_transform_frame(float3 N)
+{
+ const float3 dx0 = cross(make_float3(1.0f, 0.0f, 0.0f), N);
+ const float3 dx1 = cross(make_float3(0.0f, 1.0f, 0.0f), N);
+ const float3 dx = normalize((dot(dx0, dx0) > dot(dx1, dx1)) ? dx0 : dx1);
+ const float3 dy = normalize(cross(N, dx));
+ return make_transform(dx.x, dx.y, dx.z, 0.0f, dy.x, dy.y, dy.z, 0.0f, N.x, N.y, N.z, 0.0f);
+}
+
+#ifndef __KERNEL_GPU__
+
+ccl_device_inline Transform transform_zero()
+{
+ Transform zero = {zero_float4(), zero_float4(), zero_float4()};
+ return zero;
+}
+
+ccl_device_inline Transform operator*(const Transform a, const Transform b)
+{
+ float4 c_x = make_float4(b.x.x, b.y.x, b.z.x, 0.0f);
+ float4 c_y = make_float4(b.x.y, b.y.y, b.z.y, 0.0f);
+ float4 c_z = make_float4(b.x.z, b.y.z, b.z.z, 0.0f);
+ float4 c_w = make_float4(b.x.w, b.y.w, b.z.w, 1.0f);
+
+ Transform t;
+ t.x = make_float4(dot(a.x, c_x), dot(a.x, c_y), dot(a.x, c_z), dot(a.x, c_w));
+ t.y = make_float4(dot(a.y, c_x), dot(a.y, c_y), dot(a.y, c_z), dot(a.y, c_w));
+ t.z = make_float4(dot(a.z, c_x), dot(a.z, c_y), dot(a.z, c_z), dot(a.z, c_w));
+
+ return t;
+}
+
+ccl_device_inline void print_transform(const char *label, const Transform &t)
+{
+ print_float4(label, t.x);
+ print_float4(label, t.y);
+ print_float4(label, t.z);
+ printf("\n");
+}
+
+ccl_device_inline Transform transform_translate(float3 t)
+{
+ return make_transform(1, 0, 0, t.x, 0, 1, 0, t.y, 0, 0, 1, t.z);
+}
+
+ccl_device_inline Transform transform_translate(float x, float y, float z)
+{
+ return transform_translate(make_float3(x, y, z));
+}
+
+ccl_device_inline Transform transform_scale(float3 s)
+{
+ return make_transform(s.x, 0, 0, 0, 0, s.y, 0, 0, 0, 0, s.z, 0);
+}
+
+ccl_device_inline Transform transform_scale(float x, float y, float z)
+{
+ return transform_scale(make_float3(x, y, z));
+}
+
+ccl_device_inline Transform transform_rotate(float angle, float3 axis)
+{
+ float s = sinf(angle);
+ float c = cosf(angle);
+ float t = 1.0f - c;
+
+ axis = normalize(axis);
+
+ return make_transform(axis.x * axis.x * t + c,
+ axis.x * axis.y * t - s * axis.z,
+ axis.x * axis.z * t + s * axis.y,
+ 0.0f,
+
+ axis.y * axis.x * t + s * axis.z,
+ axis.y * axis.y * t + c,
+ axis.y * axis.z * t - s * axis.x,
+ 0.0f,
+
+ axis.z * axis.x * t - s * axis.y,
+ axis.z * axis.y * t + s * axis.x,
+ axis.z * axis.z * t + c,
+ 0.0f);
+}
+
+/* Euler is assumed to be in XYZ order. */
+ccl_device_inline Transform transform_euler(float3 euler)
+{
+ return transform_rotate(euler.z, make_float3(0.0f, 0.0f, 1.0f)) *
+ transform_rotate(euler.y, make_float3(0.0f, 1.0f, 0.0f)) *
+ transform_rotate(euler.x, make_float3(1.0f, 0.0f, 0.0f));
+}
+
+ccl_device_inline Transform transform_identity()
+{
+ return transform_scale(1.0f, 1.0f, 1.0f);
+}
+
+ccl_device_inline bool operator==(const Transform &A, const Transform &B)
+{
+ return memcmp(&A, &B, sizeof(Transform)) == 0;
+}
+
+ccl_device_inline bool operator!=(const Transform &A, const Transform &B)
+{
+ return !(A == B);
+}
+
+ccl_device_inline float3 transform_get_column(const Transform *t, int column)
+{
+ return make_float3(t->x[column], t->y[column], t->z[column]);
+}
+
+ccl_device_inline void transform_set_column(Transform *t, int column, float3 value)
+{
+ t->x[column] = value.x;
+ t->y[column] = value.y;
+ t->z[column] = value.z;
+}
+
+Transform transform_inverse(const Transform &a);
+Transform transform_transposed_inverse(const Transform &a);
+
+ccl_device_inline bool transform_uniform_scale(const Transform &tfm, float &scale)
+{
+ /* the epsilon here is quite arbitrary, but this function is only used for
+ * surface area and bump, where we expect it to not be so sensitive */
+ float eps = 1e-6f;
+
+ float sx = len_squared(float4_to_float3(tfm.x));
+ float sy = len_squared(float4_to_float3(tfm.y));
+ float sz = len_squared(float4_to_float3(tfm.z));
+ float stx = len_squared(transform_get_column(&tfm, 0));
+ float sty = len_squared(transform_get_column(&tfm, 1));
+ float stz = len_squared(transform_get_column(&tfm, 2));
+
+ if (fabsf(sx - sy) < eps && fabsf(sx - sz) < eps && fabsf(sx - stx) < eps &&
+ fabsf(sx - sty) < eps && fabsf(sx - stz) < eps) {
+ scale = sx;
+ return true;
+ }
+
+ return false;
+}
+
+ccl_device_inline bool transform_negative_scale(const Transform &tfm)
+{
+ float3 c0 = transform_get_column(&tfm, 0);
+ float3 c1 = transform_get_column(&tfm, 1);
+ float3 c2 = transform_get_column(&tfm, 2);
+
+ return (dot(cross(c0, c1), c2) < 0.0f);
+}
+
+ccl_device_inline Transform transform_clear_scale(const Transform &tfm)
+{
+ Transform ntfm = tfm;
+
+ transform_set_column(&ntfm, 0, normalize(transform_get_column(&ntfm, 0)));
+ transform_set_column(&ntfm, 1, normalize(transform_get_column(&ntfm, 1)));
+ transform_set_column(&ntfm, 2, normalize(transform_get_column(&ntfm, 2)));
+
+ return ntfm;
+}
+
+ccl_device_inline Transform transform_empty()
+{
+ return make_transform(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+}
+
+#endif
+
+/* Motion Transform */
+
+ccl_device_inline float4 quat_interpolate(float4 q1, float4 q2, float t)
+{
+ /* Optix is using lerp to interpolate motion transformations. */
+#ifdef __KERNEL_OPTIX__
+ return normalize((1.0f - t) * q1 + t * q2);
+#else /* __KERNEL_OPTIX__ */
+ /* note: this does not ensure rotation around shortest angle, q1 and q2
+ * are assumed to be matched already in transform_motion_decompose */
+ float costheta = dot(q1, q2);
+
+ /* possible optimization: it might be possible to precompute theta/qperp */
+
+ if (costheta > 0.9995f) {
+ /* linear interpolation in degenerate case */
+ return normalize((1.0f - t) * q1 + t * q2);
+ }
+ else {
+ /* slerp */
+ float theta = acosf(clamp(costheta, -1.0f, 1.0f));
+ float4 qperp = normalize(q2 - q1 * costheta);
+ float thetap = theta * t;
+ return q1 * cosf(thetap) + qperp * sinf(thetap);
+ }
+#endif /* __KERNEL_OPTIX__ */
+}
+
+ccl_device_inline Transform transform_quick_inverse(Transform M)
+{
+ /* possible optimization: can we avoid doing this altogether and construct
+ * the inverse matrix directly from negated translation, transposed rotation,
+ * scale can be inverted but what about shearing? */
+ Transform R;
+ float det = M.x.x * (M.z.z * M.y.y - M.z.y * M.y.z) - M.y.x * (M.z.z * M.x.y - M.z.y * M.x.z) +
+ M.z.x * (M.y.z * M.x.y - M.y.y * M.x.z);
+ if (det == 0.0f) {
+ M.x.x += 1e-8f;
+ M.y.y += 1e-8f;
+ M.z.z += 1e-8f;
+ det = M.x.x * (M.z.z * M.y.y - M.z.y * M.y.z) - M.y.x * (M.z.z * M.x.y - M.z.y * M.x.z) +
+ M.z.x * (M.y.z * M.x.y - M.y.y * M.x.z);
+ }
+ det = (det != 0.0f) ? 1.0f / det : 0.0f;
+
+ float3 Rx = det * make_float3(M.z.z * M.y.y - M.z.y * M.y.z,
+ M.z.y * M.x.z - M.z.z * M.x.y,
+ M.y.z * M.x.y - M.y.y * M.x.z);
+ float3 Ry = det * make_float3(M.z.x * M.y.z - M.z.z * M.y.x,
+ M.z.z * M.x.x - M.z.x * M.x.z,
+ M.y.x * M.x.z - M.y.z * M.x.x);
+ float3 Rz = det * make_float3(M.z.y * M.y.x - M.z.x * M.y.y,
+ M.z.x * M.x.y - M.z.y * M.x.x,
+ M.y.y * M.x.x - M.y.x * M.x.y);
+ float3 T = -make_float3(M.x.w, M.y.w, M.z.w);
+
+ R.x = make_float4(Rx.x, Rx.y, Rx.z, dot(Rx, T));
+ R.y = make_float4(Ry.x, Ry.y, Ry.z, dot(Ry, T));
+ R.z = make_float4(Rz.x, Rz.y, Rz.z, dot(Rz, T));
+
+ return R;
+}
+
+ccl_device_inline void transform_compose(ccl_private Transform *tfm,
+ ccl_private const DecomposedTransform *decomp)
+{
+ /* rotation */
+ float q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
+
+ q0 = M_SQRT2_F * decomp->x.w;
+ q1 = M_SQRT2_F * decomp->x.x;
+ q2 = M_SQRT2_F * decomp->x.y;
+ q3 = M_SQRT2_F * decomp->x.z;
+
+ qda = q0 * q1;
+ qdb = q0 * q2;
+ qdc = q0 * q3;
+ qaa = q1 * q1;
+ qab = q1 * q2;
+ qac = q1 * q3;
+ qbb = q2 * q2;
+ qbc = q2 * q3;
+ qcc = q3 * q3;
+
+ float3 rotation_x = make_float3(1.0f - qbb - qcc, -qdc + qab, qdb + qac);
+ float3 rotation_y = make_float3(qdc + qab, 1.0f - qaa - qcc, -qda + qbc);
+ float3 rotation_z = make_float3(-qdb + qac, qda + qbc, 1.0f - qaa - qbb);
+
+ /* scale */
+ float3 scale_x = make_float3(decomp->y.w, decomp->z.z, decomp->w.y);
+ float3 scale_y = make_float3(decomp->z.x, decomp->z.w, decomp->w.z);
+ float3 scale_z = make_float3(decomp->z.y, decomp->w.x, decomp->w.w);
+
+ /* compose with translation */
+ tfm->x = make_float4(
+ dot(rotation_x, scale_x), dot(rotation_x, scale_y), dot(rotation_x, scale_z), decomp->y.x);
+ tfm->y = make_float4(
+ dot(rotation_y, scale_x), dot(rotation_y, scale_y), dot(rotation_y, scale_z), decomp->y.y);
+ tfm->z = make_float4(
+ dot(rotation_z, scale_x), dot(rotation_z, scale_y), dot(rotation_z, scale_z), decomp->y.z);
+}
+
+/* Interpolate from array of decomposed transforms. */
+ccl_device void transform_motion_array_interpolate(Transform *tfm,
+ const DecomposedTransform *motion,
+ uint numsteps,
+ float time)
+{
+ /* Figure out which steps we need to interpolate. */
+ int maxstep = numsteps - 1;
+ int step = min((int)(time * maxstep), maxstep - 1);
+ float t = time * maxstep - step;
+
+ const DecomposedTransform *a = motion + step;
+ const DecomposedTransform *b = motion + step + 1;
+
+ /* Interpolate rotation, translation and scale. */
+ DecomposedTransform decomp;
+ decomp.x = quat_interpolate(a->x, b->x, t);
+ decomp.y = (1.0f - t) * a->y + t * b->y;
+ decomp.z = (1.0f - t) * a->z + t * b->z;
+ decomp.w = (1.0f - t) * a->w + t * b->w;
+
+ /* Compose rotation, translation, scale into matrix. */
+ transform_compose(tfm, &decomp);
+}
+
+ccl_device_inline bool transform_isfinite_safe(ccl_private Transform *tfm)
+{
+ return isfinite4_safe(tfm->x) && isfinite4_safe(tfm->y) && isfinite4_safe(tfm->z);
+}
+
+ccl_device_inline bool transform_decomposed_isfinite_safe(ccl_private DecomposedTransform *decomp)
+{
+ return isfinite4_safe(decomp->x) && isfinite4_safe(decomp->y) && isfinite4_safe(decomp->z) &&
+ isfinite4_safe(decomp->w);
+}
+
+#ifndef __KERNEL_GPU__
+
+class BoundBox2D;
+
+ccl_device_inline bool operator==(const DecomposedTransform &A, const DecomposedTransform &B)
+{
+ return memcmp(&A, &B, sizeof(DecomposedTransform)) == 0;
+}
+
+float4 transform_to_quat(const Transform &tfm);
+void transform_motion_decompose(DecomposedTransform *decomp, const Transform *motion, size_t size);
+Transform transform_from_viewplane(BoundBox2D &viewplane);
+
+#endif
+
+/* TODO: This can be removed when we know if no devices will require explicit
+ * address space qualifiers for this case. */
+
+#define transform_point_auto transform_point
+#define transform_direction_auto transform_direction
+#define transform_direction_transposed_auto transform_direction_transposed
+
+CCL_NAMESPACE_END
+
+#endif /* __UTIL_TRANSFORM_H__ */